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1. INTRODUCTION 

The purpose of this guide is to provide both a basic understanding of statistical 

concepts (know-why) as well as instructions for analysing quantitative data in Stata 

(know-how). The assumption is that you already have some data – therefore, there is 

only a limited discussion about study design and all the issues related to this. It should 

also be noted that this guide is positioned somewhere in the intersection between 

social sciences and medical sciences. 

 

We wanted to keep the guide almost completely free of formulas (i.e. brain-freezing 

mathematical equations). In doing so, we have tried to explain everything at the most 

elementary level and only included aspects that we think are important for applied 

statistics. As such, this guide is pragmatic and research-oriented. Hopefully, you will 

find it useful.  

 

This guide consists of three parts. In the first part, we introduce the guide (Chapter 1) 

and the Stata environment (Chapter 2), after which we discuss basic statistical 

concepts (Chapter 3) and different types of descriptive analysis (Chapter 4).  

 

The second part starts with issues related to statistical significance (Chapter 5) and 

then continues with basic types of analysis, such as t-tests, ANOVA, chi-square, 

correlation analysis, and factor analysis (Chapters 6-8). 

 

In the third part, we focus on more advanced statistical analysis: we discuss some 

theoretical dimensions of statistical analysis (Chapter 9) and briefly explore different 

extensions of ANOVA (Chapter 10), before continuing to regression analysis 

(Chapters 11-17). In addition to this, we guide you through mediation analysis 

(Chapter 18) and interaction analysis (Chapter 19).   

 

You are welcome to contact ylva.almquist@su.se with any questions or suggestions 

for improvements or additions. 

 

Happy exploration! And remember these words (Aaliyah, 2000):  

 

If at first you don’t succeed, 

Dust yourself off, and try again. 

 

The Authors   

Stockholm, February 2021 

 

 

 

mailto:ylva.almquist@su.se


10 

 

Contributions and credits 

The original idea behind this guide as well as its overall structure and content was 

conceived by Ylva B Almquist and Lars Brännström. Ylva B Almquist has authored 

Chapters 1-3, 5-8, 11-16, and 18-19. Lars Brännström has authored Chapter 9. 

Christoffer Åkesson has proof-read the guide, authored Chapter 10, and provided 

theoretical examples throughout Chapters 11-16 and 18-19.  

 

The authors are also very grateful to Lauren Bishop who co-authored Chapters 4 and 

17 together with Ylva B Almquist. 

 

Data 

The primary data material used in this guide is: 

▪ “StataData1”, which is a dataset developed for the purposes of the guide. It 

contains data on a fictional cohort of 10,000 individuals born in 1970, who 

have been followed-up until 2020. In other words, the data are fake. 

In Chapter 8, another dataset is used:  

▪ “StataData2”, which is based on several waves of data collection related to 

the World Values Survey.  

Additionally, a dataset called TestData1 will be created, and one called TestData2 will 

be used, in Chapter 2.  

 

Versions 

This version of the guide (1.1) is based on Stata/SE 16.1 for Windows. 

 

The joys of do-files 

Nowadays, Stata’s interface is quite user-friendly and, if you want, you can do most 

things through the menus. This is, however, not what we will practice in this guide; 

instead, we will learn how to use syntax. Syntax is basically how we tell Stata to do 

what we want it to do. We write our syntax in a so-called do-file, which is a text editor 

where it is possible to add comments and commands (see Section 2.1.2).  

 

The reasons for why we strongly recommend everyone to use do-files are, among 

other things: 

• It is a way of documenting and archiving everything you have done with the 

data material. 

• It is easy to repeat parts or all of the analysis.  

• Other people involved in the data material can easily understand what you have 

done and how you have done it.  

• It saves an enormous amount of time.  
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File paths 

To make full use of do-files, you need to be able to specify file paths. A file path is a 

specification of the location of a file on your computer. There are many ways of 

identifying a file path, of which a few will be outline below.  

 

Note The following instructions are based on Windows. 

 

A first option is to open the File Explorer and locate the file you want. Right click on 

the file and choose Properties. In the new window that opens, look for the line that 

says Location. Select the path that is specified here, right-click, and choose Copy. It 

could look something like this: 

 

C:\Users\yerik\Stata Guide 

 

Paste the path into your do-file. Note that you also need to add the file name (including 

the file extension) to the path. It could look something like this: 

 

 C:\Users\yerik\Stata Guide\StataData1.dta 

 

Another option is to open the File Explorer and locate the file you want. In the upper 

area of the window, there is a search bar. Place the mouse pointer on the right-hand 

side of the path specification here and click. The path is now selected. Right-click and 

choose Copy. The subsequent instructions are then the same as for the first option. 

 

General advice 

• Keep all your files for the course/project in the same main folder and use sub 

folders to organise the files further. 

• Save your files under appropriate names.  

Example: “Ericsson Data Lesson 1” 

• Always keep a copy of the original files. 

Example: “Ericsson Data Lesson 1 Original” 

• Save intermediate versions of your files. 

Example: “Ericsson Data Lesson 1 200629” 

• Always double-check that you have spelled variable names, values, and labels 

correctly. 

 

Note Stata is case-sensitive! Moreover, you must always use lower-case letters for 

your commands.
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Content 

The Stata environment may come across as daunting at first, but it is actually quite 

simple once you have had some practice. In this chapter, we will review main file 

types and the most useful commands. It is far from being exhaustive – there is much 

more to explore! 
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2.1 File types 

The are many different types of Stata files, all with different functions and extensions. 

The most common ones are: 

 

Type Extension Content 

Dataset .dta Data and variables 

Do-file .do Commands and comments 

Log .smcl Results 

Graph .gph Graphs 

Package .ado User-written packages 
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2.1.1 Dataset 

This is what Stata looks like. The menu bar (File, Edit, and so on) is located in the 

upper area. 

 

 

 
 

 

The Stata menu works similar to the menus in many other programs, such as Word or 

Excel. Some useful File options are listed below (most of these can be found also in 

the menu of e.g. do-files): 

 

Option Description 

Open a file Go to File\Open and browse your computer to locate the 

file that you want to open. Then click on Open. 

 Keyboard shortcut: Ctrl+O 

Save a file Go to File\Save As. Type in a descriptive name and then 

click Save. 

 Keyboard shortcut: Ctrl+Shift+S 

Overwrite a file Go to File\Save. 

 Keyboard shortcut: Ctrl+S 

Import data Go to File\Import and choose what kind of format you 

want to import. Browse the file and click on Open. 

Export data Go to File\Export and choose what kind of format you 

want to export to, and what to call the new file. Then 

click on OK. 
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Variables 

The Variables window shows a list of variables in the dataset, including the Name and 

the Label for each variable: 

 

 

 
 

 

Properties 

Every time that you click on a variable in the list, some information for that variable 

appears in the Properties window, e.g. Name, Label, Type, Format, and Value Label: 
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Command 

The Command window is where you can write your commands – although we highly 

recommend that you primarily write them in your do-file instead (see Section 2.1.2):  

 

 

 
 

 

Note You can scroll among your previous commands by using the Page up and Page 

down keys on your keyboard. 
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History 

All the commands that Stata performs, end up in the History window. However, if 

you use a do-file, the list will diminish considerably (a note will instead appear in the 

History window, stating that you have executed commands from a do-file): 
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Results 

All the results that Stata produces, end up in the Results window. 

 

  

 
 

 

One really practical thing is that you can copy the tables as pictures. Just highlight 

what you want, click on Edit\Copy as picture, and then paste it anywhere you like. 
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A table copied as a picture from Stata (note that the size of the picture depends on the 

width of your Results window; wider = smaller table): 

 

 

 
 

 

Alternatively, you can choose to copy the output as text and then insert it in another 

document, e.g. Word. The formatting will look terrible at first – make sure to change 

the font to Courier New (and choose a font size that fits the page).  

 

 

 

  

      Total       63,382      100.00

                                                

       Poor        4,180        6.59      100.00

       Fair       15,112       23.84       93.41

       Good       28,558       45.06       69.56

  Very good       15,532       24.51       24.51

                                                

     health        Freq.     Percent        Cum.

 Self-rated  
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2.1.2 Do-file 

As previously mentioned, we recommend that you use do-files to structure your work 

with Stata. Create a new do-file by clicking on Window\Do-file Editor\New Do-file 

Editor, or by using the keyboard shortcut Ctrl+9: 

 

 

 
 

 

This is what a do-file looks like: 

 

 

 
 

 

Note You can increase/decrease the font size in the do-file by clicking on View\Zoom 

and choose Zoom in or Zoom out. 
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Add comments 

It is highly recommended that you comment your do-file. You may add a heading 

above each command, and also make notes of interesting findings, etc. There are four 

ways of adding comments in a do-file: 

 

Alternative Example 

Start the comment with * * This is a comment 

Start the comment with // // This is a comment 

Start the comment with /// /// This is a comment 

Enclose the comment with /* */ /* This is a comment */ 

 

An advantage of the last option is that it allows you to include comments anywhere in 

the do-file, even in the middle of a command. The other need to be separated from the 

commands by using line breaks.  

 

Note You can easily double-check that the comments are correctly entered, because 

they turn green if they are. It is also possible to mix different types of comments in 

the do-file. 

 

Here is an example where we have started with an informative header for the do-file. 

After this, we can include the commands, along with headings and comments of the 

results: 
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To execute the do-file, there are some different options. Either you can click on the 

button with a “play” arrow on it – Execute (do) – or you can use the keyboard shortcut 

Ctrl+D. 

 

 

 
 

 

This executes the entire do-file. Most of the time, you only want to execute a specific 

command of part of the do-file. To manage this, you first need to highlight the part 

that you want to execute. Now you can click on the same button – this called Execute 

selection (do) – or use the keyboard shortcut Ctrl+D. 
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Error messages and return codes 

If you execute a command that is incorrectly specified, Stata will return an error 

message in the Results window. It is not always evident why the error has occurred, 

even though Stata often provides some clues (sometimes, a specific return code is 

given, which you can learn more about through Google…).  

 

Note In a majority of the cases, the error message is due to a missing symbol (e.g. a 

dot, a comma, or the inclusion a of a single equal sign instead of a double one). Review 

your do-file for mistakes like this.  

 

Note Be careful – sometimes the command works even though it is not specified as 

you intended. This risk is particularly important to consider when you generate and 

recode variables. 

 

Save a do-file 

To save a do-file, you need to use the menu – it cannot be saved by a including a 

command in the do-file itself. 

 

Open a do-file 

To open an existing do-file, the easiest way is to do it through the menu (inside your 

dataset).  

 

Note If you instead double-click on a do-file on your computer to open it up, an empty 

dataset will also open up – to which the do-file will be linked. This will cause 

problems. Therefore, it is suggested that you avoid this approach. 

 

Load a dataset 

In the above example, we already had a dataset open and then started a new do-file. 

But it is often the case that you want to open the dataset from within the syntax. You 

can do this with the command use: 

 

use "path\filename.dta" 

 

Change path\filename to the full path (i.e. the folder on your computer that contains 

the file), and specify the file name, such as: 

 

use "C:\Users\yerik\Stata Guide\StataData2.dta" 

 

More information help use 
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Save a dataset 

To save the dataset, type:  

 

save "path\filename.dta" 

or 

save "path\filename.dta", replace 

 

More information help save 
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2.1.3 Log 

In Section 2.1.1, we demonstrated how to copy a table from the Results window. But 

sometimes you rather want to save a big chunk of output. To do this, you need to use 

a log file – this is a sort of a nicely formatted output file. 

 

This is what a log can look like: 

 

 

 
 

 

More information help log 

 

Start a new log 

Use the following command to start a new log (the path specifies where you want to 

log to be saved): 

 

log using "path\filename.smcl" 

 

Change path\filename to the full path (i.e. the folder on your computer that you want 

the log to end up in), and specify the log name of your choice, such as: 

 

log using "C:\Users\yerik\Stata Guide\Log200715.smcl" 

 

Close a log 

Once you have produced the output you want, stop the log with this command: 

 

log close 
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Continue with or replace a log 

And here is how you open up an old log and add more stuff to it: 

 

log using "path\filename.smcl", append 

 

For example: 

 

log using "C:\Users\yerik\Stata Guide\Log200715.smcl", append 

 

Or if you prefer to open up the old log and overwrite it: 

 

log using "path\filename.smcl", replace 

 

For example: 

 

log using "C:\Users\yerik\Stata Guide\Log200715.smcl", replace 

 

View your log 

Want to view your log? This is how: 

 

view "path\filename.smcl" 

 

For example: 

 

view "C:\Users\yerik\Stata Guide\Log200715.smcl" 
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2.1.4 Graphs 

Any graph that you produce in Stata will appear in a new pop-up window.  

 

Edit a graph 

You can alter your graph at any time by right-clicking on it and choose Start Graph 

Editor. 
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This turns the pop-up window into the Graph Editor.  

 

 

 
 

 

The remaining functions available here will not be covered in this guide – but we 

strongly encourage you to experiment! The bottom line is that you double-click on the 

things you want to change, in order to activate different options. 

 

Note As long as the Graph Editor is open, you cannot do anything in your dataset or 

do-file (they are “locked”). 

 

To exit the Graph Editor, go to the menu, click on File and choose Stop Graph Editor. 

If you have made any changes, you will be asked whether you want to save those or 

not. 

 

More information help graph editor 

 

Save a graph 

Save your graph using the following command (note that this does not work if the 

Graph Editor is open): 

 

graph save "path\filename.gph" 

 

Change path\filename to the full path (i.e. the folder on your computer that you want 

the file to end up in), and specify the file name of your choice, such as: 
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graph save "C:\Users\yerik\Stata Guide\Srh.gph" 

 

This only works the first time you save the graph. If you want to re-save a file, you 

need to specify the command a bit more: 

 

graph save "C:\Users\yerik\Stata Guide\Srh.gph", replace 

 

More information help graph save 

 

Open a graph 

Here is how you open a graph: 

 

graph use "path\filename.do" 

 

Change path\filename to the full path (i.e. the folder on your computer that contains 

the file), and specify the file name, such as: 

 

graph use "C:\Users\yerik\Stata Guide\Srh.gph" 

 

More information help graph use 
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2.1.5 Package 

Stata is loaded with functions – but it is also possible to install clever user-written 

additions. Any specific packages will not be covered in this guide, but we will go 

through the installation process below. 

 

New and popular 

Want to see if which the most popular packages are? 

 

ssc hot 

 

Or do you want to see if there are any new, cool packages? 

 

ssc new 

 

Install 

Most of the time, you know the name of the package that you want to install: 

 

ssc install name 

 

For example: 

 

ssc install outreg2 

 

Update 

It might be good to check now and then whether your packages need updates. 

 

ado update 

 

And then to actually install the updates: 

 

ado update, update 

 

Uninstall 

Want to uninstall a package? 

 

ssc uninstall name 

 

For example: 

 

ssc uninstall outreg2 

 

More information help ssc 

 help ado 
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2.2 Creating a new dataset 

 

2.2.1 From questionnaire to dataset 

Sometimes there is a need to create a dataset from scratch. This is, for example, the 

case when we have performed a survey (like the one below) and have a pile of filled 

in paper questionnaires that somehow need to be transferred into Stata. 

 

 
 

Before we can actually code the questionnaire responses, we need to create the 

variable structure in Stata. In the questionnaire shown above, there is a total of five 

variables: 

 

• ID number 

• What is your biological sex? 

• How would you rate your health? 

• What is your annual income? 

• Do you have any comments on the survey? 

 

In Stata, each of these variables should be specified according to its Name, Label, 

Type, Format, and Value Label. 
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Name 

This is the name that you choose for a variable. Make it short, clear, and logical. Avoid 

any spaces or special symbols. Underscores can be useful. It is highly recommended 

that you use lower case letters. 

 

Label 

This a more elaborate description of your variable. If the variable is drawn from a 

questionnaire, it would be practical to use the question as the label. 

 

Type 

There are two different types of variables in Stata: numeric and string.  

 

Numeric variables can only handle numeric data. Such variables are the basis of 

quantitative research – which is why we usually always “translate” categorical 

variables into numeric variables by assigning a number to each category. Numbers are 

stored as byte, int, long, float, or double. Among these, byte, int, and long can hold 

only integers (i.e. whole numbers). The default storage type when you create a new 

variable in Stata is float. 

 

String variables can handle any data (i.e. any numbers and letters) but is more difficult 

to analyse. Therefore, they are often processed (“quantified”) in ways that make it 

possible to use them in statistical analysis. Either way, strings are stored as str#, for 

instance, str1, str2, str3, ..., or as strL. The # sign indicates the maximum length of the 

string, i.e. how many characters that the variable can store. For example, a str2 can 

hold the word "no", but not the word "yes". A strL can hold strings up to 2000000000 

characters. 

 

Note If you are worried about the size of your data files, it is good to read up on the 

different storage types. If not, just keep in mind the difference between numeric and 

string variables. And also make sure to know whether your variable is an integer 

(whole numbers) or not (has decimals). 

 

Format 

The format of the variable is a function of its type. Default is: 

 

Storage type Format 

Byte %8.0g 

Int %8.0g 

Long %12.0g 

Float %9.0g 

Double %10.0g 

str# %#s 

strL %9s 
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Value label 

This is where you specify the labels for any categories that the variable might have 

(thus, only useful for categorical variables, not continuous ones). 

 

2.2.2 Variable structure 

We will now use some syntax to create the variables specified in the table: 

 

Name Label Type Format Value label 

id ID number Int %8.0g - 

sex What is your biological sex? Int %8.0g 0=Man 

1=Woman 

srh How would you rate your health? Int %8.0g 1=Poor 

2=Good 

3=Excellent 

income What is your annual income? Int %9.0g - 

comment Do you have any comments on 

the survey? 

strL %9s - 

 

Step 1. Generate variables and specify type 

As a first step, we generate the variables and specify their type. We also need to tell 

Stata what the values of the new variable should be. For the numeric variables, we go 

with missing (denoted by “.”). 

 

gen int id=. 

 

gen int sex=. 

 

gen int srh=. 

 

gen int income=. 

 

gen strL comment="" 

 

Note For our string variable, it is slightly different. We need to use double quotes here 

– but nothing actually has to be specified within the double quotes. 

 

More information help generate 

 

Step 2. Add labels 

We can now add labels for the variables: 

 

label variable id "ID number" 

 

label variable sex "What is your biological sex?" 
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label variable srh "How would you rate your health?" 

 

label variable income "What is your annual income?" 

 

label variable comment "Do you have any comments on the survey?" 

 

More information help label 

 

Step 3. Add value labels 

The final step is to add value labels for the categorical variables. We do this by first 

specifying a set of value labels: 

 

label define sex 0 "Man" 1 "Woman" 

 

label define srh 1 "Poor" 2 "Good" 3 "Excellent" 

 

Note For simplicity reasons, they have the same name as the corresponding variables. 

But if we would have had, for example, a whole set of variables which all had the 

response options “No” and “Yes”, we could have created just one label and used it for 

all those variables.  

 

Now it is time to apply our labels: 

 

label values sex sex  

 

label values srh srh  

 

Do you suddenly realize that you need to adjust your labels? You can change them by 

using the following commands: 

 

label define sex 0 "Man" 1 "Woman", replace 

 

label define srh 1 "Poor" 2 "Good" 3 "Excellent", replace 

 
You can also delete value labels by writing the following: 

 

label drop sex  

 

label drop srh 

 

More information help label 
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2.2.3 Manage variables 

It is good to be able to write syntax – but sometimes it might be useful to also get a 

more overarching perspective on the dataset. This can be achieved by using Stata’s 

Variables Manager. Use the following command to access it: 

 

varmanage  

 

2.2.4 Coding the questionnaires 

So far, so good! Now it is time to transfer the actual responses from the questionnaire 

to Stata. 

 

Edit data 

Add this command to open the Data Editor: 

 

edit 

 
Here you can simply add the responses you have in your questionnaires. Note that if 

you have specified value labels, these will appear instead of the actual value: 

 

 

 
 

 

(Some entries for comments have been truncated. Id 1=Lousy questionnaire; Id 5=I 

have nothing to add; Id 8=Too short). 

 

Note You can use the arrows on your keyboard to navigate the cells. 

 

Close the Data Editor when you are done. Do not forget to save the dataset. We have 
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chosen to call it TestData1.dta.  

 

Note Every change that you perform in the Data Editor generates the corresponding 

command in the Results window. It might be good to log these commands in order to 

be able to re-create the data at a later point (see Section 2.1.3 for more information 

about log files). 

 
  



 

37 

 

Browse data 

Do you want to have a look at the Data Editor without actually editing? Then you can 

use browse: 

 

browse 

 

If you just want to browse specific variables or portions of the variable list, this can 

be specified after browse: 

 

browse varname 

or 

browse varname varname varname 

or 

browse varname-varname 

 

For example: 

 

browse sex income 

 

Note You can also use browse together with if (see Section 2.7). An alternative to 

browse is list (see Section 2.3.1).  
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2.3 Adjusting an existing dataset 

Often, we do not create an entire new dataset from scratch; we rather import another 

type of file (e.g. Excel or .csv) that contains data of some sort. In this section, we will 

walk you through some of the most useful commands in Stata. 

 

2.3.1 Review dataset 

 

Describe 

When you want to have a quick overlook of your variables, the describe command 

might be very useful. It is basically like a summary of what you can see when using 

the Variables Manager (see Section 2.2.3).  

 

describe 

 

 
  obs:            10                           

 vars:             5                           

----------------------------------------------------------------------------- 

              storage   display    value 

variable name   type    format     label      variable label 

----------------------------------------------------------------------------- 

id              int     %8.0g                 ID number 

sex             int     %8.0g      sex        What is your biological sex? 

srh             int     %9.0g      srh        How would you rate your health? 

income          long    %8.0g                 What is your annual income? 

comment         strL    %9s                   Do you have any comments on the 

                                                survey? 

----------------------------------------------------------------------------- 

Sorted by: 

 

 

If you just want to describe specific variables or portions of the variable list, this can 

be specified after describe: 

 

describe varname 

or 

describe varname varname varname 

or 

describe varname-varname 

 

For example: 

 

describe sex income 

 

More information help describe 
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Codebook 

As a complement to describe, you can use codebook. 

 

Note We suggest that you include the compact option, or you will get a lot of output. 

 
codebook, compact 

 

 
Variable   Obs Unique    Mean  Min     Max  Label 

----------------------------------------------------------------------------------------- 

id          10     10     5.5    1      10  ID number 

sex         10      2      .5    0       1  What is your biological sex? 

srh         10      3       2    1       3  How would you rate your health? 

income      10      9  286050    0  480000  What is your annual income? 

comment      3      3       .    .       .  Do you have any comments on the survey? 

----------------------------------------------------------------------------------------- 

 

 
You can also include the following option to see any potentially missing information 

in the dataset (e.g. missing labels or value labels). 

 

 codebook, problems 

 

 
   Potential problems in dataset   C:\Users\yerik\Stata Guide\TestData.dta 

 

               potential problem   variables 

-------------------------------------------------- 

  string vars with embedded blanks   comment 

-------------------------------------------------- 

 

 
Finally, if you want to explore a specific variable in a detailed way, use this option: 

 

codebook srh, detail 

 

 
----------------------------------------------------------------------------------------- 

srh                                                        How would you rate your health? 

----------------------------------------------------------------------------------------- 

 

                  type:  numeric (int) 

                 label:  srh 

 

                 range:  [1,3]                        units:  1 

         unique values:  3                        missing .:  0/10 

 

            tabulation:  Freq.   Numeric  Label 

                             3         1  Poor 

                             4         2  Good 

                             3         3  Excellent 

 

 

More information help codebook 
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List 

As an alternative to browse (see Section 2.2.4), you can use list. However, it works 

best for datasets with a limited number of variables and observations, or if you only 

list a portion of your dataset – otherwise, the output will be extremely difficult to read. 

 

list 

 

 
     +---------------------------------------------------------+ 

     | id     sex         srh   income                 comment | 

     |---------------------------------------------------------| 

  1. |  1   Woman        Poor   250000     Lousy questionnaire | 

  2. |  2     Man   Excellent   480000                         | 

  3. |  3     Man        Good   300500                         | 

  4. |  4     Man   Excellent   470000                         | 

  5. |  5   Woman   Excellent   200000   I have nothing to add | 

     |---------------------------------------------------------| 

  6. |  6   Woman        Good   420000                         | 

  7. |  7     Man        Poor   350000                         | 

  8. |  8     Man        Poor        0               Too short | 

  9. |  9   Woman        Good   390000                         | 

 10. | 10   Woman        Good        0                         | 

     +---------------------------------------------------------+ 

 

 

If you just want to describe specific variables or portions of the variable list, this can 

be specified after list: 

 

list varname 

or 

list varname varname varname 

or 

list varname-varname 

 

For example: 

 

list sex income 

 

You can also choose to only list a range of observations. Note that the output depends 

on how the observations are sorted. 

 

list in x/x 

 

For example: 

 

list in 1/5 

 

Note You can also use list together with if (see Section 2.7). 

 

More information help list 
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2.3.2 Convert variables 

It might be the case that you have a lot of string variables in your dataset, although 

they are actually numeric. Why is this not desirable? Well, statistical analysis is all 

about numbers. Accordingly, we want to convert string variables to numeric variables 

as far as possible (of course, this cannot be as easily fixed for variables that actually 

contain – and should contain – strings of text). 

 

There are a couple of different ways that we can convert string variables to numeric 

variable. We will use a dataset called TestData2.dta, which looks like this: 

 

describe 

 

 
  obs:            10                           

 vars:             5                          15 Jul 2020 20:12 

-------------------------------------------------------------------------------------- 

              storage   display    value 

variable name   type    format     label      variable label 

--------------------------------------------------------------------------------------

--------------------- 

id              int     %8.0g                 ID number 

sex2            str1    %9s                   What is your biological sex? 

srh2            str9    %9s                   How would you rate your health? 

income2         str7    %9s                   What is your annual income? 

comment         strL    %9s                   Do you have any comments on the survey? 

-------------------------------------------------------------------------------------- 

Sorted by: 

 

 

list 

 

 
     +---------------------------------------------------------+ 

     | id   sex2        srh2   income2                 comment | 

     |---------------------------------------------------------| 

  1. |  1      1        Poor   250,000     Lousy questionnaire | 

  2. |  2      0   Excellent   480,000                         | 

  3. |  3      0        Good   300,500                         | 

  4. |  4      0   Excellent   470,000                         | 

  5. |  5      1   Excellent   200,000   I have nothing to add | 

     |---------------------------------------------------------| 

  6. |  6      1        Good   420,000                         | 

  7. |  7      0        Poor   350,000                         | 

  8. |  8      0        Poor         0               Too short | 

  9. |  9      1        Good   390,000                         | 

 10. | 10      1        Good         0                         | 

     +---------------------------------------------------------+ 

 

 

By reviewing the tables above, we can notice that three of the variables – sex2, srh2, 

and income2 are string variables although they actually could be numeric. This will 

make them rather impossible to use in statistical analysis. However, we need different 

approaches to actually convert them to numeric – described in detail below. 
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Real 

The first alternative is to use real. This works for string variables that only contain 

numbers, such as sex2. 

 

generate sex=real(sex2) 

 

This will create a new variable called sex, which is a numeric version of sex2. 

 

describe sex sex2 

 

 
              storage   display    value 

variable name   type    format     label      variable label 

-------------------------------------------------------------------------------------- 

sex             float   %9.0g                  

sex2            str1    %9s                   What is your biological sex? 

 

 

More information help real 

 

Destring 

For sex2, we could have achieved the almost same result by using destring. 

 

destring sex2, gen(sex) 

 

This too will create a new variable called sex, which is numeric version of sex2. An 

advantage is that we keep the variable label (and the automatically selected storage 

type is different). 

 

describe sex sex2 

 

 
              storage   display    value 

variable name   type    format     label      variable label 

-------------------------------------------------------------------------------------- 

sex             byte    %10.0g                What is your biological sex? 

sex2            str1    %9s                   What is your biological sex? 

 

 

For the variable income2, it is not possible to use real at all, since this string variable 

contains non-numeric values (in this case, commas). If we use real, all cells that 

contain a non-numeric character will have missing values. Here our best option is to 

use destring, which allows us to ignore the non-numeric characters. 

 

destring income2, gen(income) ignore(",") 

 

describe income income2 
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              storage   display    value 

variable name   type    format     label      variable label 

-------------------------------------------------------------------------------------- 

income          long    %10.0g                What is your annual income? 

income2         str7    %9s                   What is your annual income? 

 

 

More information help destring 

 

Encode 

The third type of string variable that we want to convert to a numeric variable, is srh2. 

This variable, however, have the actual categories coded in the cells (i.e. Poor, Good, 

and Excellent). We want these translated into numbers instead. We can use encode to 

achieve this. 

 

encode srh2, gen(srh) 

 

describe srh srh2 

 

 
              storage   display    value 

variable name   type    format     label      variable label 

--------------------------------------------------------------------------------------

--------------------- 

srh             long    %9.0g      srh        How would you rate your health? 

srh2            str9    %9s                   How would you rate your health? 

 

 

Note that Stata automatically creates value labels for the new variable srh.  

 

More information help encode 

 

Tostring and decode 

Finally, sometimes we might want to convert numeric variables into string variables 

(e.g. to be able to use substring, see Section 2.4.6). 

 

According to the same principles as we used destring and encode, we can apply 

tostring and decode. 

 

More information help tostring 

 help decode 
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2.3.3 Rename variables 

Renaming variables is very easy – just make sure to use a logical name (without spaces 

or special symbols) and not a name that is already taken by another variable: 

 

rename oldvarname newvarname 

 

For example: 

 

rename var01 id 

 

More information help rename 

 

2.3.4 Delete variables 

Do you need to delete a variable? This is how you do it: 

 

drop varname 

 

For example: 

 

drop var33 

 

If you have a large number of variables that you want to delete, it might sometimes 

be easier to tell Stata which the variables you want to retain: 

 

keep varname 

 

For example: 

 

keep var1-var10 var66 

 

Note You cannot undo the deletion of a variable. 

 

More information help drop 

 help keep 
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2.3.5 Sort dataset 

It might be good to keep your dataset sorted, according to e.g. id number. Just keep in 

mind that Stata interprets missing numeric values as being larger than any other 

number, so they are placed last when you sort. When you sort on a string variable, 

however, null strings (empty strings) are placed first. 

 

sort varname 

 

For example: 

 

sort id 

 

More information help sort 

 

2.3.6 Create an id number variable 

Not all datasets have an id number variable (for example, if you have performed an 

anonymous survey, there might not have been a need to mark the questionnaires with 

any id number). This is easily fixed in Stata – note, however that Stata will assign 

numbers in the order that the dataset is sorted, so make sure that you have it sorted in 

the way you like first): 

 

gen varname = _n 

 

For example: 

 

gen id = _n 

 

More information help generate 
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2.3.7 Order variables 

Is it driving you crazy that variables are ordered in an illogical way? This can be fixed 

by using order. When using order, you must specify which variables you want to 

move. First, we will show you how to move one variable (works also for more than 

one specified variable), then we show how to re-order the whole list of variables 

(works also for portions of the list) 

 

Move the variable to the beginning of the dataset: 

 

order varname, first  

 

For example: 

 

order id, first 

 

Move the variable to the end of the dataset: 

 

order varname, last  

 

For example: 

 

order mortality, last 

 

Move the variable to before another variable: 

 

order varname1, before(varname2)  

 

For example: 

 

order health_2007, before(health_2008)  

 

Move the variable to after another variable: 

 

order varname1, after(varname2)  

 

For example: 

 

order phystest2, after(phystest1)  

 

Order all the variables in the dataset alphabetically: 

 

order _all, alpha  

or 

order firstvarname-lastvarname, alpha  

 



 

47 

 

For example: 

 

order id-mortality, alpha  

 

Order a portion of the variable list alphabetically: 

 

order phystest1-phystest10, alpha  

 

More information help order 

  



 

48 

 

2.4 Generate 

We suspect that generate (or gen, for short) is perhaps one of the commands that you 

will use the most in Stata. We have already applied it in several parts of the guide, and 

here are some additional alternatives. 

 

More information help generate 

 

2.4.1 Copy of an existing variable 

Make a copy of an existing variable. This is highly useful e.g. when you want to 

experiment with a variable or to recode a variable without altering the original version. 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

 

 

gen gpa2=gpa 

 

As can be seen below, the new variable gpa2 will be an exact copy of the old variable 

gpa. 

 

sum gpa gpa2 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         gpa |      9,380    3.178614    .6996298          1          5 

        gpa2 |      9,380    3.178614    .6996298          1          5 
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browse gpa gpa2 
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2.4.2 New variable with a specific value 

Here is one example of how we can create a new variable with a specific value. 

 

Practical example 

 

gen sample=1 

 

This creates a new variable called sample, for which all observations will have the 

value 1. 

 

sum sample 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

      sample |     10,000           1           0          1          1 

 

 

browse sample 
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2.4.3 New variable based on an expression 

Create a new variable based on an expression that can include multiple variables 

and/or values. Below, two examples are presented. 

 

Practical example 1 

 

 

Dataset: StataData1.dta 

 

Name    Label 

unemp_42   Days in unemployment (Age 42, Year 2012) 

unemp_43   Days in unemployment (Age 43, Year 2013) 

unemp_44   Days in unemployment (Age 44, Year 2014) 

unemp_45   Days in unemployment (Age 45, Year 2015) 

 

 

gen unemp=unemp_42+unemp_43+unemp_44+unemp_45 

 

The new variable unemp contains the sum of the other four variables. 

 

sum unemp_42 unemp_43 unemp_44 unemp_45 unemp 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

    unemp_42 |      9,078    17.52787    58.68258          0        365 

    unemp_43 |      8,994    7.593173    36.93804          0        365 

    unemp_44 |      8,880     9.48018    44.70616          0        365 

    unemp_45 |      8,773    5.531859    34.04111          0        365 

       unemp |      8,672    39.39864    111.0481          0       1434 
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browse unemp_42 unemp_43 unemp_44 unemp_45 unemp 

 

 

 
 

 

Note If any of the variables that you include in the expression have missing values, 

the value for the new variable will be missing as well.  

 

Practical example 2 

 

 

Dataset: StataData1.dta 

 

Name    Label 

bweight  Birth weight (Age 0, Year 1970) 

 

 

gen bweight_grams=bweight*100 

 

The old variable bweight shows birth weight in hectograms, but now we have created 

the new variable bweight_grams which shows birth weight in grams instead. 

 

sum bweight bweight_grams 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

     bweight |      8,010    36.01074    5.406709          2         62 

bweight_gr~s |      8,010    3601.074    540.6709        200       6200 
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browse bweight bweight_grams 
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2.4.4 Rounding 

Do you want to reduce the number of decimals by rounding a variable?  

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

 

 

gen gpa_round = round(gpa,1) 

 

Here, the values for gpa have been rounded to the nearest whole number and saved as 

gpa_round. 

 

browse gpa gpa_round 
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2.4.5 Logarithmic transformation 

Do you want to take the natural logarithm of a variable (log transformation) and create 

a new variable?  

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

 

 

gen gpa_log=ln(gpa) 

 

In Stata, it works exactly the same if you replace “ln” with “log”. 

 

Note The command is “ln” (lower-case L, not upper-case i).  

 

browse gpa gpa_log 

 

 

 
 

 

  



 

56 

 

2.4.6 Substring 

If you need to subtract a portion (substring) from a string variable, you can use substr. 

The authors of the guide can happily reveal that they have applied this a lot when 

working with ICD codes (classification system for diagnoses). 

 

Function 

 

Basic command gen newvarname= substr(oldvarname,start,length) 

Explanations newvarname 

 

oldvarname 

 

substr 

start 

 

length 

Insert the name of the new variable 

(containing the substring). 

Insert the name of the new variable (the 

original string variable). 

Extract a portion of the string variable. 

Specify which position that the starting 

character in the substring has. 

Specify the length of the substring. 

More information help substr 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

cvd_date_str   Date of out-patient care due to CVD (Ages 41-50,  

  Years 2011-2020) 

 

 

We have a string variable called cvd_date_str that contains the date of out-patient care 

due to cardiovascular disease (CVD), coded like YYYYMMDD. Suppose that we 

want to extract the year (YYYY), month (MM), and day (DD) into separate variables.  

 

gen cvd_year_str= substr(cvd_date_str,1,4) 

 

gen cvd_month_str= substr(cvd_date_str,5,2) 

 

gen cvd_day_str= substr(cvd_date_str,7,2) 

 

As can be noted in the command above, for year, we specify 1 as the position which 

the starting character in the substring has, and 4 as the length. For month, we specify 

5 and 2. And, finally, for day, we specify 7 and 2. 
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browse cvd_date_str cvd_year_str cvd_month_str cvd_day_str 

 

 

 
 

 

Let us also add some variable labels for these new variables.  

 

label variable cvd_year_str "Year of out-patient care due to CVD (Ages 41-50, Years 

2011-2020)" 

 

label variable cvd_month_str "Month of out-patient care due to CVD (Ages 41-50, 

Years 2011-2020)" 

 

label variable cvd_day_str "Day of out-patient care due to CVD (Ages 41-50, Years 

2011-2020)" 

  



 

58 

 

2.4.7 Date variables 

Date variables – do not get us started. This is a science in itself! It might nonetheless 

be very useful later on if you want to perform time-to-event analysis (survival 

analysis) to be able to generate date variables. 

 

In this example, we will use three variables that specify year, month, and day, 

respectively, and combine them into a nicely formatted date variable. 

 

Note This requires that you have performed the practical example in Section 2.4.6 

first. 

 

 

Dataset: StataData1.dta 

 

Name    Label 

cvd_year_str   Year of out-patient care due to CVD (Ages 41-50,  

  Years 2011-2020) 

cvd_month_str   Month of out-patient care due to CVD (Ages 41-50,  

  Years 2011-2020) 

cvd_day_str   Day of out-patient care due to CVD (Ages 41-50,  

  Years 2011-2020) 

 

 

All three are string variables. To make things smoother, we will transform them into 

numeric variables, using real. 

 

gen cvd_year=real(cvd_year_str) 

 

gen cvd_month=real(cvd_month_str) 

 

gen cvd_day=real(cvd_day_str) 

 

Just to double-check that everything worked out: 

 

sum cvd_year cvd_month cvd_day 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

    cvd_year |        518    2015.506    2.817287       2011       2020 

   cvd_month |        518    6.393822    3.435974          1         12 

     cvd_day |        518    16.00579    8.859857          1         31 
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The next step it to generate the date variable. 

 

gen cvd_date=mdy(cvd_month,cvd_day,cvd_year) 

 

Note The term “mdy” means that the date is specified as month/day/year. This will 

create a special Stata date variable. 

 

And finally, we format the date variable so it makes more sense for Stata: 

 

format %d cvd_date 
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2.5 Egen 

Is there something that you need to do, but the commands we have gone through so 

far do not seem to offer the solution? Then it is highly recommended that you explore 

egen, which is an extension generate. 

 

More information help egen 

 

2.5.1 Standardization: z-scores 

The standard score – or the z-score – is very useful when we have continuous 

(ratio/interval) variables with different normal distributions (see Section 3.4 for more 

information about distributions). For example, if we have one variable called income 

(measured as annual household income in Swedish crowns) and another variable 

called years of schooling (measured as the total number of years spent in the 

educational system), these variables obviously have very different distributions. 

Suppose we want to compare which one – income or years of schooling – has a larger 

statistical effect on our outcome. That is not possible using the variables we have. The 

solution is to standardize (i.e. calculate z-scores for) these two variables so that they 

are comparable. 

 

Z-scores are expressed in terms of standard deviations from the mean. What we do is 

that we take a variable and “rescale” it so that it has a mean of 0 and a standard 

deviation of 1. Each individual’s value on the standardized variable indicates its 

difference from the mean of the original (unstandardized) variable in number of 

standard deviations. A value of 1.5 would thus suggest that this individual has a value 

that is 1½ standard deviations above the mean, whereas a value of -2 would suggest 

that this individual has a value that is 2 standard deviations below the mean.  

 

 Function 

 

Basic command egen newvarname=std(oldvarname) 

Explanations newvarname 

oldvarname 

Insert the name of the new variable. 

Insert the name of the old variable. 

Short names Std Standard deviation 

More information help egen 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

cognitive   Cognitive test score (Age 15, Year 1985) 

 

 

egen z_gpa=std(gpa) 

 

egen z_cognitive=std(cognitive) 

 

Now you have new versions – containing z-scores – of the two variables.  

 

sum gpa z_gpa cognitive z_cognitive 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         gpa |      9,380    3.178614    .6996298          1          5 

       z_gpa |      9,380    2.87e-10           1  -3.113953   2.603357 

   cognitive |      8,879    308.4708    72.18442        100        500 

 z_cognitive |      8,879   -1.41e-09           1   -2.88803   2.653332 

 

 

codebook gpa z_gpa cognitive z_cognitive, compact 

 

 
Variable      Obs Unique       Mean        Min       Max  Label 

---------------------------------------------------------------------------------------------------- 

gpa          9380     41   3.178614          1         5  Grade point average (Age 15, Year 1985) 

z_gpa        9380     41   2.87e-10  -3.113953  2.603357  Standardized values of (gpa) 

cognitive    8879    101   308.4708        100       500  Cognitive test scores (Age 15, Year 1985) 

z_cognitive  8879    101  -1.41e-09   -2.88803  2.653332  Standardized values of (cognitive) 

---------------------------------------------------------------------------------------------------- 

 

  



 

62 

 

2.6 Recode 

There are a lot of situations where recode is useful. For example: if you have 

continuous variable that you want to categorize, if you have a categorical variable for 

which you want to collapse categories, if you want to reverse the coding of a variable, 

or if you want to change any value(s) into missing. 

 

For string variables, recode does not work. Instead, we can use replace. 

 

More information help recode 

 help replace 
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2.6.1 Recode numeric variables 

 

Function 

 

Basic command recode varname (rule) 

Useful options recode varname (rule), gen(newvarname) 

Explanations varname  

(rule) 

 

gen() 

 

newvarname 

Insert the name of the variable. 

Specify which values you want to recode 

and how you want them to change. 

Add this if you want to generate a new 

variable with the recoding. 

Name of the new variable. 

More information help recode 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

unemp_45   Days in unemployment (Age 45, Year 2015) 

 

 

gen unemp_45dic=unemp_45 

 

recode unemp_45dic (0=0) (1/365=1) (.=.) 

 

The new variable unemp_45dic is a binary version of the original variable unemp_45, 

where all the individuals who had 0 days of unemployment at age 45 are given the 

value 0, and everyone who had 1-365 days of unemployment are given the value 1. 

Missing (“.”) is kept as missing. 
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browse unemp_45 unemp_45dic 
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2.6.2 Recode string variables 

Recoding string variables builds on the same principle as for numeric variables. 

However, you need to use a command called replace instead of recode. Exactly as for 

numeric variables, it is preferable to generate a copy of the old variable before you 

start replacing values (or expressions, which is the term used below). 

 

Note In this example, we are taking a sneak peek at if (which is described in more 

detail in Section 2.7). 

 

Function 

 

Basic command replace varname="exp2" if varname=="exp1" 

Explanations varname  

 

exp1 

 

exp2 

 

Insert the name of the variable that you want 

to recode. 

Specify the value/expression that you want 

to change.  

Specify the value/expression that you want 

to change to. 

More information help replace 
 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

marstat30   Marital status (Age 30, Year 2000) 

 

 

First, let us have a look at this variable. 

 

describe marstat30 

 

 
              storage   display    value 

variable name   type    format     label      variable label 

-------------------------------------------------------------------------------------- 

marstat30       str20   %20s                  Marital status (Age 30, Year 2000) 
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tab marstat30 

 

 
Marital status (Age | 

      30, Year 2000) |      Freq.     Percent        Cum. 

---------------------+----------------------------------- 

                   D |        866        9.39        9.39 

                   M |      5,120       55.54       64.94 

                  UM |      3,206       34.78       99.72 

                   W |         26        0.28      100.00 

---------------------+----------------------------------- 

               Total |      9,218      100.00 

 

 

We can see that marstat30 is a string variable with four values specified (D, M, UM, 

and W). As it happens, we know that D=Divorced, M=Married, UM=Unmarried, and 

W=Widowed. This is what we want to change the values to. 

 

replace marstat30="Divorced" if marstat30=="D" 

 

replace marstat30="Married" if marstat30=="M" 
 

replace marstat30="Unmarried" if marstat30=="UM" 

 

replace marstat30="Widowed" if marstat30=="W" 

 

tab marstat30 

 

 
Marital status (Age | 

      30, Year 2000) |      Freq.     Percent        Cum. 

---------------------+----------------------------------- 

            Divorced |        866        9.39        9.39 

             Married |      5,120       55.54       64.94 

           Unmarried |      3,206       34.78       99.72 

             Widowed |         26        0.28      100.00 

---------------------+----------------------------------- 

               Total |      9,218      100.00 

 

 

Now, it would be even easier to use encode to transform marstat30 into a numeric 

variable while retaining the values as value labels. 
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2.7 Condition the data with if 

As a way of conditioning most other commands, we can use if. For example, you may 

want to get descriptive statistics only for those with a specific value on a variable (or 

several variables). You can also e.g. generate or recode a variable given certain 

properties of one or more other variables. There are simply so many things that if can 

be applied to, that it is impossible to do it justice with just a few examples. 

 

More information help if 

 

Before we get into this, however, there are something that we should address first: 

logical operators. 

 

Logical operators 

< Less than 

<= Less than or equal to 

== Equal 

> Greater than 

>= Greater than or equal to 

!= Not equal to 

& And 

| Or 

! Not 

() Can be used for grouping to specify order or evaluation 
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2.7.1 Descriptive statistics with if 

 

Practical example 1 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

sex   Sex 

 

 

sum gpa if sex==0 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         gpa |      4,752     3.07258    .6988425          1          5 

 

 

sum gpa if sex==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         gpa |      4,628    3.287489    .6836043        1.3          5 

 

 

In the tables above, we see descriptive statistics for gpa, presented for men (sex==0) 

and women (sex==1) separately. 
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Practical example 2 

 

 

Dataset: StataData1.dta 

 

Name    Label 

unemp_45   Days in unemployment (Age 45, Year 2015) 

 

 

histogram unemp_45, freq 

 

histogram unemp_45 if unemp_45!=0, freq 

 

 

 
 

 

 

 

The figure to the left shows a histogram for unemp_45 – not very useful since there 

are so many individuals with the value 0. In the figure to the right, the zeroes have 

been omitted so that it only shows individuals with at least one day in unemployment 

at age 45. 
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2.7.2 Recode with if 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

parmental   Parental mental illness (Ages 0-14, Years 1970-1984) 

parcrim   Parental criminality (Ages 0-14, Years 1970-1984) 

 

 

gen paradversity=. 

 

recode paradversity (.=1) if parmental==0 & parcrim==0 

 

recode paradversity (.=2) if parmental==1 & parcrim==0 

 

recode paradversity (.=3) if parmental==0 & parcrim==1 

 

recode paradversity (.=4) if parmental==1 & parcrim==1 

 

The new variable paradversity captures the four different combinations of parmental 

and parcrim.  

 

browse parmental parcrim paradversity 
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2.8 By 

Similar to if, by can be used in combination with a lot of other commands. One 

particularly great application is to use it together with different types of graphs (e.g. 

bar charts, histograms, and scatterplots). 

 

More information help by 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

educ  Educational level (Age 40, Year 2010) 

sex  Sex 

 

 

graph bar, over(educ) by(sex) 

 

 

 
 

 

This application gives us two bar charts of educational level – separately for men and 

women. 
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2.9 Combining datasets 

There are different ways of combining datasets in Stata, of which merge and append 

are the most useful ones. This is an illustration of the differences between these 

commands (A and B denote different datasets): 

 

Merge Append 

 

 

 

 

 

 

 

 

 

 

2.9.1 Merge 

Sometimes, it is necessary to combine two or more datasets. That is quite common for 

us working with register datasets, where different variables are kept in different files. 

For this purpose, it is possible to use merge. 

 

More information help merge 

 

For merge to work, you need one or more variables to merge the datasets with. Most 

of the time, you have two datasets that contain the same number of individuals which 

are identified through an id variable.  

 

Open the dataset that you want to merge something to, with the following command: 

 

 use "path\filename.dta" 

 

Change path\filename to the full path (i.e. the folder on your computer that contains 

the file), and specify the file name, such as: 

 

use "C:\Users\yerik\Stata Guide\TestDataMA.dta" 

 

Then you can use the following command: 

 

merge 1:1 varlist using "path\filename.dta" 

 

1:1 means that you do a one-to-one merge on specified key variables. For varlist, you 

specify the variable(s) that you want to merge through. 

 

Change path\filename to the full path to the dataset that you want to merge with (called 

A 

B 

A B 

A 

B 

A 

B 
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the “using” dataset) the dataset that you have open (called the “master” dataset). For 

example: 

 

merge 1:1 id using "C:\Users\yerik\Stata Guide\TestDataMB.dta" 

 

This produces a variable in the first dataset that is called _merge. We also get a 

frequency table of this variable in the Results window. In our example, it looks like 

this: 

 

 
    Result                           # of obs. 

    ----------------------------------------- 

    not matched                             0 

    matched                                10  (_merge==3) 

    ----------------------------------------- 

 

 

Thus, all 10 observations in the two datasets have been matched successfully. 

 

Note Merging datasets can, of course, be a bit more complicated than this. If you have 

different amounts of individuals in the two datasets, you might need to use m:1, 1:m, 

or m:m, instead of 1:1 (m=many). 
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2.9.2 Append 

If there is a situation when you would like to add individuals to a dataset, you can use 

append. This is, for example, useful if you want to combine different subsamples. Just 

consider first if you need to add a variable in your datasets that identifies which 

subsample the individuals belong to.  

 

More information help append 

 

Open the dataset that you want to append something to, with the following command: 

 

 use "path\filename.dta" 

 

Change path\filename to the full path (i.e. the folder on your computer that contains 

the file), and specify the file name, such as: 

 

use "C:\Users\yerik\Stata Guide\TestDataAA.dta" 

 

Then you can use the following command: 

 

append using "path\filename.dta" 

 

Change path\filename to the full path to the dataset that you want to append (called 

the “using” dataset) to the dataset that you have open (called the “master” dataset). 

For example: 

 

append using "C:\Users\yerik\Stata Guide\TestDataAB.dta" 

 

We suggest that you browse through your data next to make sure that everything 

worked out correctly. 

 

Note Appending data can, of course, be a bit more complicated than this. Explore 

help, for more useful options.   
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Content 

The first part of this chapter is devoted to issues related to study designs, populations, 

and samples. These are things you need to be aware of in order to make correct 

judgements of your data material. Before it is possible to describe the variables in the 

dataset through the different commands in Stata, we need to know more about the 

specific variables. Here, we will address two major aspects: measurement scales and 

distributions.  
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3.1 Study design 

There are two main types of study design: experimental design and observational 

design. With an experimental design, the researcher performs an intervention and 

measures the effect of this intervention on an outcome. In observational studies, the 

researcher observes the participants’ outcome without performing any intervention.  

 

Experimental design Observational design 

 

 
 

 

 

 

3.1.1 Experimental design 

The literature distinguishes between many different types of experimental designs. 

Some terminology is focused on the location of the experiment: is it performed in a 

lab, out in the field, or is it a natural experiment? Other terms pay more attention to 

how individuals are assigned to different conditions/groups. For example, there is the 

pre-experimental design, where an intervention is performed for the entire sample of 

individuals (i.e. everyone is part of the so-called intervention group). Thus, there is 

no “control group” that one uses for comparison. The quasi-experimental design 

includes an intervention group and a control group, but the 

participants are not randomly assigned to the groups. Then we have 

the true experimental design: this includes a control group and an 

intervention group to which the participants are randomly 

assigned. Another term commonly used for the true experimental 

design, is randomised controlled trial (RCT).  

 

Intervention group vs control group 

What is the purpose of dividing the participants into an 

intervention group and a control group? Well, the aim with an 

experimental study is to see whether the intervention (e.g. a 

treatment) has had any effect on the outcome. We therefore collect 

information before the intervention as well as after the 

intervention; has the outcome of interest changed across 

measurement points? What kind of participant conditions can predict this change? 

However, even if we can detect a change, how do we know that it is not by chance? 

It could be something else than the intervention that has caused this change. That is 

why we have a control group. If the same change is not observed in the control group, 
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we can be more confident that the change in the intervention group is actually caused 

by the intervention.  

 

Randomisation 

So, why is it necessary to randomly assign individuals to the 

groups? This is because we want to be sure that a difference in 

the outcome between the intervention group and the control 

group is not simply because the groups are very different when 

it comes to the distribution of conditions (in epidemiology, one 

would be concerned with the equal distribution of risk factors 

in the two groups). Accordingly, randomisation has a great 

influence on the reliability of the results.       

 

Blinding 

Apart from randomisation, RCT also draws heavily on the 

concept of blinding. Some studies are blinded, meaning that the 

assignment to intervention group/control group is unknown for 

the participants, and sometimes also to those who provide the 

treatment and/or the researchers. This is to minimise the effect 

of expectations on the outcome. In the social sciences, blinding 

is usually not feasible.  

 

3.1.2 Observational design 

The three perhaps most common types of observational design are: cross-sectional 

studies, longitudinal studies, and case-control studies.  

 

Cross-sectional study Longitudinal study Case-control study 
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Cross-sectional studies 

Cross-sectional studies are based on data that are collected at a single point in time. 

Thus, we measure the exposure and outcome simultaneously. This kind of study is 

perfect for estimating prevalence and can be used to explore patterns and associations 

in the data – but it does not allow us to draw any causal inferences (i.e. we cannot 

determine that the exposure is actually causing the outcome).  

 

Longitudinal studies 

In longitudinal studies, we have data from at least two measurement points: the 

exposure is measured at what is commonly called baseline, and the outcome at a later 

time, usually referred to as a follow-up.  

 

There are at least three subtypes of longitudinal studies: trend studies, panel studies, 

and cohort studies.  

 

Trend study 

(repeated cross-

section) 

Following the same population over time. 

Example: Examining the prevalence of cannabis use among 

15-year-olds in Sweden between 2009 and 2019. 

Panel study Following the same cross-section of individuals over time. 

Example: Exploring the association between exposure to 

bullying among those who were aged 10-18 in 2009 and the 

risk of cannabis use ten years later (2019). 

Cohort study Following the same cohort of individuals over time. 

Example: Studying the association between peer 

relationships in adolescence and drug dependence in 

adulthood among everyone born in Sweden in 1970.  

 

Since time is such a fundamental concept in longitudinal studies, we also want to say 

something about longitudinal data and how these can be analysed to make full use of 

the detail. For example, when the outcome can occur at different points across the 

follow-up, we can use time-to-event analysis such as Cox regression (see Chapter 17). 

Often when our outcome is based on count data, we have collected information for a 

longer follow-up period; then we can use e.g. Poisson regression (see Chapter 16). 

But we might also model the longitudinal data in many other alternative ways. For 

example, individual developmental outcome patterns over time (in terms of the 

outcome’s frequency, duration, complexity, and sequencing) can be captured with 

methods such as latent growth models, group-based trajectory modelling, and 

sequence analysis. These methods are currently not covered by this guide. 
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Case-control studies 

Then we have the case-control studies. Here, one focuses on a group that has a certain 

outcome (the “cases”), and matches them to a similar group without the outcome (the 

“controls”). These two groups are subsequently compared with regard to different 

exposures. Information about the exposure can reflect the same time point (i.e. cross-

sectional data) or at an earlier time point (i.e. longitudinal data).      

 

Retrospective vs prospective data 

The terms retrospective and prospective are sometimes 

used a bit sloppy when it comes to observational studies. 

Basically, these terms refer to what one would assess 

first: the exposure or the outcome. In retrospective 

studies, the outcome is first established, after which one 

looks backwards in time to examine exposures. Thus, 

this is what one usually (but not always) do for case-

control studies. In prospective studies, the exposure is 

first established, after which one looks forward in time 

for the outcome to occur. This is typically what we do in 

longitudinal studies (more specifically panel and cohort studies). It is nonetheless 

quite common that cohort studies are retrospective. This means that we define a cohort 

that has already experienced both the exposure(s) and the outcome(s) of interest, and 

we collect information on this through e.g. administrative records.   

 

To make things more confusing, it is quite common that all sorts of observational 

studies (e.g. cross-sectional studies, cohort studies, and case-control studies) include 

retrospective questions, such as survey questions about past events and experiences. 

This is, however, not exactly what is meant by retrospective designs. 
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3.1.3 A comparison between study designs 

 Randomised 

controlled trial 

Cross-sectional 

study 

Longitudinal 

study 

Case-control 

study 

Population Selected population, 

controlled environment 

Mixed populations, 

varying contexts 

Mixed populations, 

varying contexts 

Mixed populations, 

varying contexts 

Directiona Exposure is introduced 

before the outcome is 

established 

Exposure and outcome 

are measured 

simultaneously 

Exposure is established 

before outcome is 

established  

Outcome is established 

before exposure is 

established 

Useb Determine the effect of 

an intervention 

Hypothesis testing, 

prevalence studies 

Analyse associations 

over time 

Analyse associations 

with rare outcomes 

Analysisc Simple, confounding 

taken care of by design 

Sophisticated 

regression techniques, 

adjust for confounding 

Sophisticated 

regression techniques, 

adjust for confounding 

Sophisticated 

regression techniques, 

adjust for confounding 

External validity 

/Generalisability 

Low-medium High High High 

Internal validity 

/Causalityd 

High Low Medium Low-medium 

 
a See Chapter 9 for a discussion about exposures and outcomes. 
b See Section 5.1 for information about hypothesis testing. 
c See Section 9.3 for a discussion about confounding. 
d See Section 9.4 for a discussion about causality. 
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3.2 Population and sampling 

 

3.2.1 Population 

When we design a study, we first need to establish what our population is, since the 

population is what we want to say something about. A population is often referred to 

by “N”.  

 

 

 
 

Population (N) 
 

 

A population can be almost anything: We have populations which are geographically 

defined, such as the world, a country or a city; we have age-defined populations such 

as teenagers, infants and elderly, and also specific groups such as women, drug 

addicts, teachers, master students, and so on. 



 

82 

 

3.2.2 Sampling 

It is seldom the case that we examine the whole population which we have chosen. 

Instead, we use sampling – that basically means that we take a smaller sample of the 

population: a study sample. A study sample is often denoted by “n”. The reasons 

behind sampling are primarily that it is very costly and time consuming to collect data 

for the entire population. However, sometimes you can include the whole population 

- like if you have small populations, such as one school or one hospital or one 

company (this is often referred to as a case study). Another example is when you use 

national registers (then you usually do not have to considered aspects such as time or 

cost since the data is already available).   

 

 

 
 

Population (N) 
 

 

 

 

 

 

 

 

 

 

 

 

Study sample (n) 
 

 

There are many different sampling techniques available. Generally, they can be 

categorised into two types that include several sub types: non-probability sampling 

and probability sampling. 

 

Non-probability sampling 

 

Types of non-probability sampling 

Snowball Finding respondents through already selected respondents 

Quota Adding suitable individuals until a certain quota is achieved 

Convenience Easy access of respondents 

 

Non-probability sampling is most common in small-scale studies, marketing research, 

interview studies, and studies like that. Snowball sampling means that you start out 

with some respondents and ask them to find other suitable respondents (like friends 

or other people they know). Quota sampling is often used in marketing research. For 

example, the researchers want to have 100 respondents who have tried a new coffee 

brand and stands outside the store until they have found 100 persons who have bought 

that specific brand. Then we have convenience sampling. This is when you pick 

respondents who are easy to get access to, like friends, family, or members of an 

Sampling 
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organisation that you are a member of yourself, and so on.  

 

Probability sampling 

 

Types of probability sampling 

Random Every individual has the same chance of being selected 

Systematic Sampling with intervals, e.g. every fifth of a list 

Stratified Random sampling from different groups 

Clustered Random sampling of groups, choosing all individuals from 

these groups 

 

When it comes to probability sampling, we first have the random probability 

sampling, which postulates that every individual in the population should have the 

equal chance of being selected. Another procedure is the systematic sampling, where 

you, for example, draw every fifth or seventh from a list of people. Stratified sampling 

is when you draw random samples from some specific groups. For example, if you 

want to compare labour market outcomes between native Swedes and immigrants, 

you may not get a large enough sample of immigrants if drawing a random sample 

from the entire population living in Sweden. Instead, you can draw a larger random 

sample from the smaller group. Finally, we have clustered sampling. Perhaps you start 

out by drawing a random sample of schools and then select all students attending ninth 

grade in these schools.  

 

Random Systematic Stratified Clustered 
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Probability sampling constitutes the foundation of quantitative data analysis. Why is 

it so important? Well, we want our study sample to be representative. This means that 

it should have the same characteristics as our population. This is a requirement to be 

able to draw conclusions about the population based on the study sample (also known 

as generalisability).  

 

 

 
 

Population (N) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study sample (n) 

 

 
  

Sampling 

Representativeness 
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However, generalisability is not only about the ability to apply the results from the 

sample to the population: 

 
It is possible to generalise the results from the sample…? 

To the 

population 

Depends on the type of sampling. Can be assessed by comparing 

the sample characteristic with the population characteristics. In 

general: the bigger the sample, the better. 

Example: Our population consists of all children ages 2-5 in 

Sweden. We draw a random sample of 100 preschools and choose 

all children these preschools. Is the sample representative for the 

population? 

Between 

populations 

How unique is the population? Are there similar populations to 

which the results can be generalised? 

Example: Our population is defined as unaccompanied minors 

coming to Sweden from Iraq. Do our results also apply to 

unaccompanied minors from e.g. Afghanistan? Or to accompanied 

minors from Iraq? 

Between 

interventions 

Does the intervention (e.g. treatment) have to be exactly the same 

to generate the same results? What happens if we adjust the 

intervention?  

Example: Our population is defined as pregnant women who 

smokes. We include all pregnant women living in a specific 

Swedish city who reported that they were smoking at the time of 

enrolment in antenatal care. We randomise them into an 

intervention group and a control group. The intervention group 

participants in two hours of motivational interviews per week for 

two months. At the time of the child’s birth, a higher proportion of 

women in the intervention group have stopped smoking compared 

to those in the control group. Would we see the same effect if we 

reduced the number of interviews? 

Between 

contexts 

How unique is the context? Is the study culture specific? 

Example: Our population is a total sample of all children (0-18) 

living in joint custody in Sweden. Can the results be applied to 

other countries, such as the United States? 

Over time Are the results specific for the historical time period for which we 

collected the data? Are the results and interpretations valid also for 

today?  

Example: Our population consists of all children who grew up in 

societal care in the 1960s. The results from our analysis suggests 

that these children experience much worse health in adulthood, 

compared to those who grow up with their biological parents. 

Would be find the same results if we were to follow-up children in 

societal care in the 2010s?  
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3.2.3 Missing data: attrition and non-response 

An issue that almost all quantitative researchers deal with has to do with missing data. 

What is that? Well, when we have defined our population and conducted a probability 

sampling, we start collecting data for the individuals in our study sample – either 

through questionnaires or registers (or both). It is very seldom the case, however, that 

we get complete information for all individuals. We thus get missing data. When we 

use register data, missing data is commonly called attrition, and when we use survey 

data (i.e. questionnaire data), missing data is usually called non-response. If we have 

problems with missing data, we run into problems with representativeness, which may 

prevent us to draw conclusions about the population based on the study sample. This 

is discussed in further detail in Section 11.4.    

 

 

 
 

Population (N) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study sample (n) 

 

 

 

 

Sampling 

Representativeness 

Missing data 
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3.3 Measurement scales 

 

3.3.1 Types of scales 

We use a scale to make the measurements of a variable, and the characteristics of the 

scale determine the characteristics of the data we collect and, in turn, how we describe 

our data. Generally speaking, there are four measurement scales: nominal, ordinal, 

ratio and interval. Nominal and ordinal variables are often called categorical (or 

qualitative), whereas ratio and interval variables are often referred to as continuous 

(or quantitative). 

 

Name Type 

Nominal 
Categorical/qualitative 

Ordinal 

Ratio 
Continuous/quantitative 

Interval 

 

It should also be noted that a nominal variable with only two categories/values is 

called dichotomous (or binary, or dummy) whereas a nominal variable with more than 

two categories is called polytomous. 

 

3.3.2 Differences between the scales 

These scales differ in three important ways: hierarchy, distance, and zero point. 

 

Checklist 

Is it possible to arrange/order the values hierarchically? Yes/No 

Is it the same distance between the values? Yes/No 

Does the scale have an absolute zero point? Yes/No 

 

Hierarchy 

What does “arrange/order the values hierarchically” mean? If 

we take gender as an example, it is not reasonable to say that 

“Man” is less or more than “Woman”. As another example, we 

can take nationality: it is not reasonable to see “Danish” as less 

or more than “Finnish”. For variables such as self-rated health, 

on the other hand, it is possible to say that “Excellent health” is 

better than “Good health”. Moreover, it is possible to say that 

the grade “A” is better than the grade “B”.   

 

Distance 

What does “distance” mean? If we take income as an example, we know that 1000 

dollars are twice as much as 500 dollars, and 2000 dollars are twice as much as 1000 

dollars. The same logic applies to variables such as age: it is the same distance 
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between 2 years and 4 years as between 6 years and 8 years. Thus, having the same 

distance between the values means that the differences between two values are the 

same regardless of which part of the scale you are looking at.  

 

Zero point 

What does “absolute zero point” mean? Basically, it means that the 

scale cannot have negative values. It is possible for the temperature 

to be minus 10 degrees Celsius, but is not possible to have less than 

zero years of schooling or having less than zero days of 

unemployment.  

 

Examples 

Below, we can see some examples of variables on the different measurement scales.  

 

Scale Values Examples 

Nominal Order values: No 

Same distance: No 

Absolute zero point: Not applicable 

Yes/no questions 

Gender 

Nationality 

Ordinal Order values: Yes 

Same distance: No 

Absolute zero point: Not applicable 

Attitude questions 

Self-rated health 

Educational level 

Ratio Order values: Yes 

Same distance: Yes 

Absolute zero point: Yes 

Age 

Income 

School marks 

Interval Order values: Yes 

Same distance: Yes 

Absolute zero point: No 

Temperature (Celsius) 

Calendar time 

 

A nominal variable is hence a variable for which the values cannot be ranked, and we 

do not have the same distance between the values, e.g. gender or questions that can be 

answered with yes or no. Ordinal variables are similar, but here the values can be 

ranked, such as for self-rated health: “Excellent is better than “Good”; “Good” is 

better than “Fair”; and “Fair” is better than “Poor”. However, for ordinal scales we do 

not have the same distance between the values: the “amount” of better health is not 

necessarily the same between “Poor” and “Fair” as between “Good” and “Excellent”. 

The ratio scale is similar to the ordinal scale, but here we do have the same distance 

between the values: for example, we know that 10 years of schooling is twice as much 

as 5 years of schooling. The interval scale is similar to the ratio scale, but here we do 

not have an absolute zero point.  
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3.3.3 Types of values 

It is possible to distinguish between two types of values: discrete and continuous. 

Discrete values can only assume “whole” values, such as “Man”, “Women”, “Green”, 

“Car”, and “House”. Continuous values can assume any value along a scale, such as 

“3.5 years”, “58.3 seconds”, and “163.5 centimetres”. Note, however, that continuous 

variables (i.e. on a ratio or interval scale) do not necessarily have continuous values. 

For example, number of cars is a ratio variable but it has discrete values: while the 

average number of cars in a population may be 0.8, it is not correct (although many 

do) to say that any given individual in a population has 0.8 cars (since a car is a 

“whole” value).  

 

Name Type 

Discrete “Whole” values 

Continuous Any value 
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3.4 Distributions 

For continuous variables (i.e. on a ratio or interval scale) it is important to know what 

the distribution of values in the variable looks like.  

 

3.4.1 Normal distribution 

One common type of distribution is the “normal distribution”. Many statistical 

methods are based on normal distributions. Please note that “normal” in this setting 

should be interpreted as something that is typical (or regular), not as something that 

is natural. 

 

 
 

The above figure is a typical example of a normal distribution. Here are some basic 

facts about the normal distribution: 

 

Basic facts about the normal distribution 

Always bell-shaped. 

The peak always indicates the mean value.  

Always symmetrical, i.e. the tails on each side of the mean are equally large. This 

means that 50% of the values are on one side of the mean, and 50% of the values 

are on the other side of the mean. 

The area under the curve is always 1 (100% of the values). 
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More about peaks 

Below is an example of a (normal) distribution of height among Swedish men at the 

time of military service enlistment (in Swedish: “lumpen”). In this example, the mean 

height is about 179 centimetres. The less common a certain height gets, the smaller 

the area under the curve. Here, the tails are about equally large on both sides of the 

mean, suggesting that it is approximately as common for individuals in the sample to 

be shorter than the mean as it is for them to be taller than the mean.  

 

 

 
 

  



 

92 

 

Why peaky or less peaky? 

Normal distributions can look quite different. The figures below are all examples of 

normal distributions. The difference lies in the amount of spread of the values: because 

the shape of a normal distribution is not only defined by the mean value, but by the 

standard deviation! 

 

 

 
 

 

What is standard deviation? 

A simple definition of standard deviation is that it expresses how much variation exists 

from the mean for a given variable (see Section 4.6.2 for further discussion). If we 

have a small standard deviation, it suggests that the individuals in our data have values 

close to the mean, and if we have a large standard deviation, it indicates that the values 

are more spread out over a large range of values.  
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Empirical rule 

The empirical rule of normal distributions tells us the following (see the figure above): 

 

• 68% of the values fall within -1 and +1 standard deviations. 

• 95% of all values fall within -2 and +2 standard deviations. 

• Nearly 100% of all values fall within -3 and +3 standard deviations. 

 

Example 

We have collected information about weight for a sample of individuals. If the 

mean weight in this sample was 70 kilos and the standard deviation was 5 kilos, the 

empirical rule would give us the following information:  

 

68% of the individuals have a weight of 65-75 kilos: 

Lower limit: 70 kilos - (5 kilos*1); upper limit: 70 kilos + (5 kilos*1) 

 

95% of the individuals have a weight of 60-80 kilos: 

Lower limit: 70 kilos - (5 kilos*2); upper limit: 70 kilos + (5 kilos*2) 

 

Nearly 100% of the have a weight of 55-85 kilos: 

Lower limit: 70 kilos - (5 kilos*3); upper limit: 70 kilos + (5 kilos*3) 

 

As long as we have information about the mean value and the standard deviation, it is 

possible to do the same calculation for all the normal distributions. Remember that a 

more pronounced peak indicates a low standard deviation, whereas a flat distribution 

indicates a high standard deviation.  
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3.4.2 Skewed distributions 

There are other types of distribution. One very common type of distribution is the 

skewed distribution. Here are some facts about skewed distributions: 

 

Basic facts about skewed distributions 

Always asymmetrical = Tails are different, i.e. the empirical rule does not apply. 

Skew can be positive (right tail longer) or negative (left tail longer). 

 

Positive or negative? 

Examples of a positively skewed distribution (like the figure to the left) are: number 

of hospital visits, number of days in unemployment, number of telephone calls during 

a day. Most individuals will have the value zero or a low value, whereas a few will 

have increasingly high values. 

 

Examples of a negatively skewed distribution (like the figure to the right) are: age of 

retirement, or a very easy test. Most individuals will have high values, and then a few 

will have very low values.  

 

 

 
               Positively skewed distribution     Negatively skewed distribution 
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Measures of skewness 

The skewness of the distribution can be indicated by two types of measure: skewness 

and kurtosis.  

 

Facts about the skewness measure 

Measure of the symmetry of a distribution. 

Negative skewness value = Longer tail to the left. 

Positive skewness value = Longer tail to the right. 

A perfect normal distribution has a skewness of 0. 

Skewness value between -2 and +2 is usually considered acceptable. 

 

Facts about the kurtosis measure 

Measure of the shape (or the “peakedness”) of a distribution. 

A perfect normal distribution has a kurtosis of 0 (mesokurtic distribution). 

Kurtosis value above 0 = Leptokurtic distribution (sharper peak and longer/fatter 

tails). 

Kurtosis value below 0 = Platykurtic distribution (rounder peak and shorter/thinner 

tails). 

Kurtosis value between -2 and +2 is usually considered acceptable. 
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4. DESCRIPTIVE ANALYSIS 
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4.8.2 Figures .............................................................................................. 133 

 

Content 

When we know about measurement scales and distributions, we can decide on how to 

best describe our variables. In this chapter, we go through a set of tables and graphs 

as well as measures of central tendency and variation. We will first cover frequency 

tables. With regard to graphs, we will discuss bar charts, pie charts, and histograms. 

For measures of central tendency, the mean, mode, and median are addressed. 

Moreover, some examples of measures of variation will be included here, namely 

minimum, maximum, variance, and standard deviation.  

 

The chapter also includes a quite extensive section on epidemiological concepts, such 

as prevalence and incidence. 

 

Finally, we end with a section on how to design informative tables and graphs for 

descriptive statistics. 
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4.1 Introduction 

Going back to what we learnt about measurement scales and the distributions, this is 

generally how you could match the different types of variables with the different types 

of description: 

 

Type of variable 

Categorical  

(nominal/ordinal) 

Frequency table 

Bar chart 

Pie chart 

Mode 

Continuous  

(ratio/interval) 

Histogram 

Mean (if normal distribution) 

Median (if skewed distribution) 

Minimum 

Maximum 

Variance 

Standard deviation 
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4.2 Frequency table 

Quick facts 

Number of variables One 

Scale of variable(s) Categorical (nominal/ordinal) 

 

A frequency table is a simple but very useful description of one variable and gives us 

both the frequency and various types of percentages of individuals with the different 

values.  

 

This function is used primarily for categorical variables (i.e. nominal/ordinal) but can 

be used for any type of variable; the main concern is that the table becomes too lengthy 

if there are many categories/values in the variable.  

 

The following information is included in the frequency table: 

 

Types of statistic 

Freq. Frequency The number of individuals in the different 

categories of the variable. 

Percent Percent The percentage distribution of individuals in 

the different categories of the variable. 

Cum. Cumulative 

percent 

Adds the percentages from top to bottom. 

 

Note Frequency tables do not automatically include information about missingness 

(but it is available as an option). 
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Function 

 

Basic command tab varname 

Useful options tab varname, m 

tab varname, nol 

tab varname, sort 

Explanations varname 

m 

nol 

sort 

Insert the name of the variable you want to use. 

Treat missing values like other values. 

Display numeric codes rather than value labels. 

Display the table in descending order of 

frequency. 

Short names tab 

m 

nol 

tabulate 

missing 

nolabel 

Notes Options can be used simultaneously, e.g: 

tab varname, m nol sort 

More information help tabulate oneway 

 

Note You can tab multiple variables at the same time by using tab1 (for example: tab1 

varname1 varname2 varname3) 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

educ  Educational level (Age 40, Year 2010) 

 
 

tab educ 

 

 
    Educational | 

 level (Age 40, | 

     Year 2010) |      Freq.     Percent        Cum. 

----------------+----------------------------------- 

     Compulsory |      1,763       19.20       19.20 

Upper secondary |      4,062       44.23       63.43 

     University |      3,358       36.57      100.00 

----------------+----------------------------------- 

          Total |      9,183      100.00 

 

 

This is the simplest form of a frequency table. It shows the frequencies, the percentage 

distribution, and the cumulative percentages. In this particular example, we see the 

distribution of educational level. Here, we are mostly interested in the column called 

Percent. It shows that 19.2% of the sample have compulsory education, 44.2% have 

upper secondary education, and 36.6% have university education. This then actually 

tells us something about the mode/type value; it is the most common value – which in 

this case is upper secondary education. 
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tab educ, m 

 

 
    Educational | 

 level (Age 40, | 

     Year 2010) |      Freq.     Percent        Cum. 

----------------+----------------------------------- 

     Compulsory |      1,763       17.63       17.63 

Upper secondary |      4,062       40.62       58.25 

     University |      3,358       33.58       91.83 

              . |        817        8.17      100.00 

----------------+----------------------------------- 

          Total |     10,000      100.00 

 

 

The table above includes missing values. We can see that 8.2% of the original sample 

has missing values for this variable.   

 

tab educ, nol 

 

 
Educational | 

 level (Age | 

   40, Year | 

      2010) |      Freq.     Percent        Cum. 

------------+----------------------------------- 

          1 |      1,763       19.20       19.20 

          2 |      4,062       44.23       63.43 

          3 |      3,358       36.57      100.00 

------------+----------------------------------- 

      Total |      9,183      100.00 

 

 

This table omits the value labels, and instead shows the actual values.  

 

tab educ, sort  

 

 
    Educational | 

 level (Age 40, | 

     Year 2010) |      Freq.     Percent        Cum. 

----------------+----------------------------------- 

Upper secondary |      4,062       44.23       44.23 

     University |      3,358       36.57       80.80 

     Compulsory |      1,763       19.20      100.00 

----------------+----------------------------------- 

          Total |      9,183      100.00 

 

 

And here we can see the categories sorted from the most common one (upper 

secondary) to the least common one (compulsory). 
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4.3 Bar chart 

Quick facts 

Number of variables One 

Scale of variable(s) Categorical (ordinal) 

 

A bar chart is like an illustration of a frequency table. On the x-axis (horizontal axis) 

you see the different values (or categories) of the variable and on the y-axis (vertical 

axis) you can choose to see either the percentage of individuals in each category (like 

in the graph below) or the number of individuals in each category.  

 

As mentioned above, the bar chart is useful primarily for categorical variables 

(preferably ordinal, since the bars suggest that values are ranked) but can be used for 

any type of variable as long as it does not have too many values. 

 

Function 

 

Basic command graph bar, over(varname) 

Explanations varname 

 

Insert the name of the variable you want to 

use. 

More information help graph bar 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

educ  Educational level (Age 40, Year 2010) 
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graph bar, over(educ) 

 

 

 
 

 

The figure above is a bar chart for the variable educ. On the y-axis (vertical axis) we 

have percentages, and on the x-axis (horizontal axis), we have the different categories 

of the variable. It is rather easy to see that the category “Upper secondary” is the most 

common category, followed by “University” and then “Compulsory”.  

 

Note You can use the Graph Editor (see Section 2.1.4) to edit the bar chart. 
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4.4 Pie chart 

Quick facts 

Number of variables One 

Scale of variable(s) Categorical (nominal) 

 

Similar to a bar chart, a pie chart can also be seen as a simple illustration of a frequency 

table. The slices represent the different values (or categories) of the variable and they 

can be specified in terms of the percentage of individuals in each category or the 

number of individuals in each category. 

 

This function is used only for categorical variables (preferably nominal, since it makes 

more sense to illustrate non-ranked values with slices than with bars). It is also 

recommended that the variable has relatively few categories – otherwise the pie chart 

will get too complex.  

 

Function 

 

Basic command graph pie, over(varname) 

Useful options graph pie, over(varname) plabel(_all percent) 

Explanations varname 

 

plabel(_all percent, 

format(%12.1f)) 

Insert the name of the variable you 

want to use. 

Show the percentage distribution on 

the slices, with one decimal. 

More information help graph pie 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

marstat40  Marital status (Age 40, Year 2010) 

 

 

graph pie, over(marstat40) plabel(_all percent, format(%12.1f)) 

 

 

 
 

 

The figure above is a pie chart for the variable marstat40. It is rather easy to see that 

the category “Married” is the most common category (51.8%), followed by 

“Unmarried” (27.5%), “Divorced” (19.8%), and “Widowed” (1%).  

 

Note You can use the Graph Editor (see Section 2.1.4) to edit the bar chart. 
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4.5 Histogram 

Quick facts 

Number of variables One 

Scale of variable(s) Continuous (ratio/interval) 

 

A histogram is similar to a bar chart but, unlike the bar chart, it is suitable for 

continuous variables. The histogram will give us an idea about whether the 

distribution (of the continuous variable) is normal or skewed. It is also possible to 

include a normal curve in the chart in order to see how the data adheres to a normal 

distribution.  

 

Function 

 

Basic command histogram varname, freq 

Useful options histogram varname, freq norm 

histogram varname, freq norm bin(x) 

histogram varname, freq norm d 

Explanations varname 

 

freq 

norm 

bin(x) 

 

 

d 

Insert the name of the variable you want to 

use. 

Show frequencies on the y-axis. 

Include a normal curve in the histogram. 

Here you can specify how many bins you want 

to histogram to show; might require some 

experimenting. 

Specify that data are discrete. 

Short names freq 

norm 

d 

frequencies 
normal 

discrete 

More information help histogram 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

cognitive   Cognitive test scores (Age 15, Year 1985) 

 

 

histogram cognitive, freq norm d 

 

 

 
 

 

This is a histogram of cognitive. The x-axis (horizontal axis) represents the values of 

the variable. The y-axis (vertical axis) represents the number of individuals. The line 

displays the normal curve. 

 

Note You can use the Graph Editor (see Section 2.1.4) to edit the bar chart. 
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4.6 Measures of central tendency and variation 

 

4.6.1 Central tendency 

Central tendency can be defined as measures of the location of the middle in a 

distribution. The most common types of central tendency are: 

 

Measure Definition 

Mean The average value 

Median The value in the absolute middle 

Mode The most frequently occurring value 

 

Mean 

The mean is perhaps the most commonly used type of central tendency and we get it 

by dividing the sum of all values by the number of observations. 

 

Example 

We have four fishes that weigh:  

 

 

   

1.1 kilo 0.8 kilo 1.1 kilo 1.0 kilo 

 

What is the mean? 

First, we add the values together: 1.1+0.8+1.1+1.0=4.0 

Then we divide the sum of the values by the number of fishes: 4.0/4=1. 

The mean is thus 1 kilo. 
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Median 

The median – i.e. the value in the absolute middle of the distribution – is obtained by 

sorting all the observations’ values from low to high and then identifying the value in 

the middle of the list. 

 

 

Example 

We have nine individuals who are of the following heights: 

 

         

158 

cm 

159 

cm 

164 

cm 

165 

cm 

173 

cm 

174 

cm 

175 

cm 

179 

cm 

181 

cm 

 

The median is thus 173 cm. 

 

 

Note When we have an odd number of values, it is easy to identify the value in the 

absolute middle of the distribution. When we have an even number of values, we get 

the median by adding the two values in the middle together and dividing the sum by 

2.   

 

Mode 

The mode – or type – is defined as the most frequently occurring value in a 

distribution. Here as well, one starts by sorting observations from the lowest to the 

highest value and then identifies the most common value. 

 

Example 

We have information about the number of cars in each of seven households: 
 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
Household 

1 

1 car 

Household 

2 

1 car 

Household 

3 

1 car 

Household 

4 

1 car 

Household 

5 

2 cars 

Household 

6 

2 cars 

Household 

7 

3 cars 

 

The mode is thus 1 car (since this is the most common value). 
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How to choose between mean, median, and mode? 

The choice of type of central tendency is based on a) the measurement scale of the 

variable and b) the distribution of the variable. Generally, if the variable is categorical 

(nominal or ordinal), the mode is preferred. If the variable is continuous (ratio or 

interval), the mean or the median is preferred. In the latter case, the mean is chosen if 

the variable is normally distributed and the median is chosen if the variable has a 

skewed distribution.  

 

Scale Type Central tendency 

Nominal 
Categorical Mode 

Ordinal 

Ratio 
Continuous 

Normal distribution: Mean 

Skewed distribution: Median Interval 

 

Why should one not use the median or the mean for categorical variables? For nominal 

variables, it is easy to give an answer. Let us take country of birth as an example. In 

this example, the variable is coded into four categories: 1) Sweden, 2) China, 3) 

Canada, and 4) Norway. This is clearly a nominal variable. Since the order of the 

categories is random (i.e. the order of the categories does not really matter), the 

location of the absolute middle in the distribution would not tell us anything 

information about the variable: the “content” of the middle would change completely 

if we changed the order of the categories. Let us take gender (which is also on a 

nominal scale) as another example: it would not make any sense to give the mean or 

median of gender. For some ordinal variables, however, the median is sometimes used. 

For example, if we have five categories of occupational class, which can be ranked 

from lower class to upper class, it may be interesting to give the value of the median 

(for example, in this case, the median could be lower non-manuals which would tell 

us something about the distribution of values).      
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Why is it important to consider the distribution of the variable for continuous variables 

before we decide on the type of central tendency? If we take a look at the figures 

below, we can draw the following conclusions: if we have a perfectly normally 

distributed variable, the mean, median and mode would all be the same. However, if 

the distribution is skewed, the median would be a better description of the location of 

the middle in the distribution.   
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4.6.2 Variation 

Besides the mean, the median and the mode, we may use some measures of variation 

to describe our variables further. Here are some of the most common measures of 

variation: 

 

Measure Definition 

Minimum The lowest value 

Maximum The highest value 

Variance The average of squared deviations from the mean 

value 

Standard deviation The squared root of the variance 

 

These measures are most suitable for continuous variables (i.e. ratio or interval) but 

sometimes minimum and maximum are used for ordinal variables as well. However, 

they cannot be used for nominal variables (for the same reason as why we do not use 

mean or median to describe nominal variables).  

 

The minimum and maximum are rather self-explanatory, but what about variance and 

standard deviation? Below, these measures are discussed in more detail. 

 

Variance and standard deviation 

Both variance and standard deviation are measured used to describe the dispersion 

(spread) of data around the mean value of a variable. To calculate the variance, we do 

the following: 

 

Step Calculation 

1 Calculate the mean of the variable (the sum of all values, divided by the 

number of observations). 

2 Subtract the mean from each value. These differences are often called 

deviations. Values below the mean will have negative deviations 

whereas values above the mean will be positive deviations. 

3 Square each deviation to make it positive. 

4 Add the squared deviations together. Divide by the number of 

observations.   

 

However, the variance is quite difficult to interpret. That is why most would prefer to 

express dispersion in terms of standard deviation instead. To do this, we just add one 

more step:  

 

Step Calculation 

5 Take the square root of the variance.   
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Population vs sample 

The above calculations are based on the idea that the data we use encompass the entire 

population that we want to study. This is perhaps seldom the case; often we have 

drawn a sample from our population. Under such circumstances, we need to make a 

small adjustment (in italics): 

 

Step Calculation 

1 Calculate the mean of the variable (the sum of all values, divided by the 

number of observations). 

2 Subtract the mean from each value. These differences are often called 

deviations. Values below the mean will have negative deviations 

whereas values above the mean will be positive deviations. 

3 Square each deviation to make it positive. 

4 Add the squared deviations together. Divide by the number of 

observations minus 1.   

5 Take the square root of the variance.   

 

We will not go into detail regarding why we adjust Step 4, as described above. But 

basically, it has to do with the distinction between parameters and statistics: for 

populations, we can calculate parameters (fixed, “true” value), whereas for samples, 

we can calculate statistics (dependent on the selected sample, estimated value). We 

use “observations minus 1” (usually expressed as “n-1”) to produce as a less biased 

estimate. Want to know more? Read up on Bessel’s correction.   
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4.6.3 Summarize 

Quick facts 

Number of variables At least one 

Scale of variable(s) Continuous (ratio/interval) or ordinal 

 

To generate descriptive statistics for your variables, you can use the summary 

command (or sum, for short). It is used primarily for continuous variables (i.e. 

ratio/interval) but could also be used for some ordinal variables that are approximately 

continuous (e.g. rating measures). The Stata function gives you the following 

statistics: 

 

Types of statistic 

Obs Number of observations 

Mean Mean value 

Std. Dev. Standard deviation 

Minimum Minimum (smallest) observed value 

Maximum Maximum (largest) observed value 

 

If you combine sum with the option detail, you will additionally get the following 

statistics: 

 

Additional types of statistic 

Median Median 

Variance Variance 

Kurtosis Kurtosis and standard error of kurtosis 

Skewness Skewness and standard error of skewness 

 

Function 

 

Basic command sum varname 

Useful options sum varname, detail 

Explanations varname 

detail 

Insert the name of the variable you want to use. 

Display additional statistics 

Short names sum summarize 

Notes Stata’s calculations are statistics, not parameters (see 

Section 4.6.2). 

More information help summarize 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa  Grade point average (Age 15, Year 1985) 

 

 

sum gpa 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         gpa |      9,380    3.178614    .6996298          1          5 

 

 

sum gpa, detail 

 

 
           Grade point average (Age 15, Year 1985) 

------------------------------------------------------------- 

      Percentiles      Smallest 

 1%          1.7              1 

 5%            2              1 

10%          2.2            1.1       Obs               9,380 

25%          2.7            1.1       Sum of Wgt.       9,380 

 

50%          3.1                      Mean           3.178614 

                        Largest       Std. Dev.      .6996298 

75%          3.7              5 

90%          4.1              5       Variance       .4894818 

95%          4.3              5       Skewness       .0244443 

99%          4.7              5       Kurtosis       2.559851 

 

 

Both tables show that this variable has 9,380 observations (Obs). The mean is 3.18 

and the standard deviation (Std. Dev.) is 0.70. The minimum value is 1 (shown by 

both Min in the upper table and 1% Smallest in the lower table) and the maximum 

value is 5 (shown by both Max in the upper table and 99% Largest in the lower table). 

The lower table additionally shows that the median is 3.1 (as indicated by the 50% 

Percentiles). The Variance is 0.49, Skewness 0.02, and Kurtosis 2.56.  
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4.6.4 Tabstat 

Quick facts 

Number of variables At least one 

Scale of variable(s) Continuous (ratio/interval) or ordinal 

 

A nice alternative to summarize is tabstat. Per default, you will only get the mean 

value, but you can additionally order the following descriptive statistics (just to give 

some examples): 

 

Types of statistic 

Mean Mean value 

Count Count of nonmissing observations 

Sum Sum 

Min Minimum (smallest) observed value 

Max Maximum (largest) observed value 

Range Max-min 

Sd Standard deviation 

Variance Variance 

Skewness Skewness 

Kurtosis Kurtosis 

Median Median 

 

Function 

 

Basic command tabstat varname 

Useful options tabstat varname, stat(x) 

tabstat varname, stat(x) by(groupvar) 

Explanations varname 

stat(x) 

 

 

by(groupvar) 

Insert the name of the variable you want to 

use. 

Replace “x” by specifying the statistics you 

want to show. 

Specify a group variable. 

More information help tabstat 
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Practical example 1 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa  Grade point average (Age 15, Year 1985) 

 

 

You can use tabstat for a single variable and specify as many statistics as you like: 

 

tabstat gpa, stat(count mean median sd variance min max) 

 

 
    variable |         N      mean       p50        sd  variance       min       max 

-------------+---------------------------------------------------------------------- 

         gpa |      9380  3.178614       3.1  .6996298  .4894818         1         5 

------------------------------------------------------------------------------------ 

 

 

And here is an example where sex is included as a group variable: 

 

tabstat gpa, stat(count mean median sd variance min max) by(sex) 

 

 
 

Summary for variables: gpa 

     by categories of: sex (Sex) 

 

   sex |         N      mean       p50        sd  variance       min       max 

-------+---------------------------------------------------------------------- 

   Man |      4752   3.07258         3  .6988425  .4883808         1         5 

 Woman |      4628  3.287489       3.2  .6836043  .4673148       1.3         5 

-------+---------------------------------------------------------------------- 

 Total |      9380  3.178614       3.1  .6996298  .4894818         1         5 
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Practical example 2 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa  Grade point average (Age 15, Year 1985) 

cognitive  Cognitive test scores (Age 15, Year 1985) 

 

 

You can use also use tabstat for multiple variables: 

 

tabstat gpa cognitive, stat(count mean median sd variance min max) 

 

 
   stats |       gpa  cognit~e 

---------+-------------------- 

       N |      9380      8879 

    mean |  3.178614  308.4708 

     p50 |       3.1       312 

      sd |  .6996298  72.18442 

variance |  .4894818   5210.59 

     min |         1       100 

     max |         5       500 

------------------------------ 
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4.7 Epidemiological measures 

Since this guide is focused between the social sciences and medical sciences, it is also 

important to understand common terminology and measures used in epidemiology. 

For the language enthusiasts out there, epidemiology is derived from the Greek words 

epi (upon), demos (people), and logos (study). Together, quite literally, epidemiology 

is the study of what falls upon the people, or the science of epidemics. As such, 

epidemiology’s origin was to study epidemics of (mostly) infectious diseases. 

Nowadays, epidemiology is focused on much more than infectious disease. Modern 

epidemiology is the study of the determinants and distribution of health-related states 

or events in specific populations. In other words, it is important to understand the time, 

place, and person(s) when describing the health of a population. 

 

References (this section) 

 

Ahrens. W., & Pigeot, I. (2014). Handbook of Epidemiology. 2nd Edition. New York: 

Springer Science+Business Media. 

 

Bonita. R., Beaglehole, R., & Kjellström, T. (2006). Basic Epidemiology. 2nd Edition. 

World Health Organization. 

 

Center for Disease Control and Prevention (2006). Principles of epidemiology in 

public health practice: an introduction to applied epidemiology and biostatistics. 3rd 

Edition.  
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4.7.1 Proportions, rates, and ratios 

Ratios, proportions, and rates are all used to measure frequencies of health and 

disease. All three frequency measures compare one part of the population to either 

another part of the population, or to the entire population.  

 

Measure Definition 

Ratio A comparison of health event numbers or rates between groups 

Proportion A comparison of a part to the whole, or a type of ratio where the 

value of the numerator is included in the denominator 

Rate A measure of change in one quantity for each unit of another 

quantity  

 

Ratio 

A ratio is calculated by dividing, e.g., the number or rate of health events in one group 

by the number or rate of health events in a second group. Ratio results are often written 

as the result “to one” or result:1.  

 

Example 

We are reviewing results from a study of bovine spongiform encephalopathy (BSE, 

or Mad Cow Disease). What was the ratio of non-infected versus infected cows?  

 

  

56 345 

 

The ratio of non-infected to infected cows = 345/56 × 1 = 6.2:1. 

In other words, for every infected cow, there are ~6.2 non-infected cows. 
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Proportion 

Calculating a proportion is simply dividing, e.g., the number of persons or health 

events by the total of persons or health events. In this way, the numerator is a subset 

of the denominator.  

 

Example 

Let us return to our cows and calculate the proportion of infected bovines in the 

BSE study. There are still 56 infected cows, but now the denominator is the total 

number of cows in the study (56 infected + 345 non-infected = 401 cows).  

 

  

56 401 

 

Of the 401 cows in the study, 56 were infected with BSE.  

The proportion of infected cows: 56/401 = 0.14 = 14% 

 

Note Proportions are often used as descriptive measures in epidemiology. Specific 

proportions (e.g., the incidence proportion) will be discussed later in this section.  

 

Rate 

In epidemiology, a rate is the frequency with which a health event occurs within a 

specific population at or during a specific time or time interval. In other words, a rate 

is a measure of the risk of the health event. Even more specifically, it is the 

instantaneous risk that the health event will occur at the given time point.  

 

In epidemiology, the change in one quantity for each unit of another quantity is often 

reported in terms of changes in the quantity of health events for units of time. For an 

example of a rate calculation, see “incidence rate” in Section 4.7.2.  
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4.7.2 Morbidity (disease) 

Morbidity, which refers to disease, injury, and disability, broadly indicates a departure 

from the state of wellbeing, whether physiological or psychological. Incidence and 

prevalence are the key measures of morbidity frequency that aim to quantify 

population health in terms of health events and health status, respectively.  

 

Measure Definition 

Incidence The occurrence of a health event within an at-risk population 

during a specific time interval. 

Prevalence The proportion of health events (new and preexisting events) in 

an at-risk population at a specific timepoint or within a specific 

time interval.  

 

A population at risk refers to the individuals who are susceptible to the health event. 

For example, only those with cervixes can logically be at risk for cervical cancer. 

Therefore, the at-risk population for cervical cancer might consist of women ages 20+ 

(the age restriction is imposed here since it is extremely rare for women to be 

diagnosed with cervical cancer before the age of 20).  

 

Incidence refers to the proportion of at-risk individuals who develop the health event 

in question, whereas prevalence refers to the proportion of individuals who, at that 

point in time, have the health event in question. The two concepts are related, but that 

relationship may look different depending on which health event you are studying. 

For example, for type II diabetes, there may be low incidence (few people develop 

type II diabetes) but a high prevalence (many people already have type II diabetes) 

during the observation period. Conversely, for a disease like seasonal influenza, the 

incidence may be very high (many people develop the flu), but the prevalence may be 

low (people do not usually have the flu for very long). 

 

Note Depending on the epidemiologist, incidence may refer to either the number of 

new events in a specific population or the number of new events per unit of a specific 

population. 

 

We will now look at measures of incidence and prevalence in a bit more detail. 

Incidence is often measured using the incidence proportion or the incidence rate. 
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Incidence proportion 

The incidence proportion refers to the risk of occurrence of a health event (e.g. 

developing a disease, becoming injured or disabled) during a specific time interval 

among those who are at risk at the beginning of the time interval. Also sometimes 

referred to as cumulative incidence, the incidence proportion is calculated by dividing 

the number of new events within the at-risk population (numerator) by the entire at-

risk population (denominator).  

 

Example 

Let us jump into a time machine and return to the 14th century to examine the 

incidence proportion of bubonic plague (the black death, caused by Yersinia Pestis) 

in Europe. If the at-risk population in the year 1347 was 70,000,000 and, of those, 

860,000 individuals developed bubonic plague during the month under observation, 

what is the incidence proportion? 

 

  

860,000 70,000,000 

 

The incidence proportion is the number of at-risk individuals who developed 

bubonic plague divided by the total population at risk during that specific month:  

860,000/70,000,000 = 0.01 = 1.2% 
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Incidence rate 

The incidence rate has the same numerator as the incidence proportion: the number of 

new events within the at-risk population. However, the denominator is different. For 

the incidence rate, the denominator is the time each at-risk individual was observed, 

summed for all at-risk individuals. In other words, the denominator is the total time 

the population was at risk for the health event during the time interval under study. 

Incidence rates are often used to measure the speed at which a health event is 

distributed within a population.  

 

Example 

In a magical world where all individuals in the study are followed for the same 

amount of time and none are lost to follow-up, we have a study population of 100 

people, each of whom is followed for 10 years. Within this population, 15 are newly 

diagnosed with heart disease.  

 

  

15 100 

 

We must first calculate the total time at risk. In this example, the unit of time at risk 

is measured in person-years. We have 100 people, each followed for 10 years. 

100 people followed for 10 years = 1,000 person-years.  

 

Now that we have our denominator, we can calculate the incidence rate. 

Number of health events/time at risk = incidence rate. 

15/1,000 person-years = 0.015 heart disease events per person-year. 

  

Since health events are often reported per 100,000 person-years, we could also 

report the incidence rate as 1,500 heart disease events per 100,000 person-years. 

 

Note Measures of person-time will be discussed in much more detail in Chapter 17.  
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Prevalence 

Prevalence can be calculated at a single point in time (point prevalence) or during a 

specific time interval (period prevalence). Calculating prevalence can be quite 

straightforward: we divide the number of people who have the health event 

(numerator) by the number of people in the at-risk population (denominator) at a 

specific time or during a specific time interval.  

 

Example 

We have an at-risk population of 2,000,000 adults between ages 50 and older who 

live in Europe. Of those, 18,800 have been diagnosed with dementia.  

 

 
 

18,800 2,000,000 

 

The prevalence of dementia within this population at this exact point in time is the 

number of at-risk people with dementia divided by the total population of persons 

at risk: 18,800/2,000,000 = 0.009 = 0.9% 

 

Note Though prevalence is a relatively straightforward calculation, it is important to 

consider the factors that influence prevalence when interpreting your results, or results 

you read elsewhere. Prevalence may be influenced by, for example, how long the 

health event lasts (e.g., the duration individuals may live with a non-communicable 

versus a communicable disease), improved reporting, prolongation of life with the 

health event, or an increase or decrease in incidence of the health event. 

 

Note Morbidity may also be reported in terms of risk ratios and odds ratios, which are 

discussed in more detail in Section 4.7.5. 
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4.7.3 Mortality (death) 

Mortality is a valuable measure of population health. Mortality statistics are often used 

to assess the burden of disease within a certain population, as well as trends and 

changes in the disease burden over time.  

 

Mortality is commonly reported as a rate, though the standard rates differ in terms of 

the population under study. Here are some frequently used measures of mortality: 

 

Measure Definition 

Crude 

mortality rate 

The number of deaths during a specific time interval divided by 

the total number of individuals at risk of dying during that time 

interval. 

Cause-specific 

mortality rate 

The number of deaths attributed to a given cause during a 

specific time interval divided by the total number of individuals 

at risk of dying during that time interval. 

Age-specific 

mortality rate 

The number of deaths among individuals in a certain age group 

during a specific time interval divided by the total number of 

individuals at risk of dying in the age group during that time 

interval. 

Infant 

mortality rate 

The number of deaths among children < 1 year old divided by 

the total number of live births during that time interval. 

Maternal 

mortality rate 

The number of deaths attributed to pregnancy- or childbirth-

related causes during a specific time interval divided by the total 

number of live births during that time interval. 

 

Note Since the denominator in, e.g., the crude mortality rate does not include the time 

at risk, some epidemiologists would argue that it is not a true rate. It should also be 

noted that the denominator in mortality rates based on vital statistics, such as the 

number of death certificates, often reflects the size of the population as of the middle 

of the time interval, rather than at the beginning of the time interval (i.e. the incidence 

proportion). 
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4.7.4 Natality (birth) 

Measures of natality refer to population-based measures of birth. Commonly used 

natality measures are also reported as rates: 

 

Measure Definition 

Crude birth rate The number of live births during a specific time interval 

divided by the total population at the midpoint of that time 

interval. 

General fertility 

rate 

The number of live births during a specific time interval 

divided by the total number of women ages 15-44 at the 

midpoint of that time interval. 

 

4.7.5 Risks and odds 

Comparisons between what is observed and what is expected are very important when 

describing and analyzing epidemiologic data. Risks and odds are two measures of 

association that quantify the risk of occurrence of a health event. Measures of 

association in epidemiology are often reported as ratios so that we can compare the 

risk or odds between two groups. Two such ratios are discussed in more detail below. 

 

Risk ratio 

A risk ratio, or the relative risk, compares the risk of occurrence of a health event 

during a specific time interval for one group with the risk of occurrence of a health 

even during that same time interval for a second group. This should sound familiar 

because a risk ratio is calculated by dividing the incidence proportion for one group 

by the incidence proportion for the second group!  

 

If we can calculate an incidence proportion, why do we need the risk ratio? For 

example, maybe we think the incidence of bubonic plague in neighborhood A seems 

quite high. Is this observed incidence proportion higher than what we expect, or higher 

than it is in other neighborhoods? We could use a risk ratio to compare the observed 

proportion in neighborhood A with neighborhood B, which represents the expected 

level of plague.   

 

The two groups in a risk ratio are commonly differentiated in epidemiology according 

to a specific risk factor (i.e., whether they were exposed or unexposed); however, the 

two groups may also differ according to a demographic factor (e.g., born male versus 

female).  
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To calculate a risk ratio to compare the risk of occurrence of a health event between 

two groups, we need a two-by-two table. 

 

Example 

Let us revisit the European past. This time, we will go to 19th century London to 

apply a classic example to calculate a risk ratio. In a cholera outbreak in London in 

1853, 28,200 of the 168,000 individuals served by the Southwark water supply 

company developed cholera, compared to 600 of the 19,200 individuals served by 

the Lambeth water supply company who developed cholera. To compare the risk 

between these two groups, we will summarize them in a two-by-two table, with two 

rows for the exposure (water supply company) and two columns for the outcome 

(cholera incidence).  

 

 

  

 

 Cholera No Cholera Total 

Southwark 28,200 139,800 168,000 

Lambeth 600 18,600 19,200 

Total 28,800 158,400 187,200 

 

First, we will calculate the proportion of cholera incidence for each of the water 

companies: 

Southwark: 28,200/139,800 = 0.202 = 20.2% 

Lambeth: 600/18,600 = 0.032 = 3.2% 

 

Then, we calculate the ratio of these two proportions: 

Risk ratio = 20.2/3.2 = 6.3 

 

From these data, we could conclude that individuals served by the Southwark water 

supply company were 6.3 times more likely to develop cholera than those served 

by the Lambeth water supply company. 

 

Note A risk ratio > 1.0 indicates that the exposed group (numerator) has an increased 

risk for the health outcome, as in the above example. A risk ratio < 1.0 indicates that 

the exposed group has a decreased risk for the health outcome. In other words, the 

exposure might be protective against the occurrence of the health outcome. A risk 

ratio = 1.0 indicates that the risk for the health outcome is the same for both groups.   
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Odds ratio 

An odds ratio also quantifies the risk of occurrence of a health event, but it compares 

two categories: those who were exposed who have or do not have the health outcome, 

and those who were unexposed who have or do not have the health outcome.  

 

An odds ratio is also calculated using a two-by-two table, but instead of comparing 

across rows, we compare the numerator in one column to the denominator in the other. 

That is why the odds ratio is sometimes called the cross-product ratio: the calculation 

creates an X in the two-by-two table. Let’s try an example. 

 

Example 

The Swedish public health agency is investigating an outbreak of food-borne 

infections potentially caused by Salmonella bacteria. They trace the outbreak to 

eggs served in a popular café in Södermalm. The public health agency obtains data 

for everyone who ate in the café during the weeks immediately before and after the 

oubreak began, including whether they consumed food made with eggs (exposure) 

or presented with a Salmonella infection (outcome).  

 

Our two-by-two table is the same as the one we used for the risk ratio. Here, we 

have added letters to help you visualize the cross-product calculations. 

 

    

 Salmonella No Salmonella Total 

Exposed a = 132 b = 1,900 2,032 

Unexposed c = 10 d = 2,100 2,110 

Total 142 4,000 4,142 

 

To calculate the odds ratio, we first multiply a x d and b x c to get the cross products, 

and then divide the product of a x d by the product of b x c: 

(132 x 2,100)/(1,900 x 10) =  14.6 

 

Those who ate food containing eggs at this particular café during this two-week 

period were 14.6 times more likely to have contracted a Salmonella infection 

compared to those who did not eat eggs. 

 

Note If the health outcome in question is rare, the odds ratio will be quite similar to 

the risk ratio. This is especially convenient for case-control studies, where the odds of 

exposure among cases are compared to the odds of exposure among controls. For case-

control studies, we often do not know the size of the population from which the cases 

were drawn. This means that risks and rates (and therefore risk and rate ratios) cannot 

reliably be calculated, and so we instead calculate odds ratios.  
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4.7.6 Attributable proportion 

As a conclusion to this section on epidemiological measures of association and 

frequency, we want to briefly introduce one measure of public health impact, which 

can provide important context about the burden of different health outcomes on 

population health. Attributable proportion measures the quantity of the health 

outcome in the exposed group that can be attributed to the exposure.  In other words, 

the attributable proportion represents the proportion of health events that 

hypothetically would be reduced if the exposure did not exist or could be removed 

from the equation.  

 

Attributable proportion has a key assumption: if the number of health events in the 

unexposed group is the expected risk (baseline) for that event, then the difference in 

risk between the exposed and unexposed groups can be attributed, or caused by, the 

exposure. This also means that the attributable proportion should only be calculated 

for one exposure, or risk factor, that causes the health outcome.  

 

The attributable proportion is calculated by subtracting the risk for the unexposed 

group from the risk for the exposed group, dividing the difference by the risk for the 

unexposed group, and then multiplying the quotient by 100. 

 

Example 

A classic example of attributable proportion is the relationship between smoking 

and mortality attributable to lung cancer. Our study population of male, British 

doctors in the 20th century contains daily smokers and non-smokers. If the mortality 

rate for lung cancer among daily smokers is 0.56 deaths per 1,000 persons per year, 

and 0.06 deaths per 1,000 persons per year, what is the attributable proportion?  

 

  

0.56 0.06 

 

The attributable proportion is: (risk for the exposed group – risk for the unexposed 

group)/risk for the exposed group, x 100. 

Attributable proportion: (0.56 – 0.06)/0.56 x 100 = 89.3% 

 

If the assumptions for calculating the attributable proportion hold, and assuming 

the two groups of doctors are comparable, these results would indicate that about 

89% of deaths due to lung cancer within this group could be attributed to daily 

smoking. This would mean that if smoking did not exist, or we could remove 

smoking as an exposure, the mortality rate attributable to lung cancer would 

hypothetically decrease by 89.3%. However, the remaining 10.7% of deaths from 

lung cancer in this group would still occur.  
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4.8 Designing descriptive tables and graphs 

What kind of descriptive statistics should one include in a study? This is a question 

with an unlimited number of answers. Below, we have some recommendations that 

you can draw inspiration from. 

 

Note Make sure that you have defined your analytical sample before summarising the 

descriptive statistics in a table or inserting a graph in the document (see Section 11.5). 

 

Note Of course, we also produce tables and graphs to present the results from our 

statistical analysis – but this specific section focuses on descriptive statistics. 

 

4.8.1 Tables 

Usually, when one writes up a manuscript for a study, there is at least one table with 

descriptive statistics. This table normally includes all the study variables. It is very 

common that the variables have different measurement scales but they can still be 

included in the same table. 

 

Presentation of descriptive statistics in a table 

Continuous variables Mean, median, standard deviation, min, max 

Categorical variables Percentage distribution 
 

Checklist for tables 

The tables are numbered sequentially throughout the document. 

There is a descriptive heading placed above the table. 

The number of observations (e.g. individuals) is included in the heading. 

The table does not include any vertical lines/borders 

The table includes as few horizontal lines/borders as possible. 
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Some examples  

Below is a simple example of a descriptive table with only categorical variables. 

 

Table 1. Descriptive statistics for the study variables (n=5,000). 

 n % 

Sex   

   Males 2,543 50.9 

   Females 2,457 49.1 

Quality of life   

   Low 570 11.4 

   Medium 1198 24.0 

   High 3232 64.6 

Smoking   

   Never smoker 2961 59.2 

   Former smoker 1433 28.7 

   Current smoker 606 12.1 

 

Below is a simple example of a descriptive table with categorical and continuous 

variables. 

 

Table 1. Descriptive statistics for the study variables (n=5,000). 

 n % 

Drinks alcohol   

   No 1631 32.6 

   Yes 3369 67.4 

Uses illicit drugs   

   No 4099 82.0 

   Yes 901 8.0 

 Mean Median Std. dev. Min, Max 

Age 16.8 17.2 1.2 12, 19 

Average school marks 14.9 14.3 2.5 10.1, 20.0  
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4.8.2 Figures 

In some instances, there might be relevant to also produce a figure for one or more of 

the variables. This is perhaps particularly the case if one wants to illustrate the 

distribution of a variable in a more detailed way, or if one wishes to make a simple 

comparison between groups.  

 

Checklist for figures 

The figures are numbered sequentially throughout the document. 

There is a descriptive heading placed below the figure. 

The number of observations (e.g. individuals) is included in the heading. 

The figure can be printed in black and white without becoming less informative. 
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Content 

This chapter focuses on theoretical issues concerning statistical significance, 

including a discussion on p-values and confidence intervals. We also present some 

practical alternatives for calculating confidence intervals for descriptive statistics.  
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5.1 Hypothesis testing  

A lot of quantitative research is about examining 

relationships between variables (see Chapter 9 for a more 

detailed discussion about those issues). Assuming that all is 

done correctly, data analysis will give us information about 

the association (i.e. the change in the outcome per unit 

increase in the exposure) and the direction of the relationship 

(i.e. whether the relationship is negative or positive). These 

are the two most important outcomes of data analysis, but it 

is not uncommon that research inquiry instead focuses on a third point: statistical 

significance. Statistical significance can be seen as an indicator of the reliability of 

the results – although that is important, it is not what exclusively should guide which 

findings we focus on and which we discard. A fourth issue that needs to be considered 

is whether the findings have any practical or clinical importance – in order words; do 

they matter? We therefore suggest the following priority list when it comes to how 

results from data analysis should be interpreted and valued: 

 

Priority list 

1. Effect How much does the outcome change per unit 

increase in the exposure? 

2. Direction Is the relationship positive or negative? 

3. Statistical significance Is the relationship reliable? 

4. Practical importance Is the relationship relevant? 

 

5.1.1 Hypotheses 

Let us return to the matter of statistical significance: what is it really? Well, for 

example, if we find that cats are smarter than dogs, we want to know whether this 

difference is “real”. Hypothesis testing is how we may answer that question. We start 

by converting the question into two hypotheses: 

 

Hypotheses 

Null hypothesis (H0) There is no difference 

Alternative hypothesis (H1) There is a difference 

 

There is no law saying that the null hypothesis is always “no difference” and the 

alternative hypothesis is always “difference”. However, for the null hypothesis, 

precedence is commonly given to the “simpler” (or more “conservative” or 

“normative”) hypothesis. Here, it is generally simpler to claim that there is no 

difference in intelligence between cats and dogs than to say that there is a difference.  
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5.1.2 Outcomes 

There are two possible outcomes of hypothesis testing: 

 

Outcomes of hypothesis testing 

Reject H0 in favour of 

H1 

Suggests that the alternative hypothesis may be true 

(but it does not prove it) 

Do not reject H0 Suggests that there is not sufficient evidence against 

H0 in favour of H1 (but it does not prove that the null 

hypothesis is true) 

 

Note We are never able to decide from hypothesis testing that we should reject or 

accept H1. However, rejecting H0 may lead us to suggest that H1 might be accepted. 

 

5.1.3 Errors 

There are two types of error that may occur in hypothesis testing: a 

type I error occurs when the null hypothesis is rejected despite being 

true, whereas a type II error occurs when the null hypothesis is not 

rejected despite being false. In the example of cats and dogs, a type I 

error would thus occur if we concluded that there is a difference in 

the intelligence between cats and dogs although that is not true. A 

type II error, on the other hand, would occur if we concluded that there is no difference 

in intelligence when in fact there is. 

 

Type I and type II errors 

 Conclusion 

  Reject H0 in favour of H1 Do not reject H0 

“Truth” 
H0 Type 1 error Right decision 

H1 Right decision Type II error 

 

Type I errors are generally considered to be more serious that type II errors. Type II 

errors are often due to poor statistical power (often because of small sample size). 

 
5.1.4 Statistical hypothesis testing 

Conducting a statistical hypothesis test is easy to do in statistical software such as 

Stata. These tests give us a probability value (p-value) that can help us decide whether 

or not the null hypothesis should be rejected. See Section 5.2 for a further discussion 

about the p-value.  
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5.2 P-values 

The probability value – or p-value – helps us decide whether or not the null hypothesis 

should be rejected. There are some common misunderstandings about p-values: 

 

The p-value is not… 

… the probability that the null hypothesis is true 

… the probability that the alternative hypothesis is false 

… the probability of the occurrence of a type I error (falsely rejecting H0) 

... the probability that replicating the experiment would yield the same conclusion 

… the probability that the finding is a “fluke”  

… an indicator of the size of the effect or importance of the findings 

… determining the significance level 

 

Using the p-value to make this decision, it must first be 

decided what probability value we find acceptable. This is 

often referred to “the significance level”. If the p-value is 

below this level, it means that we can reject the null 

hypothesis in favour of the alternative hypothesis, and if the 

p-value is above this level, it means that we cannot reject the 

null hypothesis. The smaller the p-value, the more convincing 

is the rejection of the null hypothesis.  

 
5.2.1 Significance levels and confidence levels 

Significance levels and confidence levels are just two ways of looking at the same 

thing. The level is set by the individual researcher – it that sense, it is quite arbitrary 

– but there are some levels that are widely used (asterisks are often used to illustrate 

these levels): 

 

P-value Significance level Confidence level  

p<0.05 5% 95% * 

p<0.01 1% 99% ** 

p<0.001 0.1% 99.9% *** 

 

Note In some fields of research, p<0.10 – statistical significance at the 10% level – is 

also a commonly used significance level.   

 

Let us return to the example of differences in intelligence between cats and dogs. For 

instance, if we find a difference in intelligence between these types of animal, and the 

p-value is below 0.05, we may thus state that the null hypothesis (i.e. no difference) 

is rejected at the 95% confidence level. The p-value does not, however, state whether 

the difference is small or big, or whether cats or dogs represent the smarter type of 

animal (in order to state such things, one would have to look at the direction and the 

effect size).  
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It should be noted that the p-value is affected by the sample size, 

which means that a smaller sample size often translates to a larger 

p-value. For example, if you have a data material of 100 individuals, 

the effect size has to be quite large (e.g. large income differences 

income between men and women) in order to get small p-values. 

Conversely, larger sample size makes it easier to find small p-values. 

For example, if you analyse a data material containing the entire population of a 

country, even tiny differences are likely to have small p-values. In other words, the 

size of the sample influences the chances of rejecting the null hypothesis (see Section 

5.6 about power analysis).   

 

5.2.2 Practical importance 

As stated earlier in this section, statistical significance – determined by 

the p-value – is not the same as effect size or practical/clinical 

importance (i.e. whether it “matters”). We can use couple of examples 

to illustrate the differences:  

 

Example 1 

A pharmaceutical company has developed a drug to cure obesity. During tests of 

this drug, it appears as migraine could be one of the side effects of taking this drug. 

The null hypothesis would here be that there are no differences in the risk of 

migraine between people who had taken the drug and those who have not. The 

alternative hypothesis would then be that there are differences. When we run the 

analysis on this data material, we see that those who have taken the drug have ten 

times the risk of migraine, but the p-value is above the 95% confidence level (i.e. 

p>0.05). Thus, we cannot reject the null hypothesis. The difference is however large 

and is likely to have significant impact on people’s lives. It could moreover be the 

case that a type II error has occurred here due to a small sample size.  

 

Example 2 

In the second example, researchers have gathered data on coffee consumption and 

happiness among 100,000 company employees. The null hypothesis would here be 

that there are no differences in happiness between people who drink coffee and 

those who do not. The alternative hypothesis would be that there are differences. 

The analysis suggests that there is a tiny difference in happiness between those who 

drink coffee and those who do not, to the advantage of the coffee drinkers. The p-

value is below 0.05 which suggests that the null hypothesis can be rejected at the 

95% confidence level. However, the difference is very small and the results may 

not be very useful.  
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5.3 Confidence intervals 

Confidence intervals (CI) are closely related to the concept of statistical hypothesis 

testing, but they are more informative than p-values since they do not only suggest 

whether we should reject H0 or not, they also provide the range of plausible values.  

 
5.3.1 The “unknown population parameter” 

Before we get into the discussion about confidence intervals, we 

need to address the concept of “unknown population parameter”. A 

parameter tells us something about a population (while a “statistic” 

tells us something about a sample). The population parameter is 

thus basically a measure of any given population. Examples of 

population parameters are: the mean height of Swedish men, the 

average intelligence score in 12-year olds, or the mean number of 

children among highly educated people. The parameter is a fixed value, i.e. it does not 

vary. We seldom have information about the entire population, generally only for a 

part of it (a sample). In that case, the population parameter is unknown. Simply put, a 

confidence interval is a range that includes the “unknown population parameter”. 

 
5.3.2 Limits and levels 

The interval has an upper and a lower bound (i.e. confidence 

limits). Similar to p-values, confidence intervals have “confidence 

levels” that indicate how certain we can be that the interval 

includes the true population parameter. Confidence intervals are 

typically stated at the 95% level. A 95% confidence level would 

thus mean that if we replicated a certain analysis in 100 samples 

of the population, we would expect that 95% of the intervals would 

include the true population parameter. Thus, strictly speaking, it is not correct to say 

that “with 95% probability, the true population parameter lies within this interval” 

(because the parameter either is or is not within the interval).  

 
5.3.3 Confidence and precision 

When discussing confidence intervals, it is important to be aware of the tension 

between precision and certainty: better precision means being less confident, whereas 

more confidence means less precision. As previously stated, confidence is reflected 

by the confidence level we choose; logically, a higher confidence level means more 

confidence. The higher the confidence level we choose, the wider the interval gets – 

and the wider the interval is, the less the precision we get.  

 

Confidence versus precision 

Higher confidence level = wider confidence interval = less precision 

Lower confidence level = slimmer confidence interval = more precision 
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However, it is important to know that the width of the confidence interval is also 

affected by the sample size: the larger the sample size, the slimmer the interval (which 

means better precision).  

 

Let us take an example to sum up what has been said 

about confidence intervals so far: We have gathered data 

on all sociology students at Stockholm University and 

find that their mean age is 26 years. Instead of 

highlighting this relatively non-informative fact, we can 

calculate the confidence interval (at the 95% level). In 

this case, it is 22-30. Therefore, we could make the more 

informative statement that: “with 95% confidence, we 

conclude that the mean age of sociology students is 22 to 

30 years”.   

 

The most common application for confidence intervals as a way of significance testing 

is when we are interested in the difference between two samples. For example: the 

difference in the mean income between men and women, or the difference in the 

percentage of daily smokers among individuals with a lower level of education versus 

those with a higher level of education. In this case, we may look at the overlap between 

the confidence intervals estimated for each sample. Suppose that we have an 

upcoming election and just got the results from the latest poll. There are two parties 

in the race: the green party and the yellow party. The results from the poll show that 

the green party got 42% of the votes and the confidence interval is 40-44 (at the 95 % 

level). The yellow party got 58% of the votes and the confidence interval is 54-62 (at 

the 95% level). What does this tell us? First of all, we can conclude that the yellow 

party has a greater share of votes. Looking at the two confidence intervals, we see that 

the intervals do not overlap. Why is that important? Well, remember that all values in 

a confidence interval are plausible. Hence, if the confidence intervals do not overlap, 

it means that the estimates (in this case: the share of votes) are indeed different given 

the chosen confidence level (in this case: at the 95% level). However, it should be 

emphasized that while non-overlap always mirrors a significant difference, overlap is 

not always the same as a non-significant difference.   
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5.4 Choice between p-values and confidence 
intervals 

Now you are maybe wondering; should you use p-values or confidence intervals? 

Almost all disciplines would recommend using both because they capture several 

different dimensions. In the following, the advantages and disadvantages of p-values 

and confidence intervals will be described and discussed.  

 

P-value is an important part of research, most likely the heart of it. The p-value is 

based on “yes-or no”-questions in which it shows how much evidence we have against 

the null hypothesis. P-values are much clearer than confidence intervals and it helps 

the researcher to make quick judgments about his research. Another advantage with 

the p-value is that it can give the difference from a previous specified statistical level. 

Unfortunately, there are misconceptions about the p-value among researchers and 

many disciplines rely on them to draw conclusions rather than understanding the 

background. One of the common mistakes among researchers is that they do not 

further analyse their data in order to ensure that the p-value is not affected by other 

factors. Moreover, p-values cannot alone permit any direct statements about the 

direction or size of difference. In order to make those decisions, one must always look 

at the confidence intervals.  

 

A confidence interval informs the researcher about the power of the study and whether 

the data is compatible, it also shows the likelihood of the null hypothesis being true 

and that in turn tells us how much confidence we have in our findings. The width of 

the confidence interval indicates the precision of the point estimates, in which a small 

interval indicates a more precise estimate, while a wide interval indicates a less precise 

estimate. The precision is related to the sample size and power in which it tells us that 

the larger sample size we have, the greater, the more precise estimates we have. The 

intervals are useful when having small sample sizes. Normally, small studies fail to 

find statistically significant treatments, when including point estimates with wide 

intervals that include the null value may be consistent and significant. The intervals 

provide the researcher an understanding of the sample size. This can also be a 

disadvantage when having large data because it produces statistically significant 

results even if the difference between the groups is small. Another advantage with the 

confidence interval is that it can provide means of analysis for studies that seek to 

describe and explain, rather than make decisions about treatments effects. A 

disadvantage with the confidence interval is that it captures several elements at the 

time, in which it may not give precise information like the p-values.  

 

As mentioned, a majority of disciplines recommend including both p-values and 

confidence intervals because they capture information in different dimensions. 

Neither p-values nor confidence intervals can prevent biases or other problems but the 

combination of them provides a more flexible approach and highlights new 

perspectives on the data. Confidence intervals permit us to draw several conclusions 

at the same time and they are more informative about sample sizes and point estimates. 
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They are also useful in studies when we have small sample sizes. But they are not as 

precise as p-values when it comes to accepting and rejecting the null hypothesis. Thus, 

when we combine them together we can be more certain.  

 

The figure below shows the advantages and disadvantages when interpreting and 

drawing conclusions with the help of p-values and confidence intervals.  

 

P-values versus confidence intervals 

 P-values Confidence intervals 

Accept/reject 

  

Degree of support 

  

Estimate and uncertainty 
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5.5 Calculate confidence intervals for 
descriptive statistics 

Now that we have discussed what confidence intervals are (and what they are not), 

we thought it would be good time to show how to calculate them for descriptive 

statistics. For this purpose, we can use the commands ci, centile, and proportion. 

 

5.5.1 Confidence intervals for means 

Can be used for continuous variables with a normal distribution. 

 

Function 

 

Basic command ci means varlist 

Useful options ci means varlist, level(#) 

Explanations Varlist 

 

level(#) 

Insert the name(s) of the variable(s) that you 

want to use. 

Specify the confidence level. Default is 95. 

More information help ci 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

 

 
ci means gpa 

 

 
    Variable |        Obs        Mean    Std. Err.       [95% Conf. Interval] 

-------------+--------------------------------------------------------------- 

         gpa |      9,380    3.178614    .0072238        3.164454    3.192774 

 

 

In this example, we can see that the mean value for gpa is 3.18. The 95% confidence 

interval is 3.16-3.19. 
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5.5.2 Confidence intervals for median 

Can be used for continuous variables (with a normal or skewed distribution). 

 

Function 

 

Basic command centile varlist 

Useful options centile varlist, level(#) 

Explanations varlist 

 

level(#) 

Insert the name(s) of the variable(s) that you 

want to use. 

Specify the confidence level. Default is 95. 

More information help centile 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

cognitive   Cognitive test score (Age 15, 1985). 

 

 
centile cognitive 

 

 
                                                       -- Binom. Interp. -- 

    Variable |       Obs  Percentile    Centile        [95% Conf. Interval] 

-------------+------------------------------------------------------------- 

   cognitive |     8,879         50         312             312         316 

 

 

In this example, we can see that the median cognitive test score is 312, and the 95% 

confidence interval is 312-316.  
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5.5.3 Confidence intervals for variances and standard 
deviations 

Can be used for variables that are continuous. 

 

Function 

 

Basic command ci variances varlist 

Useful options ci variances varlist, level(#) 

ci variances varlist, sd level(#) 

Explanations varlist 

 

sd 

level(#) 

Insert the name(s) of the variable(s) that you 

want to use. 

Option to display confidence interval for 

standard deviation. 

Specify the confidence level. Default is 95. 

More information help ci 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

cognitive   Cognitive test score (Age 15, 1985). 

 

 
ci variances cognitive 

 

 
   Variable |        Obs      Variance       [95% Conf. Interval] 

-------------+---------------------------------------------------- 

   cognitive |      8,879       5210.59       5060.642    5367.335 

 

 

Here, the variance (5210) and its confidence interval (5061-5367) is shown. 

 

ci variances cognitive, sd 

 

 
    Variable |        Obs      Std. Dev.      [95% Conf. Interval] 

-------------+---------------------------------------------------- 

   cognitive |      8,879      72.18442       71.13819     73.2621 

 

 

This shows the standard deviation (72.18) and its 95% confidence interval (71.14-

73.26). 
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5.5.4 Confidence intervals for counts 

Can be used for continuous variables that are counts. 

 

Function 

 

Basic command ci means varlist, poisson 

Useful options ci means varlist, poisson level(#) 

Explanations varlist 

 

level(#) 

Insert the name(s) of the variable(s) that you 

want to use. 

Specify the confidence level. Default is 95. 

More information help ci 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

unemp_42   Days in unemployment (Age 42, Year 2012) 

 

 
ci means unemp_42, poisson 

 

 
                                                         -- Poisson  Exact -- 

    Variable |   Exposure        Mean    Std. Err.       [95% Conf. Interval] 

-------------+--------------------------------------------------------------- 

    unemp_42 |       9078    17.52787     .043941        17.44185    17.61421 

 

 

In this example, the mean is 17.53 days in unemployment. The 95% confidence 

interval is 17.45-17.61 days. 
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5.5.5 Confidence intervals for proportions 

Can be used for categorical variables. 

 

Function 

 

Basic command proportion varlist 

Useful options proportion varlist, level(#) 

Explanations varlist 

 

level(#) 

Insert the name(s) of the variable(s) that you 

want to use. 

Specify the confidence level. Default is 95. 

More information help proportion 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

educ  Educational level (Age 40, Year 2010) 

 

 
proportion educ 

 

 
Proportion estimation                 Number of obs   =      9,183 

 

------------------------------------------------------------------ 

                 |                                   Logit 

                 | Proportion   Std. Err.     [95% Conf. Interval] 

-----------------+------------------------------------------------ 

            educ | 

     Compulsory  |   .1919852   .0041101      .1840571     .200171 

Upper secondary  |   .4423391   .0051829       .432205    .4525214 

     University  |   .3656757   .0050259      .3558812    .3755826 

------------------------------------------------------------------ 

 

 

Here, we get the proportions (which can be translated into percentages) and its 

confidence interval for the three categories of educ. In this example, 19.2% have 

compulsory education (95% CI: 18.4-20.0), 44.2% have upper secondary education 

(95% CI: 43.2-45.3%), and 36.6% have university education (95% CI: 35.6-37.6%).  
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5.6 Power analysis 

Although one should perform a power analysis when planning a study, many want to 

use it as a sort of post-hoc test. Study design is not covered in this guide, and 

performing post-hoc power analysis is not really something that we encourage. 

Accordingly, this guide will not elaborate on power analysis in more detail. If you 

nevertheless want to try it out on your own, there is a whole module for power 

calculations in Stata. 

 

More information help power 
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6. COMPARE GROUPS 

Outline 
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Content 

In this chapter, we focus on different ways of comparing groups (and measurement 

points/samples). It starts with some descriptive statistics (box plots and crosstables), 

and continues with how to perform t-tests and one-way ANOVA (including their non-

parametric alternatives), as well as chi-square tests.  

 

Before you start comparing groups (or measurement points/samples), it is important 

to know about the variables’ measurement scale and distribution (as discussed in 

Chapter 3). For an overview, see the next page.
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X (Independent 
variable/exposure/group variable) 

Categorical 
 

Continuous 
(normal distribution) 

Categorical 

Categorical 
2 categories (groups) 

Categorical 
More than 2 categories (groups) 

CHOICE OF TEST 

Chi2 
 

Continuous 
 (skewed distribution) 

T-test: Independent samples 

Mann-Whitney 

Continuous 
 (normal distribution) 

Continuous 
 (skewed distribution) 

Oneway ANOVA 

Kruskal-Wallis 

Y (Dependent variable/ 
outcome/test variable) 

 

Measurement point 1 CHOICE OF TEST Measurement point 2 

Continuous 
 (normal distribution) 

Continuous 
 (normal distribution) 

Continuous 
 (skewed distribution) 

Categorical 
2 categories (groups) 

Categorical 
More than 2 categories (groups) 

 

Kontinuerlig 
(skewed distribution) 

T-test:Paired samples 

Wilcoxon 

DESCRIPTION 

Crosstable 
 

E.g. Box plot 

E.g. Box plot 

E.g. Box plot 

E.g. Box plot 

E.g. scatterplot 

E.g. scatterplot 

DESCRIPTION 
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6.1 Descriptives 

There are many ways that we can use descriptive statistics to compare two or more 

groups (or samples). Here, we will focus on box plots and crosstables. 

 

To use other types of graphs, try them out in combination with by (see Section 2.8). 

 

6.1.1 Box plot 

 

Quick facts 

Number of variables One group variable (optional) 

One test variable 

Scale of variable(s) Group variable: categorical (nominal/ordinal) 

Test variable: continuous (ratio/interval) 

 

A box plot – or box and whisker plot – is a four-part summary of a variable. The four 

parts are made up by five components: minimum, first quartile, median, third quartile, 

and maximum. Below is a simple illustration: we draw a box from the first quartile 

(q1) to the third quartile (q3). The line in the middle of the box represents the median 

(q2). The whiskers represent the minimum (min) and maximum (max) values. This 

means that each of the four parts contain approximately 25% of the values. 

 

It is not necessary to include a group variable in a box plot, but we chose to place box 

plots in this chapter instead of Chapter 4, since we think that it is a nice alternative for 

comparing groups in a descriptive way.  

 

 

 
 

Box plots are sensitive to outliers, so if you discover that your variable has any 

extreme values, you might need to reconsider your box plot (e.g. by excluding the 

outliers). 
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Function 

 

Basic command graph box yvar, over(groupvar) 

Explanations yvar 

 

groupvar 

Insert the name of the variable that you want 

to use as your y-variable. 

Insert the variable defining the groups. 

More information help graph box 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

sex  Sex 

 

 
  



 

153 

 

graph box gpa, over(sex) 

 

 

 
 

 
The box plot above shows the distribution of gpa according to sex. We can see that 

the distribution is slightly shifted upwards among women compared to men: their 

median grade point average is higher. There are some outliers, but this does not seem 

to be a big problem (the dots are few).  
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6.1.2 Crosstable 

 

Quick facts 

Number of variables Two 

Scale of variable(s) Categorical (nominal/ordinal) 

 

A crosstable is a description of how individuals are distributed according to two 

variables.  

 

This function is used primarily for categorical variables (i.e. nominal/ordinal) but can 

be used for any type of variable; the main concern is that the table becomes too 

complex and difficult to interpret if there are many categories/values in the variables 

used. Moreover, it is possible to add a chi-square to the crosstable (for more 

information about chi-square, see Section 6.5).  

 

Unless otherwise specified, a crosstable will only show the frequency distribution. 

This is usually not what we are after; we rather would like to see the percentage 

distribution. There are two options to choose from: column and row percentages. The 

frequencies (i.e. the number of individuals) in the cells are the same, but the 

percentages are different since the focus shifts between the tables. If you find this 

difficult to separate in your mind, one good advice is perhaps to see where the 

percentages add up to 100% in Total - in the rows or in the columns.  

 

Note If we would have individuals with missing information with regard to any of the 

two variables, these would be excluded from the crosstable unless otherwise specified. 

 

Function 

 

Basic command tab varname1 varname2 

Useful options tab varname1 varname2, row 

tab varname1 varname2, col 

Explanations varname1 

 

varname2 

 

row 

col 

m 

Insert the name of the first variable you want 

to use (is included as the row variable). 

Insert the name of the first variable you want 

to use (is included as the column variable). 

Show row percentages. 

Show column percentages. 

Include missing 

Short names tab  

col 

m 

tabulate 

column 

missing 

Notes Options can be used simultaneously, e.g: 

tab varname1 varname2, row col m 

More information help tabulate twoway 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

sex    Sex 

bullied    Exposure to bullying (Age 15, Year 1985) 
 

 

tab sex bullied  

 

 
           |  Exposed to bullying 

           |  (Age 15, Year 1985) 

       Sex |        No        Yes |     Total 

-----------+----------------------+---------- 

       Man |     3,799        346 |     4,145  

     Woman |     3,981        593 |     4,574  

-----------+----------------------+---------- 

     Total |     7,780        939 |     8,719 

 

 

In the table above, we specified sex as the row variable, and bullied as the column 

variable. Frequencies are shown in the different cells. We can observe that: 

 

• There are 4,145 men and 4,574 women. There are 7,780 individuals who 

have not been exposed to bullying and 939 who have. 

• Focusing on the frequency distribution of bullying across gender: 

Among the men, there are 3,799 who have not been exposed to bullying and 

346 who have. The corresponding numbers among women are 3,981 and 593, 

respectively. 

• Focusing on the frequency distribution of gender across bullying: 

Among those who have not been exposed to bullying, there are 3,799 men 

and 3,981 women. Among those who have been exposed to bullying, there 

are 346 men and 593 women. 

 

Note that the two last bullet points use the same numbers but refer to them in different 

ways. This is important to keep in mind for the interpretation of the percentage 

distributions presented below. 

 

Comparing frequencies are, however, rather tricky since the sample size differs across 

the categories of the variables. That is why it is often more practical to include 

percentages as well. 
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tab sex bullied, row 

 

 
           |  Exposed to bullying 

           |  (Age 15, Year 1985) 

       Sex |        No        Yes |     Total 

-----------+----------------------+---------- 

       Man |     3,799        346 |     4,145  

           |     91.65       8.35 |    100.00  

-----------+----------------------+---------- 

     Woman |     3,981        593 |     4,574  

           |     87.04      12.96 |    100.00  

-----------+----------------------+---------- 

     Total |     7,780        939 |     8,719  

           |     89.23      10.77 |    100.00 

 

 

In the table above, we have added row percentages. Since sex is our row variable, we 

will here see the percentage distribution of bullying across sex. 

• In total, 89% have not been exposed to bullying whereas 11% have. 

• Among the men, 92% have not been exposed to bullying whereas 8% have. 

The corresponding figures among women are 87% and 13%, respectively. 

 

tab sex bullied, col 

 

 
           |  Exposed to bullying 

           |  (Age 15, Year 1985) 

       Sex |        No        Yes |     Total 

-----------+----------------------+---------- 

       Man |     3,799        346 |     4,145  

           |     48.83      36.85 |     47.54  

-----------+----------------------+---------- 

     Woman |     3,981        593 |     4,574  

           |     51.17      63.15 |     52.46  

-----------+----------------------+---------- 

     Total |     7,780        939 |     8,719  

           |    100.00     100.00 |    100.00 

 

 

In the table above, we have added column percentages. Since bullied is our column 

variable, we will here see the percentage distribution of sex across exposure to 

bullying. 

 

• In total, 48% are men and 53% are women. 

• Among those who have not been exposed to bulling, 49% are men and 51% 

are women. The corresponding figures among those who have been exposed 

to bullying are 37% and 63%, respectively. 

 

Note We have rounded the percentages (it is seldom necessary to report decimals for 

percentages). 
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6.2 T-test: Independent samples 

Quick facts 

Number of variables One group variable 

One test variable (y) 

Scale of variable(s) Group variable: categorical with two values (binary) 

Test variable: continuous (ratio/interval) 

 

The independent samples t-test is a parametric method for comparing the mean of one 

variable between two (unrelated) groups. For example, you may want to see if the 

income salary of teachers differs between men and women, or if the score of a 

cognitive test differs between children who have parents with low versus high 

education. 

 

 

 
 

Mean income salary among men Mean income salary among women 

 

Assumptions 

First, you have to check your data to see that the assumptions behind the independent 

samples t-test hold. If your data “passes” these assumptions, you will have a valid 

result.  

 

Checklist 

Continuous test 

variable 

Your test variable should be continuous (i.e. interval/ratio). 

For example: Income, height, weight, number of years of 

schooling, and so on. Although they are not really 

continuous, it is still very common to use ratings as 

continuous variables, such as: “How satisfied with your 

income are you?” (on a scale 1-10) or “To what extent do 

you agree with the previous statement?” (on a scale 1-5). 

Two unrelated 

categories in the 

group variable 

Your group variable should be categorical and consist of 

only two groups. Unrelated means that the two groups 

should be mutually excluded: no individual can be in both 

groups. For example: men vs. women, employed vs. 

unemployed, low-income earner vs. high-income earner, 

and so on. 

No outliers An outlier is an extreme (low or high) value. For example, if 

most individuals have a test score between 40 and 60, but 

one individual has a score of 96 or another individual has a 

score of 1, this will distort the test. 
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Function 

 

Basic command ttest testvar, by(groupvar) 

Explanations testvar 

 

groupvar 

Insert the name of the variable that you want 

to test. 

Insert the variable defining the two groups. 

More information help ttest 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

cognitive   Cognitive test score (Age 15, Year 1985) 

sex   Sex 

 

 

ttest cognitive, by(sex) 

 

 
Two-sample t test with equal variances 

------------------------------------------------------------------------------ 

   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 

---------+-------------------------------------------------------------------- 

     Man |   4,495     311.943    1.091507    73.17985    309.8032    314.0829 

   Woman |   4,384    304.9106    1.072037    70.98148    302.8088    307.0123 

---------+-------------------------------------------------------------------- 

combined |   8,879    308.4708    .7660576    72.18442    306.9691    309.9724 

---------+-------------------------------------------------------------------- 

    diff |            7.032464    1.530502                4.032326     10.0326 

------------------------------------------------------------------------------ 

    diff = mean(Man) - mean(Woman)                                t =   4.5949 

Ho: diff = 0                                     degrees of freedom =     8877 

 

    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 

 Pr(T < t) = 1.0000         Pr(|T| > |t|) = 0.0000          Pr(T > t) = 0.0000 

 

 

We can start by noting that the overall mean is 308.4708. As can be seen, men have a 

slightly higher mean value compared to women (311.943 vs. 304.9106).  

 

The t-test statistic in this example is 4.5949, with 8877 degrees of freedom. The 

corresponding p-value is 0.0000 (look below “Ha: diff != 0”). This is below 0.05, 

which allows us to reject the null hypothesis (which states that there is no mean 

difference between the two groups).  

 

In other words, there is a significant difference in mean cognitive test scores between 

men and women in this example, to the advantage of men. 
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6.2.1 Non-parametric alternative: Mann-Whitney u-test 

It is not uncommon that at least one of the assumptions behind the independent 

samples t-test is violated. While you most commonly will be able to conduct the test 

anyway, it is important to be aware of the possible problems. Alternatively, you can 

use the Mann-Whitney u-test instead, which is a nonparametric independent t-test that 

relaxes some of the assumptions that were presented earlier. 

Function 

 

Basic command ranksum testvar, by(groupvar) 

Explanations testvar 

 

groupvar 

Insert the name of the variable that you want 

to test. 

Insert the variable defining the two groups. 

More information help ranksum 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

cognitive   Cognitive test score (Age 15, Year 1985) 

sex   Sex 

 

 

ranksum cognitive, by(sex) 

 

 
Two-sample Wilcoxon rank-sum (Mann-Whitney) test 

 

         sex |      obs    rank sum    expected 

-------------+--------------------------------- 

         Man |     4495    20573556    19957800 

       Woman |     4384    18849204    19464960 

-------------+--------------------------------- 

    combined |     8879    39422760    39422760 

 

unadjusted variance   1.458e+10 

adjustment for ties  -4007390.8 

                     ---------- 

adjusted variance     1.458e+10 

 

Ho: cognit~e(sex==Man) = cognit~e(sex==Woman) 

             z =   5.100 

    Prob > |z| =   0.0000 

 

 

The z-statistic in this example is 5.100, with a p-value of 0.0000. Since the p-value is 

below 0.05, this allows us to reject the null hypothesis (which states that there is no 

mean difference between the two groups).  

 

In other words, there is a significant difference in mean cognitive test scores between 

men and women in this example, to the advantage of men (just like the previous t-test 

also showed). 
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6.3 T-test: Paired samples 

Quick facts 

Number of variables Two (reflecting repeated measurement points) 

Scale of variable(s) Continuous (ratio/interval) 

 

A dependent or paired samples t-test is used to see the difference or change between 

two measurement points. This is a parametric type of test. For example, you could 

apply this test to see if the staff’s job satisfaction has improved after their boss has 

taken a course in “socio-emotional skills” compared to before, or if the rate of 

cigarette smoking in certain schools has declined since the introduction of a new 

intervention programme.  

 

For the independent samples t-test, you were supposed to have two groups for which 

you compared the mean. For the paired samples t-test, you instead have two 

measurements of the same variable, and you look at whether there is a change from 

one measurement point to the other.  

 

 

 

 

 
 

Happiness score before  

summer vacation 

Happiness score after  

summer vacation 
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Assumptions 

First, you have to check your data to see that the assumptions behind the paired 

samples t-test hold. If your data “passes” these assumptions, you will have a valid 

result.  

 

Checklist 

Continuous 

variables 

Your two variables should be continuous (i.e. interval/ratio). 

For example: Income, height, weight, number of years of 

schooling, and so on. Although they are not really 

continuous, it is still very common to use ratings as 

continuous variables, such as: “How satisfied with your 

income are you?” (on a scale 1-10) or “To what extent do 

you agree with the previous statement?” (on a scale 1-5). 

Two measurement 

points 

Your two variables should reflect one single phenomenon, 

but this phenomenon is measured at two different time points 

for each individual. 

Normal 

distribution 

Both variables need to be approximately normally 

distributed. Use a histogram to check (see Section 4.5). 

No outliers in the 

comparison 

between the two 

measurement 

points  

For example, if one individual has an extremely low value at 

the first measurement point and an extremely high value at 

the second measurement point (or vice versa), this will 

distort the test. Use a scatterplot to check (see Section 7.1.1). 

 

Function 

 

Basic command ttest testvar1==testvar2 

Explanations testvar1 

 

testvar2 

Insert the name of the variable for the first 

measurement point. 

Insert the name of the variable for the first 

measurement point. 

More information help ttest 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

unemp_42   Days in unemployment (Age 42, Year 2012) 

unemp_43  Days in unemployment (Age 43, Year 2013) 

 

 

Note Since the variables are extremely skewed (a lot of zeros), we are restricting the 

analysis to those who did not have the value 0 at age 42.  

 

ttest unemp_42==unemp_43 if unemp_42!=0 

 

 
Paired t test 

------------------------------------------------------------------------------ 

Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 

---------+-------------------------------------------------------------------- 

unemp_42 |   1,058    147.9981    3.043827    99.00628    142.0255    153.9707 

unemp_43 |   1,058    38.62571    2.389486    77.72261    33.93703    43.31438 

---------+-------------------------------------------------------------------- 

    diff |   1,058    109.3724    3.518878    114.4582    102.4676    116.2772 

------------------------------------------------------------------------------ 

     mean(diff) = mean(unemp_42 - unemp_43)                       t =  31.0816 

 Ho: mean(diff) = 0                              degrees of freedom =     1057 

 

 Ha: mean(diff) < 0           Ha: mean(diff) != 0           Ha: mean(diff) > 0 

 Pr(T < t) = 1.0000         Pr(|T| > |t|) = 0.0000          Pr(T > t) = 0.0000 

 

 

As can be seen, the mean is much higher at age 42 (147.998) compared to age 43 

(38.625), which is a difference of 109.372.  

 

The t-test statistic in this example is 31.0816, with 1057 degrees of freedom. The 

corresponding p-value is 0.0000 (look below “Ha: mean(diff) != 0”). This is below 

0.05, which allows us to reject the null hypothesis (which is that there is no mean 

difference between the two measurement points).  

 

In other words, there is a significant difference between the two measurement points, 

suggesting that the mean number of days in unemployment is significantly lower at 

age 43 compared to age 42 in this example. 
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6.3.1 Non-parametric alternative: Wilcoxon signed rank test 

It is not uncommon that at least one of the assumptions behind the paired samples t-

test is violated. While you most commonly will be able to conduct the test anyway, it 

is important to be aware of the possible problems.  

Alternatively, you can use the Wilcoxon signed rank test instead, which is a 

nonparametric paired samples t-test that relaxes some of the assumptions that were 

presented earlier. The null hypothesis is that the distribution at the two measurement 

points are the same.  

You should nevertheless note that this test is primarily suitable for samples with <= 

200 observations. By default, if you then will obtain an exact p-value based on the 

actual randomization distribution of the test statistic. If you have more than 200 

observations, you need to use the option called exact. The exact computation is only 

available for samples where n <= 2,000. Regardless of sample size, you always get an 

approximate p-value which is based on a normal approximation to the randomization 

distribution.   

Function 

 

Basic command signrank testvar1=testvar2 

Useful options signrank testvar1= testvar2, exact 

Explanations testvar1 

 

testvar2 

 

exact 

Insert the name of the variable for the first 

measurement point. 

Insert the name of the variable for the first 

measurement point. 

Specifies that the exact p-value be computed 

in addition to the approximate p-value. 

More information help signrank 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

unemp_42   Days in unemployment (Age 42, Year 2012) 

unemp_43  Days in unemployment (Age 43, Year 2013) 

 

 

Note Since the variables are extremely skewed (a lot of zeros), we are restricting the 

analysis to those who did not have the value 0 at age 42.  

 

signrank unemp_42=unemp_43 if unemp_42!=0, exact 

 

 
Wilcoxon signed-rank test 

 

        sign |      obs   sum ranks    expected 

-------------+--------------------------------- 

    positive |      945      518604      280104 

    negative |      111       41604      280104 

        zero |        2           3           3 

-------------+--------------------------------- 

         all |     1058      560211      560211 

 

unadjusted variance    98830557 

adjustment for ties   -1179.625 

adjustment for zeros      -1.25 

                     ---------- 

adjusted variance      98829376 

 

Ho: unemp_42 = unemp_43  

             z =  23.991 

    Prob > |z| =   0.0000 

    Exact Prob =   0.0000 

 

 

The z-statistic in this example is 23.991, with an approximate p-value (Prob > |z|) of 

0.0000, and an exact p-value (Exact Prob) of 0.0000. Since the latter p-value is below 

0.05, this allows us to reject the null hypothesis (which states that there is no 

difference in the distribution between the two measurement points), thus confirming 

what we also saw for the paired samples t-test. 
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6.4 One-way ANOVA 

Quick facts 

Number of variables One group variable (x) 

One test variable (y) 

Scale of variable(s) Group variable: categorical (nominal/ordinal) 

Test variable: continuous (ratio/interval) 

 

The one-way ANOVA is very similar to the independent samples t-test. The 

difference is that the one-way ANOVA allows you to have more than two categories 

in your group variable. For example, you can compare how many cups of coffee 

people drink per day depending on if they have a low-stress, medium-stress, or high-

stress job. Or you can see if the number of days of paternity leave differs between 

fathers in Sweden, Denmark, Norway and Finland.  

 

Note The one-way ANOVA does not automatically tell you exactly which groups are 

different from each other; it only tells you that at least two of the groups differ in terms 

of the outcome.  

 

 

 

 

 

 

 
Mean number of ice 

cones per week during 

May in Swedish children 

ages 5-10  

Mean number of ice 

cones per week during 

June in Swedish children 

ages 5-10 

Mean number of ice 

cones per week during 

July in Swedish children 

ages 5-10 

 
  



 

167 

 

Assumptions 

First, you have to check your data to see that the assumptions behind the one-way 

ANOVA hold. If your data “passes” these assumptions, you will have a valid result.  

 

Checklist 

Continuous and 

normally 

distributed test 

variable 

Your test variable should be continuous (i.e. interval/ratio) 

and normally distributed. For example: Income, height, 

weight, number of years of schooling, and so on. Although 

they are not really continuous, it is still very common to use 

ratings as continuous variables, such as: “How satisfied with 

your income are you?” (on a scale 1-10) or “To what extent 

do you agree with the previous statement?” (on a scale 1-5). 

Two or more 

unrelated 

categories in the 

group variable 

Your group variable should be categorical (i.e. nominal or 

ordinal) and consist of two or more groups. Unrelated means 

that the groups should be mutually excluded: no individual 

can be in more than one of the groups. For example: low vs. 

medium vs. high educational level; liberal vs. conservative 

vs. socialist political views; or poor vs. fair, vs. good vs. 

excellent health; and so on. 

Equal variance The variance in the test variable should be equal across the 

groups of the group variable. 

No outliers An outlier is an extreme (low or high) value. For example, if 

most individuals have a test score between 40 and 60, but 

one individual has a score of 96 or another individual has a 

score of 1, this will distort the test. 

 

Function 

 

Basic command oneway testvar groupvar 

Useful options oneway testvar groupvar, tab  

oneway testvar groupvar, bonferroni 

Explanations testvar 

groupvar 

tab 

bonferroni 

Insert the name of the test variable. 

Insert the name of the group variable. 

Produce summary table. 

Reports the results from a Bonferroni 

multiple-comparison test. 

Short names tab Tabulate 

Notes Options can be used simultaneously, e.g: 

oneway testvar groupvar, tab bonferroni 

More information help oneway 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

income   Annual salary income (Age 40, Year 2010) 

educ  Educational level (Age 40, Year 2010) 

 

 

oneway income educ, tab bonferroni 

 

 
Educational | 

 level (Age |   Summary of Annual salary income 

   40, Year |         (Age 40, Year 2010) 

      2010) |        Mean   Std. Dev.       Freq. 

------------+------------------------------------ 

  Compulsor |   164316.86   86528.011       1,376 

  Upper sec |   178904.49   97666.116       3,560 

  Universit |   238989.77   131440.58       3,128 

------------+------------------------------------ 

      Total |   199722.22    114851.4       8,064 

 

                        Analysis of Variance 

    Source              SS         df      MS            F     Prob > F 

------------------------------------------------------------------------ 

Between groups      8.0909e+12      2   4.0454e+12    331.85     0.0000 

 Within groups      9.8267e+13   8061   1.2190e+10 

------------------------------------------------------------------------ 

    Total           1.0636e+14   8063   1.3191e+10 

 

Bartlett's test for equal variances:  chi2(2) = 452.7846  Prob>chi2 = 0.000 

 

            Comparison of Annual salary income (Age 40, Year 2010) 

                   by Educational level (Age 40, Year 2010) 

                                (Bonferroni) 

Row Mean-| 

Col Mean |   Compulso   Upper se 

---------+---------------------- 

Upper se |    14587.6 

         |      0.000 

         | 

Universi |    74672.9    60085.3 

         |      0.000      0.000 

 

 

The first table provides some summary statistics. Here we can see that the mean 

income for those with compulsory education is 164316.86, versus 178904.49 for those 

with upper secondary education, and 238989.77 for those with university education.  

 

Next table gives the F statistics, which in this example is 331.85. The p-value is 0.0000 

(i.e. below 0.05), which tells us that the means between the groups are not equal. At 

the lower part of the table, we get the results from Barlett’s test for equal variances. 

P-value (Prob>chi2) below 0.05 suggests that the assumption of equal variances is 

violated. However, this can often happen with large datasets like the one used in the 
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example. Also, the test is rather sensitive to data which is not normally distributed 

(the income variable used here is slightly skewed).   

 

The fact that the F statistics tell us that the means between the groups are not equal 

says very little about wherein the differences lie: which groups are different? To 

answer this, we can take a look at the third table, showing the results from the 

Bonferroni test. The first lines of entries for each combination represents the mean 

differences. The second lines of entries are Bonferroni-adjusted p-values. In this 

example, they are all 0.000 – which suggest that there are significant differences 

between all three groups. 
 

Postestimation commands 

 

There are many different postestimation commands that you can apply to ANOVA. 

These options are described here: 

 

help anova postestimation 
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6.4.1 Non-parametric alternative: Kruskal-Wallis ANOVA 

It is not uncommon that at least one of the assumptions behind the one-way ANOVA 

is violated. While you most common will be able to conduct the test anyway, it is 

important to be aware of the possible problems. 

 

Alternatively, you can conduct a Kruskal-Wallis ANOVA, which is nonparametric 

type of ANOVA. This test is robust over moderate violations against the normality 

assumption. Note, however, that the group sizes should be approximately equal and 

that the distributions of the groups also are approximately equal (they cannot be 

skewed in different directions, i.e. one is positively skewed and another is negatively 

skewed).   

 

Note The Kruskal-Wallis ANOVA will only tell you that there is a difference between 

the groups (or not), but not which of groups that are different from one another. 

 

Function 

 

Basic command kwallis testvar, by(groupvar) 

Explanations testvar 

 

groupvar 

Insert the name of the variable that you want 

to test. 

Insert the variable defining the groups. 

More information help kwallis 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

income   Annual salary income (Age 40, Year 2010) 

educ  Educational level (Age 40, Year 2010) 

 

 

kwallis income, by(educ) 

 

 
Kruskal-Wallis equality-of-populations rank test 

 

  +------------------------------------+ 

  |            educ |   Obs | Rank Sum | 

  |-----------------+-------+----------| 

  |      Compulsory | 1,376 | 4.61e+06 | 

  | Upper secondary | 3,560 | 1.29e+07 | 

  |      University | 3,128 | 1.50e+07 | 

  +------------------------------------+ 

 

chi-squared =   548.642 with 2 d.f. 

probability =     0.0001 

 

chi-squared with ties =   549.333 with 2 d.f. 

probability =     0.0001 

 

 

The table provides some summary statistics. Here we can see number of observations 

per group (Obs) and the rank of each group (Rank Sum). These ranks are u-values.  

 

Below the table, two sets of chi2 values and probabilities are reported. If the rank 

variable (in this case income) do not uniquely define individuals (i.e. individuals can 

have the same income and thus the same rank), then we should focus on the latter set 

(“chi-squared with ties”).  

 

In this example, the chi2 value is 549.333 with 2 degrees of freedom. The probability 

is moreover 0.0001. Since this is below 0.05, it means that there is a significant 

difference in income according to educational level (confirming what we found for 

the one-way ANOVA).    
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6.5 Chi-square 

Quick facts 

Number of variables Two 

Scale of variable(s) Categorical (nominal/ordinal) 

 

There are two different forms of the chi-square test: a) The multidimensional chi-

square test, and b) The goodness of fit chi-square test. It is the first form that will be 

covered in this part of the guide. The second form is discussed in other sections.  

 

The multidimensional chi-square test assesses whether there is a relationship between 

two categorical variables. For example, let us assume that you want to see if young 

women smoke more than young men. The variable gender has two categories (men 

and women) and, in this particular case, the variable smoking consists of the 

categories: no smoking, occasional smoking and frequent smoking. The 

multidimensional chi-square test can be thought of as a simple crosstable where the 

distribution of these two variables is displayed: 

 
 No smoking Occasional smoking Frequent smoking 

Men (age 15-24) 85% 10% 5% 

Women (age 15-24) 70% 20% 10% 
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Assumptions 

First, you have to check your data to see that the assumptions behind the chi-square 

test hold. If your data “passes” these assumptions, you will have a valid result. 

  

Checklist 

Two or more 

unrelated 

categories in both 

variables 

Both variables should be categorical (i.e. nominal or ordinal) 

and consist of two or more groups. Unrelated means that the 

groups should be mutually excluded: no individual can be in 

more than one of the groups. For example: low vs. medium 

vs. high educational level; liberal vs. conservative vs. 

socialist political views; or poor vs. fair, vs. good vs. 

excellent health; and so on. 

 

Function 

 

Basic command tab varname1 varname2, chi2 

Useful options tab varname1 varname2, chi2 exact 

Explanations varname1 

 

varname2 

 

 

chi2 

exact 

Insert the name of the first variable you want 

to use (is included as the row variable). 

Insert the name of the second variable you 

want to use (is included as the column 

variable). 

Report Pearson’s chi-squared. 

Report Fisher’s exact test (useful if you have 

empty cells in your crosstable). 

Short names tab Tabulate 

More information help tabulate twoway 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

marstat40   Marital status (Age 40, Year 2010) 

earlyret  Early retirement (Age 50, Year 2020) 

 

 

tab earlyret marstat40, chi2 

 

 

 
     Early | 

retirement | 

  (Age 50, |     Marital status (Age 40, Year 2010) 

Year 2020) |   Married  Unmarried   Divorced    Widowed |     Total 

-----------+--------------------------------------------+---------- 

        No |     4,161      1,904      1,407         60 |     7,532  

       Yes |       394        470        313         24 |     1,201  

-----------+--------------------------------------------+---------- 

     Total |     4,555      2,374      1,720         84 |     8,733  

 

          Pearson chi2(3) = 217.3417   Pr = 0.000 

 
 

Here we can see the crosstable of our two variables. It is followed by the chi-square 

value (Pearson chi2) and a p-value (Pr). If the p-value is below 0.05 it means that the 

two variables are not independent from one another. In this example, since the p-value 

is 0.000, it means that there are significant differences in early retirement according 

to marital status (or, by principle, vice versa). 
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7. CORRELATION ANALYSIS 

Outline 

7. CORRELATION ANALYSIS ............................................................................... 175 
7.1 Descriptives .................................................................................................. 176 

7.1.1 Scatterplot ......................................................................................... 176 
7.2 Correlation analysis ....................................................................................... 179 
7.3 Non-parametric alternatives: Spearman’s rank correlation and Kendall’s rank 
correlation ......................................................................................................... 183 

 

Content 

This chapter deals with correlation. We begin with descriptive statistics, in terms of 

scatterplots, and continue with correlation analysis (including non-parametric 

alternatives). 
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7.1 Descriptives 

 

7.1.1 Scatterplot 

 

Quick facts 

Number of variables Two 

Scale of variable(s) Continuous (ratio/interval) 

 

When we had two categorical variables, we could produce a crosstable to see how 

these two variables were related. If we have two continuous variables, we may use 

something called a scatterplot instead. Each dot in the scatterplot represents one 

individual in our data. We may also include a reference line here, to see if we have a 

pattern in our data (this will be discussed later). 

 

The scatterplot can thus be used to illustrate how two continuous variables co-vary – 

or “correlate” – in their pattern of values. If increasing values of one variable 

correspond to increasing values of another variable, it is called a positive correlation. 

If increasing values of one variable correspond to decreasing values of another 

variable, we have a negative correlation. In the graph below, different types of 

correlation are presented. The letter “x” stands for x-axis (horizontal axis) and the 

letter “y” stands for y-axis (vertical axis). 
 

Positive correlation Negative correlation No correlation 

 

 

 

 

 

 

 

 

  

 

Note While not addressed here, patterns can of course also be non-linear (in contrast 

to the positive and negative correlations shown in the graphs above).     

y y y 

x x x 
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Function 

 

Basic command graph twoway scatter yvar xvar 

Useful options graph twoway (scatter yvar xvar) (lfit yvar xvar) 

graph twoway (scatter yvar xvar) (lfitci yvar xvar) 

Explanations yvar 

 

 

xvar 

 

 

lfit 

lfitci 

Insert the name of the first variable you want 

to use. This variable will be chosen for the y-

axis (vertical axis). 

Insert the name of the first variable you want 

to use. This variable will be chosen for the x-

axis (horizontal axis). 

Fit a regression line. 

Fit a regression line and include confidence 

intervals. 

More information help scatter 

 
  



 

178 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

cognitive   Cognitive test score (Age 15, Year 1985) 

 

 

graph twoway (scatter gpa cognitive) (lfitci gpa cognitive) 

 

 

 
 

 

In the scatterplot above, we display gpa on the y-axis (vertical axis) and cognitive on 

the x-axis (horizontal axis). We can see a quite clear positive correlation here: the 

higher the cognitive test scores, the higher the grade point average. This is also 

illustrated by the fitted regression line. 

 

Note You can use the Graph Editor (see Section 2.1.4) to further edit the scatterplot. 

  



 

179 

 

7.2 Correlation analysis 

Quick facts 

Number of variables Two or more 

Scale of variable(s) Continuous (ratio/interval) 

 

A correlation analysis tests the relationship between two continuous variables in terms 

of: a) how strong the relationship is, and b) in what direction the relationship goes. 

The strength of the relationship is given as a coefficient (the Pearson product-moment 

correlation coefficient, or simply Pearson’s r) which can be anything between -1 and 

1. But how do we know if the relationship is strong or weak? This is not an exact 

science, but here is one rule of thumb: 

 

Strength 

Negative Positive  

-1 1 Perfect 

-0.9 to -0.7 0.7 to 0.9 Strong 

-0.6 to -0.4 0.4 to 0.6 Moderate 

-0.3 to -0.1 0.1 to 0.3 Weak 

0 0 Zero 

 

Thus, the coefficient can be negative or positive. These terms, “negative” and 

“positive”, are not the same as good and bad (e.g. excellent health or poor health; high 

income or low income). They merely reflect the direction of the relationship.  

 

Direction 

Negative As the values of Variable 1 increases, the values of Variable 2 

decreases 

Positive As the values of Variable 1 increases, the values of Variable 2 

increases 

 

Note Correlation analysis does not imply anything about causality: Variable 1 does 

not cause Variable 2 (or vice versa). The correlation analysis only says something 

about the degree to which the two variables co-vary (in a linear fashion).  
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Assumptions 

First, you have to check your data to see that the assumptions behind the correlation 

analysis hold. If your data “passes” these assumptions, you will have a valid result. 

 

 Checklist 

Two continuous 

variables 

Both variables should be continuous (i.e. interval/ratio). For 

example: Income, height, weight, number of years of 

schooling, and so on. Although they are not really 

continuous, it is still rather common to use ratings as 

continuous variables, such as: “How satisfied with your 

income are you?” (on a scale 1-10) or “To what extent do 

you agree with the previous statement?” (on a scale 1-5). 

Normal 

distribution 

Both variables need to be approximately normally 

distributed. Use a histogram to check (see Section 4.5). 

Linear 

relationship 

between the two 

variables 

There needs to be a linear relationship between your two 

variables. You can check this by creating a scatterplot 

(described in Section 7.1.1).  

No outliers An outlier is an extreme (low or high) value. For example, if 

most individuals have a test score between 40 and 60, but 

one individual has a score of 96 or another individual has a 

score of 1, this will distort the test. 
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Function alternative 1 

 

Basic command corr varname1 varname2 

Explanations varname1 

 

varname2 

 

Insert the name of the first variable you want 

to use. 

Insert the name of the second variable you 

want to use. 

Short names corr Correlate 

Notes You can include more than two variables at the same time 

in the analysis. 

More information help correlate 
 

Function alternative 2 

 

Basic command pwcorr varname1 varname2 

Useful options pwcorr varname1 varname2, sig 

pwcorr varname1 varname2, star(level) 

Explanations varname1 

 

varname2 

 

sig 

star(level) 

Insert the name of the first variable you want 

to use. 

Insert the name of the second variable you 

want to use. 

Print a p-value for each entry. 

Denote statistically significant entries with 

an asterisk (*). Change “level” to the 

preferred significance level (e.g. 0.05, 0.01, 

0.001). 

Notes Options can be used simultaneously, e.g.: 

pwcorr varname1 varname2, sig star(level) 

You can include more than two variables at the same time 

in the analysis. 

More information help pwcorr 

 
There are two alternative commands if you want to do a correlation analysis in Stata: 

corr and pwcorr. The first difference between these commands has to do with how 

Stata handles missing values, and is only relevant if you include more than two 

variables in the analysis. In that case, corr will use listwise deletion (i.e. removing all 

observations that have missing information from any of the included variables), 

whereas pwcorr uses pairwise deletion (i.e. only removing observations with missing 

values for each specific pair of variables). The second difference is that they have 

different options (with the options for pwcorr being slightly more useful). 

 

Since we highly recommend that you restrict your analysis to a sample with only valid 

information for all study variables anyway, it does not matter whether you would go 

for corr or pwcorr. But since we like the options to include p-values and asterisks, we 

will base our following example on pwcorr.  
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

cognitive   Cognitive test score (Age 15, Year 1985) 

 

 

pwcorr gpa cognitive, sig star(0.05) 

 

 
             |      gpa cognit~e 

-------------+------------------ 

         gpa |   1.0000  

             | 

             | 

   cognitive |   0.6276*  1.0000  

             |   0.0000 

 
 

In the diagonal, we can see the perfect (and totally irrelevant) correlations between 

gpa and gpa, and between cognitive and cognitive. What is interesting here is the 

correlation coefficient between cognitive and gpa: 0.6276. According to our earlier 

specified rules of thumb, this would be a moderately strong correlation (close to 

strong). We get a p-value of 0.0000, which is lower than p<0.05 (as we can also note 

this by the asterisk). Thus, the correlation between cognitive test score and grade point 

average is statistically significant. 
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7.3 Non-parametric alternatives: Spearman’s 
rank correlation and Kendall’s rank correlation 

It is not uncommon that the assumption of normality (i.e. normally distributed 

variables) is violated. As an alternative, you can conduct Spearman’s rank correlation 

(also called Spearman’s rho) or Kendall’s rank correlation (also called Kendall’s tau) 

instead.  
 

Function alternative 1 

 

Basic command spearman varname1 varname2 

Useful options spearman varname1 varname2, star(level) 

Explanations varname1 

 

varname2 

 

 

 

star(level) 

Insert the name of the first variable you want 

to use. 

Insert the name of the second variable you 

want to use. 

Denote statistically significant entries with 

an asterisk (*). Change “level” to the 

preferred significance level (e.g. 0.05, 0.01, 

0.001). 

Notes You can include more than two variables at the same time 

in the analysis. 

Asterisks only appear if you specify more than two 

variables. 

More information help spearman 
 

Function alternative 2 

 

Basic command ktau varname1 varname2 

Useful options ktau varname1 varname2, star(level) 

Explanations varname1 

 

varname2 

 

 

 

star(level) 

Insert the name of the first variable you want 

to use. 

Insert the name of the second variable you 

want to use. 

Denote statistically significant entries with 

an asterisk (*). Change “level” to the 

preferred significance level (e.g. 0.05, 0.01, 

0.001). 

Notes You can include more than two variables at the same time 

in the analysis. 

Asterisks only appear if you specify more than two 

variables. 

More information help ktau 
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The two commands are largely the same. However, it has been suggested that 

Kendall’s rank correlation is slightly more robust since it is less sensitive to small 

samples (which usually has bigger problems with outliers). We have chosen to stick 

to Spearman’s rank correlation since our sample is large. We have not included the 

option to show asterisks, since we only use two variables. 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

cognitive   Cognitive test score (Age 15, Year 1985) 

 

 

spearman gpa cognitive 

 

 
Number of obs =    8751 

Spearman's rho =       0.6361 

 

Test of Ho: gpa and cognitive are independent 

    Prob > |t| =       0.0000 

 

 

The correlation coefficient (Spearman’s rho) is 0.6361. This is roughly the same as 

the coefficient we got with pwcorr. The p-value (Prob > |t| =) is 0.0000, which is lower  

than p<0.05. Thus, the correlation between cognitive test score and grade point 

average is statistically significant also with this test. 
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8. FACTOR ANALYSIS 

Outline 

8. FACTOR ANALYSIS .......................................................................................... 185 
8.1 Introduction ................................................................................................. 186 
8.2 Assumptions ................................................................................................. 187 
8.3 Number of factors ......................................................................................... 188 
8.4 Factor loadings ............................................................................................. 189 
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8.6 Postestimation .............................................................................................. 190 
8.7 Factor analysis vs principal component analysis ................................................ 190 
8.8 A practical example ....................................................................................... 191 
8.9 Cronbach’s alpha ........................................................................................... 198 

 

Content 

This chapter focuses entirely on factor analysis, and also includes a section on how to 

assess internal consistency with Cronbach’s alpha. Factor analysis can be seen as a 

method of data reduction, which is rather different from other methods presented in 

this guide.  
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8.1 Introduction 

Quick facts 

Number of variables Two or more 

Scale of variable(s) Continuous (ratio/interval) or approximately continuous 

 

There are two general types of factor analysis: exploratory factor analysis (EFA) and 

confirmatory factor analysis (CFA). The most important difference is that CFA has 

clear expectations on a specific factor structure, which is what we test, whereas EFA 

does not rely upon any expected structure. In this guide, we will focus on EFA 

(hereafter referred to simply as factor analysis). If you are interested in learning more 

about CFA, we suggest that you look up structural equation modelling (SEM), which 

is a very useful framework.  

 

More information help sem 

 

The main feature of factor analysis is that is enables us to investigate the underlying 

structure in the pattern of correlations between a number of variables (often referred 

to as “items”). There are many different ways of using factor analysis, but one very 

practical application is cases where we have several items from a questionnaire that 

we want to create an index for. By conducting a factor analysis, we are able to see 

whether the items represent the same factor (or “dimension”). If so, we can create our 

index. Factor analysis can also tell us how to improve our index (e.g. by excluding 

one or more items), or if we actually have more than one factor and thus need to 

consider creating separate indices.  

 

 

 

 

 

 

Item 1 

 

Item 2 

 

Item 3 

 

Item 4 

 

Item 5 

 

Item 6 

    Factor 1 

   Factor 2 
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8.2 Assumptions 

First, you have to check your data to see that the assumptions behind the factor 

analysis hold. If your data “passes” these assumptions, you will have a valid result. 

 

Checklist 

Ratio/interval/ordinal 

variables 

Your variables should be continuous (i.e. interval/ratio) 

or ordinal (but still approximately continuous). For 

example: Income, height, weight, number of years of 

schooling, or ratings. 

Linear associations The variables in the factor analysis should be associated 

with each other in a linear fashion (use scatterplots to 

check, see Section 7.1.1). 

Sample size Factor analysis requires rather large samples. However, 

recommendations on this topic vary greatly. Some 

recommendations highlight the absolute sample size 

(here, lower limits range from n=100 to n=500) whereas 

others say that subject-to-variable ratio is important (and 

here, ratios from 2:1 to 20:1 are suggested). 

No outliers An outlier is an extreme (low or high) value. For 

example, if most individuals have a test score between 40 

and 60, but one individual has a score of 96 or another 

individual has a score of 1, this will distort the test. 

 

Suppose that we have asked a bunch of individuals, six questions about their health. 

We conduct a factor analysis to see how many dimensions these questions reflect: do 

all questions reflect only one dimension (namely “health”) or can they be categorised 

into two or more dimensions (i.e. different types of health)? 

  



 

188 

 

8.3 Number of factors 

How do we ascertain how many factors/dimensions there are in our data? Well, there 

are several different ways to do this. It is nevertheless important to keep in mind that 

we want to aim for a balance between simplicity and accuracy: as few factors as 

possible, that explain as much of the variance as possible.  

 

Determining the number of factors 

Eigenvalue > 1 Eigenvalues are indicators of the variance explained by a factor. 

Using the rule “eigenvalue is greater than one” is very common. 

The reasoning behind this rule is that a factor should account 

for at least as much variance as any single variable. Thus, the 

average of all eigenvalues is one, and the factor analysis should 

thus extract factors that have an eigenvalue greater than this 

average value. 

Scree plot In a scree plot, factors have their eigenvalues plotted alongside 

the y-axis (i.e. vertical axis) in the order or magnitude. Factors 

explaining large amounts of variable appear to the left, whereas 

factors explaining little variance are aligned to the right. The 

somewhat weird task is here to “locate the elbow”. This means 

to identify the number of factors stated before the line starts 

becoming flat. 

Communalities 

and uniqueness 

Communality refers to how much variance of each variable that 

can be reproduced by the factor extraction. A general rule of 

thumb is that the extracted factors should explain at least 50% 

of the variables’ variance (i.e. the communalities should be 

between 0.5 and 1). Stata, however, reports on the opposite of 

communalities: uniqueness (which is 1-communality). The 

similar threshold applies here, i.e. the uniqueness should be 

between 0 and 0.5.   
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8.4 Factor loadings 

Once we have decided on the number of factors, we retrieve the “factor loadings”. A 

factor loading is basically a correlation coefficient (see Chapter 7) and, thus, it varies 

between -1 and +1 (where a value closer to -1 or +1 indicates a stronger correlation). 

Factor loadings are given for each variable, for each factor separately. In other words, 

a factor loading shows how strongly a certain variable correlates with the given factor. 

There are no exact rules for deciding on when a loading is strong enough, but one 

suggested rule of thumb is below -0.5 or above 0.5. However, sometimes a variable 

has strong loadings for more than one factor (called “cross-loading”). This can for 

example happen if you have not extracted enough factors, or if the factors are 

correlated. Sometimes a variable has weak loadings for all factors; this may suggest 

that this variable is weakly related to all other variables or that you need to explore an 

additional factor (or maybe even exclude this specific variable). 

 

8.5 Rotation 

A factor analysis has the most interpretative value when: 1) Each factor loads strongly 

on only one factor; 2) Each factor shows at least three strong loadings; 3) Most 

loadings are either high or low; and 4) We get a “simple” factor structure. Rotation is 

a way of maximizing high loadings and minimizing low loadings so that we get the 

simplest factor structure possible. There are two main types of rotation: 

 

Rotation 

Orthogonal Assumes that the factors are uncorrelated 

Examples of sub types: varimax, quartimax, and 

equamax 

Oblique Assumes that the factors are correlated 

Examples of sub types: promax and oblimin 

 

Thus, orthogonal rotation relies on the assumption that the factors are not correlated 

to each other, i.e. that the different factors represent different unrelated dimensions of 

what you are examining. This is not always the case. For example, if you have several 

variables measuring health, and find one factor that reflects physical health and 

another one reflecting psychological health, it may not be reasonable to assume that 

physical and psychological health two unrelated dimension. In that case, you need to 

change the type of rotation to oblique. 

 

In Stata, orthogonal rotation with the varimax option is default.  
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8.6 Postestimation 

There are some tests that you can use to decide whether your factor analysis offers a 

good fit for your data or not. For example, there is a test called Kaiser-Meyer-Olkin 

Measure of Sampling Adequacy (in short: the KMO test), which reflects the sum of 

partial correlations relative to the sum of correlations. It varies between 0 and 1, where 

a value closer to 1 is better. It has been suggested to use 0.5 as a minimum 

requirement. Thus, if the value is lower than 0.5, factor analysis may be inappropriate.  

 

8.7 Factor analysis vs principal component 
analysis 

Principal component analysis (PCA) is a term that is often used interchangeably with 

factor analysis. While both approaches aim to simplify the structure of a set of 

variables and the analyses are structured in similar ways, they are not exactly the same 

thing. PCA performs data reduction by using a linear combination of a set of variables, 

in order to create one or more index variables (components). Factor analysis is 

modelling the measurement of a latent (i.e. unobserved) variable.  

 

To make it even more confusing, many statistical programs (e.g. SPSS) apply PCA as 

the default estimation method for factor analysis. In Stata, PCA is not default (but an 

option). Rather, Stata uses the principal-factor method (pf) to analyse the correlation 

matrix. When the principal-component factor method (pcf) is used, the communalities 

are assumed to be 1. 
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8.8 A practical example 

 

Function Step 1 

 

Basic command factor varlist 

Useful options factor varlist, mineigen(number) 

factor varlist, pcf or ipf or ml 

Explanations varlist 

 

pcf or ipf or ml 

List which variables that you want to 

include in the analysis. 

Specify the estimation method. Default 

is pf. 

Short names pf 

pcf 

ipf 

ml 

Principal factor method 

Principal-component factor method 

Iterated principal-factor method 

Maximum-likelihood factor method 

Notes Options can be used simultaneously, e.g: 

factor varlist, mineigen(number) pcf 

More information help factor 
 

Performing a factor analysis can be seen as an iterative process: you conduct the 

analysis, evaluate it, might tweak it a bit, and then conduct it again. We will start by 

performing a simple factor analysis with the principal-component factor method (pcf).  
 

Practical example 

 

 

Dataset: StataData2.dta 

 

Name    Label 

imp_ideas  Important to think up new ideas 

imp_rich  Important to be rich 

imp_secure  Important living in secure surroundings 

imp_good  Important to have a good time 

imp_help  Important to help the people 

imp_success  Important being very successful 

imp_risk  Important with adventure and taking risks 

imp_behave  Important to always behave properly 

imp_environ  Important looking after the environment 

imp_trad  Important with tradition 
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factor imp_ideas-imp_trad, pcf 

 

 

 
Factor analysis/correlation                      Number of obs    =     58,466 

    Method: principal-component factors          Retained factors =          2 

    Rotation: (unrotated)                        Number of params =         19 

 

    -------------------------------------------------------------------------- 

         Factor  |   Eigenvalue   Difference        Proportion   Cumulative 

    -------------+------------------------------------------------------------ 

        Factor1  |      2.98870      1.36904            0.2989       0.2989 

        Factor2  |      1.61967      0.69108            0.1620       0.4608 

        Factor3  |      0.92859      0.08586            0.0929       0.5537 

        Factor4  |      0.84274      0.08451            0.0843       0.6380 

        Factor5  |      0.75823      0.11357            0.0758       0.7138 

        Factor6  |      0.64466      0.04326            0.0645       0.7783 

        Factor7  |      0.60139      0.04007            0.0601       0.8384 

        Factor8  |      0.56133      0.02132            0.0561       0.8945 

        Factor9  |      0.54000      0.02531            0.0540       0.9485 

       Factor10  |      0.51469            .            0.0515       1.0000 

    -------------------------------------------------------------------------- 

    LR test: independent vs. saturated:  chi2(45) = 1.0e+05 Prob>chi2 = 0.0000 

 

Factor loadings (pattern matrix) and unique variances 

 

    ------------------------------------------------- 

        Variable |  Factor1   Factor2 |   Uniqueness  

    -------------+--------------------+-------------- 

       imp_ideas |   0.5303    0.3315 |      0.6089   

        imp_rich |   0.4695    0.5222 |      0.5068   

      imp_secure |   0.5888   -0.2645 |      0.5834   

        imp_good |   0.4139    0.4282 |      0.6453   

        imp_help |   0.6127   -0.2993 |      0.5350   

     imp_success |   0.6658    0.2754 |      0.4809   

        imp_risk |   0.4091    0.5807 |      0.4954   

      imp_behave |   0.6034   -0.3716 |      0.4978   

     imp_environ |   0.5787   -0.3684 |      0.5293   

        imp_trad |   0.5330   -0.4552 |      0.5087   

    ------------------------------------------------- 

 

 

In the first table, we first look at the column called Eigenvalue. We see that Factor1 

and Factor2 produce eigenvalues above 1 (2.98870 and 1.61967, respectively). Next, 

focusing on the column called Proportion, we see that Factor1 accounts for 30% 

(0.2989) and Factor2 for (16% (0.1620) of the variance.  

 

In the second table, we get the factor loadings for each item. When we use the option 

pcf, factor loadings are only shown for factors with eigenvalues above 1. For Factor1, 

loadings range between 0.4091 and 0.6658. For Factor2, they range between -0.3716 

and 0.5807. The uniqueness values range between 0.4809 and 0.6089. Earlier, we 

suggested that factor loadings between 0.5 and 1 were acceptable, as well as 

uniqueness values between 0 and 0.5. Thus, our factor solution is quite poor. 

Moreover, it is not entirely clear which item belongs to which factor – we might need 

some rotation here. 
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Function step 2 

 

Basic command rotate 

Useful options rotate, quartimax 

rotate, equamax 

rotate, promax(number) 

rotate, oblimin(number) 

Explanations quartimax 

 

equamax 

 

promax(number) 

 

 

 

oblimin(number) 

Orthogonal rotation with the quartimax 

option. 

Orthogonal rotation with the equamax 

option. 

Oblique rotation with the promax 

option, replace “number” with 

preferred power (default is 3). 

Oblique rotation with the oblimin 

option, replace “number” with 

preferred gamma (default is 0). 

Notes Orthogonal rotation with the varimax option is default. 

To clear the results from rotation, use: 

rotate, clear 

More information help rotate 
 

The next step is to rotate the results to minimize the complexity of the factor structure 

and facilitate interpretation. Since it is unlikely that our factors are uncorrelated (they 

seldom are, in the social sciences), we will go with an oblique rotation (more 

specifically, we try out promax). 

 

Practical example 

 

 

Dataset: StataData2.dta 

 

Name    Label 

imp_ideas  Important to think up new ideas 

imp_rich  Important to be rich 

imp_secure  Important living in secure surroundings 

imp_good  Important to have a good time 

imp_help  Important to help the people 

imp_success  Important being very successful 

imp_risk  Important with adventure and taking risks 

imp_behave  Important to always behave properly 

imp_environ  Important looking after the environment 

imp_trad  Important with tradition 
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rotate, promax 

 

 
Factor analysis/correlation                      Number of obs    =     58,466 

    Method: principal-component factors          Retained factors =          2 

    Rotation: oblique promax (Kaiser off)        Number of params =         19 

 

    -------------------------------------------------------------------------- 

         Factor  |     Variance   Proportion    Rotated factors are correlated 

    -------------+------------------------------------------------------------ 

        Factor1  |      2.62665       0.2627 

        Factor2  |      2.35045       0.2350 

    -------------------------------------------------------------------------- 

    LR test: independent vs. saturated:  chi2(45) = 1.0e+05 Prob>chi2 = 0.0000 

 

Rotated factor loadings (pattern matrix) and unique variances 

 

    ------------------------------------------------- 

        Variable |  Factor1   Factor2 |   Uniqueness  

    -------------+--------------------+-------------- 

       imp_ideas |   0.1247    0.5794 |      0.6089   

        imp_rich |  -0.0634    0.7171 |      0.5068   

      imp_secure |   0.6192    0.0790 |      0.5834   

        imp_good |  -0.0315    0.6034 |      0.6453   

        imp_help |   0.6627    0.0607 |      0.5350   

     imp_success |   0.2636    0.6018 |      0.4809   

        imp_risk |  -0.1508    0.7370 |      0.4954   

      imp_behave |   0.7110   -0.0087 |      0.4978   

     imp_environ |   0.6911   -0.0191 |      0.5293   

        imp_trad |   0.7245   -0.1210 |      0.5087   

    ------------------------------------------------- 

 

Factor rotation matrix 

 

    -------------------------------- 

                 | Factor1  Factor2  

    -------------+------------------ 

         Factor1 |  0.8576   0.7306  

         Factor2 | -0.5143   0.6828  

    -------------------------------- 

 

 

The rotation made the factor loadings more clearly reflect the two factors.  

 

If we identify for with factor each item has the higher loading, we can conclude that 

the two factors contain the following items: 

 

Factor 1 

 

• Important living in secure surroundings (security) 

• Important to help the people (benevolence) 

• Important to always behave properly (conformity) 

• Important looking after the environment (universalism) 

• Important with tradition (tradition) 
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Factor 2 

 

• Important to think up new ideas (self-direction) 

• Important to be rich (power) 

• Important to have a good time (hedonism) 

• Important being very successful (achievement) 

• Important with adventure and taking risks (stimulation) 

 

The ten variables used in this factor analysis actually stem from a theory of human 

values, developed by Schwartz. According to this theory, the variables should be 

categorised in the following way: 

 

• Conservation: security, tradition, and conformity 

• Openness to change: self-direction, stimulation, and hedonism 

• Self-enhancement: power and achievement 

• Self-transcendence: benevolence and universalism 

 

If we compare the theoretical categories with the factors derived from factor analysis, 

we actually see that the Factor 1 includes all variables theoretically associated with 

conservation and self-transcendence, whereas Factor 2 includes all variables 

theoretically associated with openness to change and self-enhancement. What do we 

do with this information then? Well, we need to examine possible reasons as to why 

the factor analysis did not reveal the same factors as the theory proposes. If we find 

no apparent problems with the empirics (e.g. missing data, problems with the 

questionnaire itself, etc.) we may suggest that the theory needs to be modified. At least 

it is important to discuss the differences between the theory and the empirics. 

 

Sometimes, we do not have a clear theory guiding the factor analysis and, thus, we 

have no a priori understanding about which factors that are reasonable to expect. In 

that case, it is common practice to focus on a factor solution with good properties (i.e. 

clear factor structure and high factor loadings). It is always a trade-off between theory 

and empirics: if theory has precedence over empirics, we may be more disposed to 

accept lower factor loadings. 

 

In practice, all of this might mean that we go on to create two indices (e.g. sum score, 

or mean score), with each reflecting one factor, which we can then include in another 

analysis (such as regression analysis).   
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Function step 3 

 

Basic command estat kmo 

screeplot 

Explanations kmo 

 

screeplot  

Kaiser-Meyer-Olkin measure of 

sampling adequacy. 

Plot eigenvalues. 

Notes Orthogonal rotation with the varimax option is default. 

To clear the results from rotation, use: 

rotate, clear 

More information help estat factor 

 

The third step is to do some postestimations, such as looking at the Kaiser-Meyer-

Olkin measure of sampling adequacy and a screeplot, to see if our two-factor solution 

makes sense.   

 

Note that if we here find any problems with our factor analysis or the chosen number 

of factors, we should go back and make some adjustments in order to find a better 

solution. For instance, we can try out different estimation methods, rotate the solution 

differently, or remove one or several of the items.  

 

Practical example 

 

 

Dataset: StataData2.dta 

 

Name    Label 

imp_ideas  Important to think up new ideas 

imp_rich  Important to be rich 

imp_secure  Important living in secure surroundings 

imp_good  Important to have a good time 

imp_help  Important to help the people 

imp_success  Important being very successful 

imp_risk  Important with adventure and taking risks 

imp_behave  Important to always behave properly 

imp_environ  Important looking after the environment 

imp_trad  Important with tradition 
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estat kmo 

 

 
Kaiser-Meyer-Olkin measure of sampling adequacy 

 

    ----------------------- 

        Variable |     kmo  

    -------------+--------- 

       imp_ideas |  0.8118  

        imp_rich |  0.7261  

      imp_secure |  0.8018  

        imp_good |  0.8072  

        imp_help |  0.8039  

     imp_success |  0.8267  

        imp_risk |  0.7250  

      imp_behave |  0.8031  

     imp_environ |  0.7916  

        imp_trad |  0.7975  

    -------------+--------- 

         Overall |  0.7918  

    ----------------------- 

 

 

The KMO test produces an overall value of 0.7918, which shows that our factor 

analysis appears to be appropriate. 

 

screeplot 

 

 

 
 

 

In the screeplot, we can see that the “elbow” begins with the third factor, thus 

reflecting that a two-factor solution seems feasible.  
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 8.9 Cronbach’s alpha 

Quick facts 

Number of variables Two or more 

Scale of variable(s) Continuous (ratio/interval) or approximately continuous 

 

When we have a composite measure (i.e. an index) – often derived from factor 

analysis – it is possible to evaluate it by means of the Cronbach’s alpha. Formally 

speaking, the Cronbach's alpha is a measure of internal consistency; how closely 

related a number of items are as a group. The coefficient ranges between 0 and 1. A 

high alpha value indicates that items measure an underlying factor. However, it is not 

a statistical test but a test of reliability/consistency. 

 

One important thing to note is that the Cronbach’s alpha is affected by the number of 

variables: including a higher number of variables automatically increases the alpha 

value to some extent.  

 

There are many rules of thumb with regard to what is considered a good or bad alpha 

value. Generally, an alpha value of at least 0.7 is considered acceptable. 

 

Alpha values 

Between 0.7 and 1.0 Acceptable 

Below 0.7 Not acceptable 

 

Function 

 

Basic command alpha varlist 

Useful options alpha varlist, item 

Explanations varlist 

 

item 

List which variables that you want to include 

in the analysis. 

Display item-test and item-rest correlations. 

Useful to see what the effect would be if 

removing an item. 

More information help alpha 
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Practical example 

 

 

Dataset: StataData2.dta 

 

Name    Label 

imp_secure  Important living in secure surroundings 

imp_help  Important to help the people 

imp_behave  Important to always behave properly 

imp_environ  Important looking after the environment 

imp_trad  Important with tradition 

 

Name    Label 

imp_ideas  Important to think up new ideas 

imp_rich  Important to be rich 

imp_good  Important to have a good time 

imp_success  Important being very successful 

imp_risk  Important with adventure and taking risks 
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alpha imp_secure imp_help imp_behave imp_environ imp_trad, item 

 

alpha imp_ideas imp_rich imp_good imp_success imp_risk, item 

 

 
Test scale = mean(unstandardized items) 

 

                                                            average 

                             item-test     item-rest       interitem 

Item         |  Obs  Sign   correlation   correlation     covariance      alpha 

-------------+----------------------------------------------------------------- 

imp_secure   | 61560   +       0.6676        0.4439        .5688143      0.6814 

imp_help     | 61677   +       0.6627        0.4735        .5876615      0.6721 

imp_behave   | 61479   +       0.7213        0.5092        .5121266      0.6547 

imp_environ  | 61377   +       0.6766        0.4787        .5678347      0.6683 

imp_trad     | 61621   +       0.7088        0.4802        .5221226      0.6680 

-------------+----------------------------------------------------------------- 

Test scale   |                                             .5517124      0.7165 

------------------------------------------------------------------------------- 

 
Test scale = mean(unstandardized items) 

 

                                                            average 

                             item-test     item-rest       interitem 

Item         |  Obs  Sign   correlation   correlation     covariance      alpha 

-------------+----------------------------------------------------------------- 

imp_ideas    | 61206   +       0.6173        0.3970         .697211      0.6341 

imp_rich     | 61547   +       0.6878        0.4579        .6041251      0.6059 

imp_good     | 61405   +       0.6167        0.3579        .6943734      0.6523 

imp_success  | 61218   +       0.6913        0.4772        .6046821      0.5982 

imp_risk     | 61073   +       0.6863        0.4436        .6032935      0.6133 

-------------+----------------------------------------------------------------- 

Test scale   |                                               .64074      0.6723 

------------------------------------------------------------------------------- 

 

 

The scores for Test scale show the actual alpha values. For the first example, it is 

0.7165 and for the second 0.6723. This is largely acceptable (at least for the first one). 

We can also see from the column called alpha that deleting any of the items would 

actually decrease the alpha score.  
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9. X, Y, AND Z 

Outline 

9. X, Y, AND Z ..................................................................................................... 201 
9.1 Introduction ................................................................................................. 202 
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9.3 Z: confounding, mediating and moderating variables ......................................... 204 

9.3.1 Confounding variables ......................................................................... 206 
9.3.2 Mediating variables ............................................................................. 207 
9.3.3 Moderating (or effect modifying) variables ............................................. 208 

9.4 A note on causal inference.............................................................................. 209 
 

Content 

This short chapter discusses the roles that variables (theoretically) can play when we 

conduct quantitative data analysis. It ends with a discussion about causality/causal 

inference.  
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9.1 Introduction 

We talk a lot about variables in this guide, because variables are the cornerstones of 

quantitative data materials and quantitative data analysis. Other terms are sometimes 

used instead of “variables” – such as “indicators”, “measures” or “items”.  

 

A variable is supposedly capturing the concept that we are interested in. The process 

of “translating” a concept to a variable is often called operationalisation. Some 

concepts are rather vague and not particularly easy to operationalise. One such 

example is “health”: should it be assessed by administrative health records or self-

reported information? Is it simply the absence of disease or something more than that? 

Concepts such as “income” are more concrete since it refers to units (money) that can 

quite easily be measured. Still, it can be operationalised in many ways: monthly or 

annual income; income before or after taxes; individual income or household income; 

and so on. 

 

Operationalisation should always be carefully reflected on and clearly motivated in 

research, since it might have important consequences for the analysis and therefore 

for the interpretation of the results.  

 

Associations 

In many types of analysis – such as regression analysis – we are interested in the 

association between two (or more) variables. The term association (or relationship) 

reflects the hypothesis that the variables are linked to one another in some way. 

 

Effects 

The way that regression analysis is constructed, however, assumes that one variable 

one variable has an “effect” on another variable. Here, we are talking about statistical 

effect, not causal effect. In other words, while we may find that one of the variables 

has a statistical effect on the other variable, it does not mean that we have proved that 

the first variable causes the second variable. A phrase commonly used in statistics to 

reflect this is: “correlation does not imply causation”. Just note that while it is more 

correct to talk about statistical effects, it is not all that uncommon that there are either 

implicit or explicit ideas about causal effects, guided by previous studies and theories. 

Sometimes such assumptions are quite reasonable, but the extent to which we can be 

certain about making causal inferences depends on the study design.   

 

We will come back to the issue of causality later in this chapter (see Section 9.4). 
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X, y, and z 

Variables play different roles in analysis. Researchers often use various terms to 

distinguish between these roles. Here, we will try to shed some light on the terms that 

are used. 

 

Variables 

x Independent variable; Exposure; Predictor 

y Dependent variable; Outcome 

z Covariate; Confounder; Mediator; Moderator; Effect modifier 

 

9.2 X and y 

 

 

 

 

 

If you read about a variable being “independent”, an “exposure”, or a “predictor” – 

what does that mean? Basically, it means that someone thinks that this variable has an 

(statistical) effect on another variable. For the sake of simplicity, let us just call this 

type of variable “x”. The other variable – the one that x is assumed to affect – is called 

“dependent” variable or “outcome”. Again, to make it simpler, we can call it “y”.  

 

Examples 

Smoking (x) -> Lung cancer (y) 

Unemployment (x) -> Low income (y) 

Yoga lessons (x) -> Lower stress levels (y) 

 

The examples presented above may suggest that it is easy to know which variable is 

x and which is y, but this is not always the case. Sometimes the situation is more 

complex. As an example, let us take the association between health and educational 

attainment: does a lower educational attainment (x) lead to worse health (y) or does 

poor health (x) result in lower educational attainment (y)? These kinds of issues are 

sometimes discussed in terms of “direction of causality” (again, see Section 9.4 for a 

more thorough discussion about causality). In cases like that you need to think about 

what is more reasonable: what does the previous literature/theory say about the 

association? Preferably, we would want to design the study in a way that solves the 

issue of directionality. 

 

 

x y 
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9.3 Z: confounding, mediating and moderating 
variables 

 

 

 

 

The association – between x and y – that we are most interested in is often called 

“main association”. This is the focus of our analysis. However, sometimes there are 

other variables that we might find important for this main association. Strictly 

speaking, those variables are also called “x” (or “covariates”) but for clarity we will 

label them “z”. There are three important types of z-variables that are common in data 

analysis: 

 

Types of “z” 

Confounder Both x and y are affected by z  

Mediator A part of the association between x and y goes through z 

Moderator Z affects the association between x and y 

 
  

x y 

z? 
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Temporality 

One thing that is good to keep in mind is the concept of temporality, i.e. timing. When 

did the phenomena that we are examining happen? This is often the same thing as the 

time at which the phenomenon was measured – but not always. For example, 

sometimes data are collected retrospectively (as with case-control studies and 

retrospective cohort studies), and sometimes survey questions are retrospective (e.g. 

asking adult respondents about childhood conditions).  

 

Either way, it is important to ascertain the following: 

 

• Nothing can predict an outcome if it happens after the outcome. In other 

words, whatever x-variable you have, it must measure something that 

happened before the phenomenon that your y-variable is thought to capture. 

• A confounder is something that is believed to affect the x-variable and the y-

variable. Therefore, it cannot measure something that happened after the x-

variable and/or after the y-variable.  

• A mediator is something that is believed to be affected by the x-variable as 

well as affect the y-variable. This means that is cannot come before the x-

variable or after the y-variable.  

• A mediator is something that is thought to affect the effect of the x-variable 

on the y-variable. It cannot come after the y-variable.  

 

The details might still be a bit murky at this point, but we will return to all of them 

later in this chapter. 

 
  



 

206 

 

9.3.1 Confounding variables 

 
 

 

 

 

A confounder is a variable that influences both the x-variable and the y-variable and, 

therefore, makes you think that there is an actual relationship between x and y (but it 

is due to z). Put differently, the confounder distorts the analysis. Suppose that we find 

that people who consume a lot of coffee (x) have an increased risk of lung cancer (y). 

A probable confounder could be cigarette smoking (z): smokers drink more coffee 

and have greater risk of lung cancer.  

 

One should always worry about confounding in research, both when we conduct our 

own research and when we review others’ research. 

 

Address confounding by study design 

If you are about to collect your own data, there are many ways to design a study to 

reduce potential confounding (see Section 3.1). The most obvious solution might be 

to do an experimental study (e.g. a randomised controlled trial; RCT). Experimental 

studies are, however, not always feasible, and most of the time, we do observational 

studies (e.g. cohort studies or case-control studies). Here, it is necessary to review the 

scientific literature, and then make sure to collect data on all potential confounders.  

 

Address confounding in statistical analysis 

Usually, we work with data that have already been collected – and perhaps for other 

purposes than what we are interested in. At this stage, you can explore multiple 

regression analysis with adjustment for confounding, as well as try out stratified 

analysis and interaction analysis (see Chapter 18). Make sure to adjust for 

confounding, the best that you can. 

 

Address confounding with specific methods 

In addition, there are some specific statistical methods that can be used to handle 

confounding, such as propensity score matching. This will not be covered in this 

guide, but if you are interested, we recommend that you explore this further:  

 

More information help teffects psmatch 

x y 

z 
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9.3.2 Mediating variables 

 
 

 

 

 

A mediator is a variable that is influenced by the x-variable and influences the y-

variable. In other words, some (it could be a little or a lot) of the effect of x on y is 

mediated through z. For example, let us say that we are interested in the association 

between parents’ educational attainment (x) and children’s success on the labour 

market (y). It could be reasonable to assume that the educational attainment of the 

parents (x) influences children’s own educational attainment (z), which in turn affects 

their following success on the labour market (y). 

 

Pathways and mechanisms 

In data analysis, we often talk about “explaining” an association by the inclusion of 

certain mediating variables. Particularly when one has a data material that consists of 

information collected across several points in time (i.e. longitudinal or life course 

data), it is common to talk about mediation as “pathways” or “mechanisms”.  

 

Mediation analysis 

Traditionally, mediators have been treated similarly to confounders in multiple 

regression analysis. This means that one includes one or more mediators in the model 

and see how much is explained of the association that we are interested in. This 

approach has been heavily criticised in the context of non-linear regression models 

(for statistical reasons that we will not discuss here). There are some specific types of 

mediation analysis that can be used; one of them is the KHB method, which will be 

explored in Chapter 18. 

 

 
  

x y 

z 
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9.3.3 Moderating (or effect modifying) variables 

 
 

 

 

 

A moderator (or effect modifier) is a variable that influences the very association 

between the x-variable and the y-variable. Thus, the association between x and y looks 

different depending on the value of z. Suppose that we are interested in the association 

between unemployment (x) and ill-health (y). Here, it could be reasonable to assume 

that men’s and women’s health is affected differently by unemployment – in that case, 

gender (sex) would be a moderating variable (z).  

 

Interaction analysis 

In data analysis, moderating variables are examined through something called 

interaction analysis (see Chapter 19).  

  

x y 

z 
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9.4 A note on causal inference 

Earlier in this chapter, we suggested that it is common to focus on associations in 

quantitative research, and that a statistical effect of one variable on another variable 

is not the same as a causal effect. Yet, we use concepts throughout the guide that sort 

of imply causality, such as “exposure”, “outcome”, “mediator”, and “pathway”. In 

this section, we will discuss the issue of causality – or causal inference – in a bit 

greater depth. Of course, there is not enough space here to address the full complexity 

of the issue.    

 

Data analysis is often concerned with causal questions. For example, can a given 

intervention program improve program participant’s outcomes? Can a given sickness 

be prevented? Why do girls typically outperform boys in the educational system? In 

contrast to statistical inference, in which information obtained from various forms of 

random sample of observations are used to draw conclusions about the value of some 

parameter (e.g. a mean or a regression coefficient) in the population from which the 

sample was drawn (see Chapter 3), causal inference typically refers to the process 

where multiple sources of information are used to draw reasonable inference about 

cause and effect.  

 

Causal inference taps into important discussions related to ontology and 

epistemology, which will not be addressed here. For the purposes of this guide, three 

broadly defined (and partly overlapping) perspectives on causal inference will be 

outlined (based on Goldthorpe’s “Causation, statistics, and sociology” from 2001), all 

of which to some extent may relate to the empirical methodologies detailed above: 

causation as robust association, causation as manipulation, and causation as 

generative mechanisms.    

 

While it remains true that the widely recognized statement that association (i.e. 

correlation) does not imply causation, causation must in some way imply association. 

Causation as robust association comes in many versions but a common denominator 

is that it emphasizes efforts to ensure that estimated associations are not spurious, i.e. 

the association cannot be eliminated through one or more other variables being 

introduced in the analysis. In practice, this approach typically proposes a set of criteria 

such as temporality and predictive power to assess causal connections between 

variables.  

 

Causation as manipulation appears to some extent to have emerged in reaction to that 

of causation as robust association. Here, attention centres on establishing causation 

through experimental methods. In short, the key idea is that causes can only be those 

factors that, at least theoretically, can serve as treatments (or more generally 

exposures) in experiments. This means that causes must in some sense be 

manipulable, and that causation is determined by comparing what would happened to 

an observational unit in regard to an outcome if this unit have been vs. not have been 

exposed to the addressed factor. Since it is not possible for the same unit to be both 
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exposed and not exposed, the solution for estimating a causal effect is to compare the 

average response for those units exposed to the average response for those units that 

were not exposed. For this solution to be viable, however, a number of conditions and 

assumptions need to be met. These conditions are ideally those of randomised 

controlled trials, but substantial efforts have been made to develop statistical analyses 

that to a large extent mimic the conditions of such trials (e.g. propensity score 

matching, endogenous treatment effect regression). Causation as manipulation also 

comes in different versions and the main difference lies in to what extent there is an 

emphasis on designing a study or on analysis of already collected data (cf. the 

potential outcome framework). While the former focusses on removing threats to 

internal validity by using appropriate experimental designs, the latter focusses on 

strategies for estimating causal effects using observational data (often in a longitudinal 

design). 

 

In contrast to the above, causation as generative mechanisms does not focus on 

relationships between variables but rather on what needs to be added to any criteria 

before a reasonable argument for causation can be made, namely the agentic 

capabilities of observational units (typically individuals). Here, actors, their 

relationships, and the (un)intended outcomes of their actions are emphasized. The 

properties of actors and their environments can be measured and thereby represented 

by variables, but the causality does not operate at the variable level. According to this 

perspective, the actors are the agents of change and the causal process should therefore 

be specified at the actor level which means that in order to move from association to 

causation it is not sufficient to just establishing that a given factor precedes the 

outcome (rather than the other way around), it is also necessary to specify the 

mechanisms that explain why actors do what they do and how these actions translate 

into outcomes. In order to do so, proponents of this approach typically suggest that 

various theories of rational action can be utilized.   

 

Research questions often relates to issues of causality and the perspectives outlined 

above all have their pros and cons. In any event, estimates of associations alone cannot 

be used for causal inference. Various sources of information, which includes a 

theoretical framework of causality combined with the best available research design 

and data for the research question at hand, are imperative in the process of evaluating 

whether our estimates may allow for reasonable causal interpretations. 
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10. (M)AN(C)OVA 

Outline 

10. (M)AN(C)OVA ............................................................................................... 211 
10.1 ANCOVA ..................................................................................................... 212 
10.2 MANOVA..................................................................................................... 217 
10.3 MANCOVA ................................................................................................... 223 

 

Content 

In this chapter, we will discuss and partly also explore the different extensions of 

ANOVA that are available, including ANCOVA, MANOVA, and MANCOVA. 

 

What do these terms mean? 

ANOVA Analysis of variance 

ANCOVA Analysis of covariance 

MANOVA Multivariate analysis of variance 

MANCOVA Multivariate analysis of covariance 
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10.1 ANCOVA  

Quick facts 

Number of variables One group variable (x) 

One test variable (y) 

One or more covariates (z) 

Scale of variable(s) Group variable: categorical (nominal/ordinal) 

Test variable: continuous (ratio/interval) 

Covariates: categorical (nominal/ordinal) or continuous 

(ratio/interval) 

 

As discussed in Section 6.4, the one-way ANOVA is the statistical procedure of 

comparing the means of two or more groups. ANCOVA is very similar to ANOVA. 

The key difference is that ANCOVA allows you to control for the effects of one or 

more extraneous variables, known as covariates (also see the discussion on 

confounding in Chapter 9). These covariates can take any form, i.e. they can be either 

categorical or continuous – but if you have a non-binary categorical covariate (i.e. one 

with more than two categories) you need to create dummy variables for this one (see 

Section 11.2.1). 

 

For example, you could use ANCOVA to see which diet was best for losing weight 

after controlling for age and body mass index at baseline (i.e. your test variable would 

be “weight loss”, your group variable would be “type of diet” and your covariates 

would be “age” and “body mass index at baseline”).        

 

Note In many ways, ANCOVA is equivalent to multiple linear regression (which is 

described in more detail in Chapter 12). Why then use ANCOVA? Well, the answer 

depends on what you want to achieve with your analysis, but for most purposes, we 

would argue that linear regression is more flexible. 
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Assumptions 

First, you have to check your data to see that the assumptions behind ANCOVA hold. 

If your data “passes” these assumptions, you will have a valid result.  

 

Checklist 

Continuous and 

normally 

distributed test 

variable 

Your test variable should be continuous (i.e. interval/ratio) 

and normally distributed. For example: Income, height, 

weight, number of years of schooling, and so on. Although 

they are not really continuous, it is still very common to use 

ratings as continuous variables, such as: “How satisfied with 

your income are you?” (on a scale 1-10) or “To what extent 

do you agree with the previous statement?” (on a scale 1-5). 

Two or more 

unrelated 

categories in the 

group variable 

Your group variable should be categorical (i.e. nominal or 

ordinal) and consist of two or more groups. Unrelated means 

that the groups should be mutually excluded: no individual 

can be in more than one of the groups. For example: low vs. 

medium vs. high educational level; liberal vs. conservative 

vs. socialist political views; or poor vs. fair, vs. good vs. 

excellent health; and so on. 

Equal variance The variance in the test variable should be equal across the 

groups of the group variable. 

No outliers  An outlier is an extreme (low or high) value. For example, if 

most individuals have a test score between 40 and 60, but 

one individual has a score of 96 or another individual has a 

score of 1, this will distort the test. 

Homogenetiy of 

regression slopes 

Your test variables and any covariate(s) should have the 

same slopes across all levels of the categorical group 

variable. 

  

Function 

 

Basic command anova testvar groupvar c.covariate  

Explanations testvar 

groupvar 

covariate 

Insert the name of the test variable  

Insert the name of the group variable. 

Insert the name of the covariate variable 

Notes You need to tell Stata that a variable in your ANOVA 

statement is continuous or it will treat it as another 

categorical factor. You denote continuous independent 

variables within the ANOVA command by placing “c.” in 

front of it. 

More information help anova 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

bullied   Exposed to bullying (Age 15, Year 1985) 

cognitive   Cognitive test scores (Age 15, Year 1985) 

 

 

anova gpa bullied c.cognitive 

 
 

 

                  Number of obs =      8,192    R-squared     =  0.4032 

                  Root MSE      =    .532934    Adj R-squared =  0.3959 

           Source | Partial SS         df         MS        F    Prob>F 

       -----------+---------------------------------------------------- 

            Model |   1552.841        100    15.52841     54.67  0.0000 

                  | 

          bullied |  4.8369933          1   4.8369933     17.03  0.0000 

        cognitive |  1514.3779         99   15.296746     53.86  0.0000 

                  | 

         Residual |  2297.9933      8,091   .28401845   

       -----------+---------------------------------------------------- 

            Total |  3850.8343      8,191   .47012993   

 

 

In this example, we are interested in seeing if grade point average (gpa) differs 

between individuals according to whether they have been exposed to bullying or not 

(bullied), while controlling for cognitive test scores (cognitive). The null hypothesis 

is that there is no difference in gpa between unexposed and exposed.  

 

Note Partial SS (SS=sum of squares) refers to variation assigned to one variable while 

controlling for the other variable.  

 

As can be seen, the F statistic for bullied is 17.03. The corresponding p-value is 

0.0000. Since this is below 0.05, it means that there is a statistically significant 

difference in grade point average between unexposed and exposed to bullying when 

we control for cognitive test scores. In other words, we can reject the null hypothesis. 

We can also see that the variable cognitive is statistically significantly related to grade 

point average (F=53.86, p <0.05).         
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Postestimation commands 

 

There are many different postestimation commands that you can apply to ANCOVA.  

 

More information help anova postestimation 

 

For example, we can use the postestimation command contrast to obtain the adjusted 

mean differences: 

 

contrast r.bullied, asobserved 

 
 

Contrasts of marginal linear predictions 

 

Margins      : asobserved 

 

------------------------------------------------ 

             |         df           F        P>F 

-------------+---------------------------------- 

     bullied |          1        6.19     0.0129 

             | 

 Denominator |       8189 

------------------------------------------------ 

 

-------------------------------------------------------------- 

             |   Contrast   Std. Err.     [95% Conf. Interval] 

-------------+------------------------------------------------ 

     bullied | 

(Yes vs No)  |  -.0487196   .0195891     -.0871192   -.0103199 

-------------------------------------------------------------- 

 

 

In the column called Contrast, you see the mean difference (-0.0487) in grade point 

average between those who were exposed to bullying and those who were not 

exposed, controlled for cognitive test scores. 
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We can also use the postestimation command margins, which gives us predicted 

means for each of the group:  

 

margins bullied  

 
 

Predictive margins                              Number of obs     =      8,192 

 

Expression   : Linear prediction, predict() 

 

----------------------------------------------------------------------------- 

             |            Delta-method 

             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+--------------------------------------------------------------- 

     bullied | 

         No  |   3.227265   .0062901   513.07   0.000     3.214934    3.239595 

        Yes  |   3.178545   .0185206   171.62   0.000      3.14224     3.21485 

----------------------------------------------------------------------------- 

 

 

Looking at the column called Margin, we see that the predicted mean in grade point 

average is slightly higher for individuals who were not exposed to bullying (3.227) 

than for individuals who were exposed to bullying (3.179), controlled for cognitive 

test scores. Also note that the difference in means between the groups is around 

0.0487, which is what we saw with contrast. 
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10.2 MANOVA  

Quick facts 

Number of variables One group variable (x) 

Two or more test variables (y) 

Scale of variable(s) Group variable: categorical (nominal/ordinal) 

Test variables: continuous (ratio/interval) 

 

Like ANOVA, MANOVA is used to test the significance of group differences. 

However, MANOVA can include several dependent variables, whereas ANOVA can 

handle only one dependent variable.  

 

For example, you could use a MANOVA to investigate whether salary income and 

number of weekly work hours differ according to age categories (i.e. your test 

variables would be “income” and “number of weekly work hours”, while “age 

category” would be your group variable). Alternatively, you could use a MANOVA 

to investigate whether math and science performance differ based on test anxiety 

levels amongst students (i.e. your test variables would be “math test score” and 

“science test score”, while your group variable would be “test anxiety level”).    

 

Note MANOVA can be seen as a combination of ANOVA and two or more t-tests. 

Accordingly, advantages are that you can compare more than two groups and that the 

test variables are mutually adjusted for. 
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Assumptions 

First, you have to check your data to see that the assumptions behind MANOVA hold. 

If your data “passes” these assumptions, you will have a valid result.  

 

Checklist 

Continuous and 

normally 

distributed test 

variables 

Your test variables should be continuous (i.e. interval/ratio) 

and normally distributed. For example: Income, height, 

weight, number of years of schooling, and so on. Although 

they are not really continuous, it is still very common to use 

ratings as continuous variables, such as: “How satisfied with 

your income are you?” (on a scale 1-10) or “To what extent 

do you agree with the previous statement?” (on a scale 1-5). 

Two or more 

unrelated 

categories in the 

group variable 

Your group variable should be categorical (i.e. nominal or 

ordinal) and consist of two or more groups. Unrelated means 

that the groups should be mutually excluded: no individual 

can be in more than one of the groups. For example: low vs. 

medium vs. high educational level; liberal vs. conservative 

vs. socialist political views; or poor vs. fair, vs. good vs. 

excellent health; and so on. 

Equal variance The variance in the test variables should be equal across the 

groups of the group variable. 

No outliers An outlier is an extreme (low or high) value. For example, if 

most individuals have a test score between 40 and 60, but 

one individual has a score of 96 or another individual has a 

score of 1, this will distort the test. 

Absence of 

multicollinearity 

Your test variables should not be too correlated. A good rule 

of thumb is that no correlation should be above r = 0.90. 

 

Function 

 

Basic command manova testvars = groupvar 

Explanations testvars 

groupvar 

Insert the name of the test variables.  

Insert the name of the group variable. 

More information help manova 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

cognitive   Cognitive test scores (Age 15, Year 1985)  

skipped                           Skipped class (Age 15, Year 1985) 

 

 
manova gpa cognitive = skipped  

 
 

                Number of obs =      8,689 

                W = Wilks' lambda      L = Lawley-Hotelling trace 

                P = Pillai's trace     R = Roy's largest root 

 

       Source | Statistic        df    F(df1,     df2) =   F   Prob>F 

   -----------+------------------------------------------------------- 

      skipped |W   0.9476         2      4.0  17370.0   118.53 0.0000 e 

              |P   0.0524                4.0  17372.0   116.93 0.0000 a 

              |L   0.0553                4.0  17368.0   120.13 0.0000 a 

              |R   0.0553                2.0   8686.0   240.11 0.0000 u 

              |------------------------------------------------------- 

     Residual |                8686 

   -----------+------------------------------------------------------- 

        Total |                8688 

    ------------------------------------------------------------------- 

                e = exact, a = approximate, u = upper bound on F 

 

In this example, we investigate whether grade point average and cognitive test scores 

differ between those who never, sometimes, and often have skipped class. Our null 

hypothesis is that there is no difference.   

 

Stata provides four test statistics by default (listed above the table). The most 

commonly used criterion is Wilks’ Lambda and this is what will be used in this 

example. Thus, we need to consult the Prob>F column along the Wilks’ Lambda (W) 

row to determine whether the null hypothesis should be rejected.   

  

As can be seen, the F statistic is 118.53. The corresponding p-value is 0.0000 (i.e. 

below 0.05), meaning that there is statistically significant difference in both grade 

point average and cognitive test scores between individuals who have never, 

sometimes, and often skipped class. In other words, we can reject the null hypothesis. 
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Postestimation commands 

 

There are many different postestimation commands that you can apply to MANOVA.  

 

More information help manova postestimation 

 
For example, it is probably relevant to obtain the adjusted mean differences between 

the groups. We can use the postestimation command contrast to achieve this.  

 

First, we can ask for the mean differences in gpa:   

  

contrast r.skilled, equation(gpa)  

 
Contrasts of marginal linear predictions 

 

Margins      : asbalanced 

 

--------------------------------------------------------- 

                      |         df           F        P>F 

----------------------+---------------------------------- 

gpa                   | 

              skipped | 

(Sometimes vs Never)  |          1      157.68     0.0000 

    (Often vs Never)  |          1      281.74     0.0000 

               Joint  |          2      167.03     0.0000 

                      | 

          Denominator |       8686 

--------------------------------------------------------- 

 

----------------------------------------------------------------------- 

                      |   Contrast   Std. Err.     [95% Conf. Interval] 

----------------------+------------------------------------------------ 

gpa                   | 

              skipped | 

(Sometimes vs Never)  |  -.1975808   .0157347     -.2284246    -.166737 

    (Often vs Never)  |  -.3831545   .0228272     -.4279012   -.3384079 

----------------------------------------------------------------------- 

 

 

In the column called Contrast, we see that the mean difference in grade point average 

between those who sometimes have skipped class and those who have never skipped 

class is -0.198. The mean difference between those who often have skipped class and 

those who have never skipped class is -0.383.   
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And then we can obtain the mean differences in cognitive: 

 

contrast r.skilled, equation(cognitive)  

 
 

 

Contrasts of marginal linear predictions 

 

Margins      : asbalanced 

 

--------------------------------------------------------- 

                      |         df           F        P>F 

----------------------+---------------------------------- 

cognitive             | 

              skipped | 

(Sometimes vs Never)  |          1        3.96     0.0467 

    (Often vs Never)  |          1        3.43     0.0641 

               Joint  |          2        2.75     0.0638 

                      | 

          Denominator |       8686 

--------------------------------------------------------- 

 

----------------------------------------------------------------------- 

                      |   Contrast   Std. Err.     [95% Conf. Interval] 

----------------------+------------------------------------------------ 

cognitive             | 

              skipped | 

(Sometimes vs Never)  |  -3.303194   1.660627     -6.558417   -.0479699 

    (Often vs Never)  |  -4.460767   2.409153     -9.183278    .2617446 

----------------------------------------------------------------------- 

 

 

Here, we see that the mean difference in cognitive test scores between those who 

sometimes have skipped class versus those who have never skipped class is -3.303. 

The mean difference between those who often have skipped class versus those who 

have never skipped class is -4.460.  
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We can also use the postestimation command margins, which gives us predicted 

means for each of the groups.  

 

First, we get the predicted means in gpa:  

 

margins skipped, predict(equation(gpa)) 

 
 

Adjusted predictions                            Number of obs     =      8,689 

 

Expression   : Linear prediction, predict(equation(gpa)) 

 

----------------------------------------------------------------------------- 

             |            Delta-method 

             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+--------------------------------------------------------------- 

     skipped | 

      Never  |    3.32965   .0111047   299.84   0.000     3.307882    3.351418 

  Sometimes  |   3.132069   .0111476   280.96   0.000     3.110218    3.153921 

      Often  |   2.946496   .0199441   147.74   0.000     2.907401    2.985591 

-----------------------------------------------------------------------------  

 

 

Looking at the column called Margin, we see that the predicted mean in grade point 

average for individuals who have never skipped class (3.330) is higher than those for 

individuals who sometimes (3.132), and often have skipped class (2.946), thus 

confirming what we got with contrast. 

 

And then we can get the predicted means in cognitive: 

 

margins skipped, predict(equation(cognitive)) 

 
 

Adjusted predictions                            Number of obs     =      8,689 

 

Expression   : Linear prediction, predict(equation(cognitive)) 

 

----------------------------------------------------------------------------- 

             |            Delta-method 

             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+--------------------------------------------------------------- 

     skipped | 

      Never  |   310.9497   1.171974   265.32   0.000     308.6523     313.247 

  Sometimes  |   307.6465   1.176503   261.49   0.000     305.3402    309.9527 

      Often  |   306.4889   2.104874   145.61   0.000     302.3628    310.6149 

----------------------------------------------------------------------------- 

 

 
Here, we see that the predicted mean in cognitive test scores for individuals who have 

never skipped class (310.950) is higher than those for individuals who sometimes 

(307.647), and often have skipped class (306.489), thus confirming what we got with 

contrast. 
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10.3 MANCOVA  

Quick facts 

Number of variables One group variable (x) 

Two test variables (y) 

One or more covariates (z) 

Scale of variable(s) Group variable: categorical (nominal/ordinal) 

Test variables: continuous (ratio/interval) 

Covariates: categorical (nominal/ordinal) or continuous 

(ratio/interval) 

 
MANCOVA is similar to MANOVA, with the key difference that allows you to 

control for the effects of one or more extraneous variables, known as covariates (also 

see the discussion on confounding in Chapter 9). These covariates can take any form, 

i.e. they can be either categorical or continuous – but if you have a non-binary 

categorical covariate (i.e. one with more than two categories) you need to create 

dummy variables for this one (see Section 11.2.1). 

 

For example, you could use a MANCOVA to evaluate the effectiveness of online 

learning compared to traditional learning on math and reading scores, while 

controlling for pre-test scores (i.e. your test variables would be “math scores” and 

“reading scores”, your group variable would be “learning environment” and your 

covariates would be “pre-test scores”). Alternatively, you could use a MANCOVA to 

investigate the effect of different sport drinks on athletic performance (as measured 

by heart rate, blood pressure and blood electrolytes), while controlling for age (i.e. 

your test variables would be “heart rate”, blood pressure” and “blood electrolytes”, 

your group variable would be “type of sport drink” and your covariate would be 

“age”).   
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Assumptions 

First, you have to check your data to see that the assumptions behind MANCOVA 

hold. If your data “passes” these assumptions, you will have a valid result.  

 

Checklist  

Continuous and 

normally 

distributed test 

variables 

Your test variables should be continuous (i.e. interval/ratio) 

and normally distributed. For example: Income, height, 

weight, number of years of schooling, and so on. Although 

they are not really continuous, it is still very common to use 

ratings as continuous variables, such as: “How satisfied with 

your income are you?” (on a scale 1-10) or “To what extent 

do you agree with the previous statement?” (on a scale 1-5). 

Two or more 

unrelated 

categories in the 

group variable 

Your group variable should be categorical (i.e. nominal or 

ordinal) and consist of two or more groups. Unrelated means 

that the groups should be mutually excluded: no individual 

can be in more than one of the groups. For example: low vs. 

medium vs. high educational level; liberal vs. conservative 

vs. socialist political views; or poor vs. fair, vs. good vs. 

excellent health; and so on. 

Equal variance The variance in the test variables should be equal across the 

groups of the group variable. 

No outliers  An outlier is an extreme (low or high) value. For example, if 

most individuals have a test score between 40 and 60, but 

one individual has a score of 96 or another individual has a 

score of 1, this will distort the test. 

Homogenetiy of 

regression slopes 

Your test variables and any covariate(s) should have the 

same slopes across all levels of the categorical group 

variable.  

Absence of 

multicollinearity  

Your test variables should not be too correlated to each 

other. A good rule of thumb is that no correlation should be 

above r = 0.90. 

 

Function 

 

Basic command manova testvar testvar = groupvar c.covariate  

Explanations testvar 

groupvar 

covariate 

Insert the name of the test variable  

Insert the name of the group variable. 

Insert the name of the covariate variable 

Notes You need to tell Stata that a variable in your MANCOVA 

statement is continuous or it will treat it as another 

categorical factor. You denote continuous independent 

variables within the MANCOVA command by placing “c.” 

in front of them. 

More information help manova 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

cognitive   Cognitive test scores (Age 15, Year 1985)  

skipped                           Skipped class (Age 15, Year 1985) 

sex                                  Sex 

 

 

manova gpa cognitive = skipped sex  

 
 

                       Number of obs =      8,689 

 

                       W = Wilks' lambda      L = Lawley-Hotelling trace 

                       P = Pillai's trace     R = Roy's largest root 

 

              Source | Statistic        df    F(df1,     df2) =   F   Prob>F 

          -----------+------------------------------------------------------- 

               Model |W   0.9171         3      6.0  17368.0   127.95 0.0000 e 

                     |P   0.0832                6.0  17370.0   125.71 0.0000 a 

                     |L   0.0900                6.0  17366.0   130.20 0.0000 a 

                     |R   0.0854                3.0   8685.0   247.17 0.0000 u 

                     |------------------------------------------------------- 

            Residual |                8685 

          -----------+------------------------------------------------------- 

             skipped |W   0.9749         2      4.0  17368.0    55.52 0.0000 e 

                     |P   0.0251                4.0  17370.0    55.19 0.0000 a 

                     |L   0.0257                4.0  17366.0    55.86 0.0000 a 

                     |R   0.0255                2.0   8685.0   110.73 0.0000 u 

                     |------------------------------------------------------- 

                 sex |W   0.9679         1      2.0   8684.0   144.10 0.0000 e 

                     |P   0.0321                2.0   8684.0   144.10 0.0000 e 

                     |L   0.0332                2.0   8684.0   144.10 0.0000 e 

                     |R   0.0332                2.0   8684.0   144.10 0.0000 e 

                     |------------------------------------------------------- 

            Residual |                8685 

          -----------+------------------------------------------------------- 

               Total |                8688 

          ------------------------------------------------------------------- 

                       e = exact, a = approximate, u = upper bound on F 

 

 

Here, we extend the analysis from the previous section on MANOVA by adding sex 

as a covariate to the model formula, which gives us a MANCOVA. Specifically, we 

investigate whether there are differences in grade point average and cognitive test 

scores across the levels of skipped, while controlling for sex. Again, our null 

hypothesis is that there are no differences.  

 

The F statistic (based on the Wilks’ lambda) for skipped is F=55.52. The 

corresponding p-value is 0.0000 (i.e. below 0.05), which allows us to reject the null 

hypothesis. We also see that there are statistically significant differences in gpa and 

cognitive between men (boys) and women (girls) (F=144.10, p <0.05).           
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Postestimation commands 

 

There are many different postestimation commands that you can apply to 

MANCOVA.  

 

More information help manova postestimation 

 

For example, we might want to obtain the mean differences between the groups. We 

can use the postestimation command contrast to achieve this.  

 

First, we get the mean differences in gpa:   

  

contrast r.skilled, equation(gpa)  

 
 

Contrasts of marginal linear predictions 

 

Margins      : asbalanced 

 

--------------------------------------------------------- 

                      |         df           F        P>F 

----------------------+---------------------------------- 

gpa                   | 

              skipped | 

(Sometimes vs Never)  |          1       86.20     0.0000 

    (Often vs Never)  |          1      169.82     0.0000 

               Joint  |          2       93.93     0.0000 

                      | 

          Denominator |       8685 

--------------------------------------------------------- 

 

----------------------------------------------------------------------- 

                      |   Contrast   Std. Err.     [95% Conf. Interval] 

----------------------+------------------------------------------------ 

gpa                   | 

              skipped | 

(Sometimes vs Never)  |  -.1538159   .0165675      -.186292   -.1213397 

    (Often vs Never)  |  -.3154568   .0242069     -.3629081   -.2680055 

----------------------------------------------------------------------- 

 

 

In the column called Contrast, we see that the mean difference in grade point average 

between those who sometimes have skipped class and those who have never skipped 

class is -0.154, controlled for sex. The mean difference between those who often have 

skipped class and those who have never skipped class is -0.315, controlled for sex.    
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And then we can obtain the mean differences in cognitive: 

 

contrast r.skilled, equation(cognitive)  

 
 

Contrasts of marginal linear predictions 

 

Margins      : asbalanced 

 

--------------------------------------------------------- 

                      |         df           F        P>F 

----------------------+---------------------------------- 

cognitive             | 

              skipped | 

(Sometimes vs Never)  |          1       14.96     0.0001 

    (Often vs Never)  |          1       14.75     0.0001 

               Joint  |          2       10.49     0.0000 

                      | 

          Denominator |       8685 

--------------------------------------------------------- 

 

----------------------------------------------------------------------- 

                      |   Contrast   Std. Err.     [95% Conf. Interval] 

----------------------+------------------------------------------------ 

cognitive             | 

              skipped | 

(Sometimes vs Never)  |  -6.773942   1.751427     -10.20715   -3.340729 

    (Often vs Never)  |  -9.829491   2.559032      -14.8458    -4.81318 

----------------------------------------------------------------------- 

 

 

Here, we see that the mean difference in cognitive test scores between those who 

sometimes have skipped class and those who have never skipped class is -6.774, 

controlled for sex. The mean difference between those who often have skipped class 

and those who have never skipped class is -9.829, controlled for sex.    
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We can also use the postestimation command margins, which gives us predicted 

means for each of the groups. 

 

First, we get the predicted means in gpa: 

 

margins skipped, predict(equation(gpa)) 

 
 

Predictive margins                              Number of obs     =      8,689 

 

Expression   : Linear prediction, predict(equation(gpa)) 

 

----------------------------------------------------------------------------- 

             |            Delta-method 

             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+--------------------------------------------------------------- 

     skipped | 

      Never  |   3.301672   .0115819   285.07   0.000     3.278968    3.324375 

  Sometimes  |   3.147856   .0112729   279.24   0.000     3.125758    3.169953 

      Often  |   2.986215   .0204565   145.98   0.000     2.946115    3.026314 

----------------------------------------------------------------------------- 

 

 

Looking at the column called Margin, we see that the predicted mean in grade point 

average for individuals who have never skipped class (3.302) is higher than those for 

individuals who sometimes (3.148), and often have skipped class (2.986), controlled 

for sex (thus confirming what we got with contrast). 

 

And then we get the predicted means in cognitive:  

 

margins skipped, predict(equation(cognitive)) 

 
  

Predictive margins                              Number of obs     =      8,689 

 

Expression   : Linear prediction, predict(equation(cognitive)) 

 

----------------------------------------------------------------------------- 

             |            Delta-method 

             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+--------------------------------------------------------------- 

     skipped | 

      Never  |   313.1685   1.224382   255.78   0.000     310.7684    315.5686 

  Sometimes  |   306.3945   1.191713   257.10   0.000     304.0585    308.7306 

      Often  |    303.339   2.162555   140.27   0.000     299.0999    307.5781 

----------------------------------------------------------------------------- 

 

 

Here, we see that the predicted mean in cognitive test scores for individuals who have 

never skipped class (313.169) is higher than those for individuals who sometimes 

(306.395), and often have skipped class (303.339), controlled for sex (thus confirming 

what we got with contrast). 
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Content 

Once we have produced suitable descriptive statistics for our data, we often want to 

move on to more advanced types of analysis, such as regression analysis. Before this, 

we nonetheless need to consider what kind of analysis that might be suitable, how to 

design our analysis, and how to deal with missing data. These issues are addressed in 

the current chapter.  
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11.1 What type of regression should be used? 

There are many different types of regression analysis. Some of the most common 

types are included in this guide: linear, logistic, ordinal, multinomial, Poisson, and 

Cox regression. Which one you should choose depends on your outcome (y).  

 

Outcome (y) Type of regression 

Continuous (ratio/interval) Linear regression 

Nominal with two categories, i.e. binary Logistic regression 

Nominal with more than two categories, i.e. non-

binary 

Multinomial regression 

Ordinal Ordinal regression 

Count Poisson regression 

Time-to-event Cox regression 

 

However, your x-variable(s) can take on any form – they can be categorical (i.e. 

nominal/ordinal) or continuous (i.e. ratio/interval). If you include only one x-variable 

in your regression analysis, this is called simple (or bivariate) regression analysis. If 

you include two or more x-variables in your regression analysis, this is called multiple 

regression analysis. In multiple regression analysis, it is possible to mix different types 

of x-variables: you can thus use both categorical and continuous x-variables.  
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11.2 Dummies 

When we conduct regression analysis – regardless of the type – we can only analyse 

x-variables that are continuous (ratio/interval) or binary (i.e. they consist of only two 

values). A binary variable is sometimes called “dichotomous”, “binomial” or 

“dummy”. If we have a categorical variable with more than two values, such as in the 

example below, we need to “trick” the regression analysis to correctly analyse those 

variables. To do this, there are two alternatives in Stata. These will be presented 

below.  

 

11.2.1 Dummy variables 

The first alternative is to manually create one dummy for each category of the 

variable. 

 

Example 

Variable  

Educational  

attainment               

 

Categories 

1=Compulsory   

2=Upper secondary 

3=University  

Dummy 

1=Compulsory, 0=Other 

1=Upper secondary, 0=Other 

1=University, 0=Other 

 

For example: 

 

gen educ_comp=educ 

 

gen educ_uppsec=educ 

 

gen educ_uni=educ 

 

recode educ_comp (1=1) (2=0) (3=0) 

 

recode educ_uppsec (1=0) (2=1) (3=0) 

 

recode educ_uni (1=0) (2=0) (3=1) 

 

In the regression analysis, all dummies for the specific variable should be included as 

x-variables, except one. The dummy that you exclude – and it is your own choice 

which one you exclude – will be the “reference category”. Each of the other dummies 

will be compared to the dummy that is excluded.  
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11.2.2 Factor variables 

The alternative presented above is quite pedagogical (we think, at least) – but it is 

quite time consuming to generate dummies. In Stata, there is an easy fix: something 

called factor variables. When you conduct your regression analysis, you just simply 

write the prefix “i.” before the name of the categorical variable(s), and Stata will 

include dummies in the analysis automatically, e.g. “i.educ” 

 

Base level 

When you include factor variables, the lowest value will automatically be chosen as 

the reference category. This can be altered by specifying another so-called base level. 

This is done by adding a “b” to the prefix: “ib.” You then also need to specify which 

category that should be the reference category by adding the value of the category, 

e.g. “ib3.educ” (which would define “University” as the reference category).  

 

There are also some alternatives to specifying the value of the category. These are the 

possible so-called base operators: 

 

Base operator Explanation 

ib#. Specifies a specific value as the base. #=the value of the 

category that we want to choose as the reference category.  

ib##. Specifies the #th ordered value as the base. 

ib(first). Specifies the smallest value as the base. Default. 

ib(last). Specifies the largest value as the base.  

ib(freq). Specifies the most common value as the base. 

ibn. No base level. 

 

11.2.3 A note on the choice of reference category 

There are many different ways of choosing a reference category: 

 

Choosing a reference category 

The largest category, because we want a stable group to compare the other 

categories to. 

The group in the middle, to represent the average. 

The “best off” category – if increasing values of the outcome is more negative. 

The “worst off” category – if increasing values of the outcome is more positive. 

 

Note Never choose a very small category – you may end up with very strange 

estimates. 
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11.3 Analytical strategy 

Regression analysis is of course about data, but it is also about design. The way in 

which you think your variables are related needs to be translated into an analytical 

strategy (or modelling strategy). A good way to start is to make a drawing with boxes 

and arrows: each variable is put into one box and then you put simple-headed or 

double-headed arrows between the boxes to illustrate how the variables are associated 

to one another. Remember that the analytical strategy should reflect the aim of the 

study. 

 

Example 

Suppose we are interested in the association between children’s cognitive ability and 

educational attainment in adulthood. To examine this association is thus the aim of 

the study. We think that this association may be confounded by parents’ educational 

attainment and mediated by children’s school marks. Moreover, we suspect that the 

association may look different depending on the child’s gender. The research 

questions (RQs) can thus be formulated as:  

 

• RQ1. Is children’s cognitive ability associated with educational 

attainment in adulthood?  

• RQ2. If so, is this association confounded by parents’ educational 

attainment? 

• RQ3. To what extent is the association between children’s cognitive 

ability and educational attainment in adulthood mediated by school 

marks in childhood? 

• RQ4. Is there any gender difference in the association between 

children’s cognitive ability and educational attainment in adulthood? 

 

Accordingly, these are the variables we need to include in our analysis: 

 

Role Variable Scale 

x Cognitive ability in childhood Ratio 

Y Educational attainment in adulthood Ordinal 

z/confounder Parents’ educational attainment Ordinal 

z/mediator School marks in childhood Ratio 

z/moderator Child’s gender Nominal (binary) 
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And this is how we may choose to illustrate our analytical strategy: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Often, we want to break down our analysis in different steps – or models. We want 

our analysis – as a whole – to answer our research questions.  

 

Note that there is no “perfect” way of setting up models. It is often a matter of 

academic traditions and taste. Some prefer to add variables (confounders, mediators) 

stepwise, so that each subsequent model becomes more and more complex. Others 

prefer to do a series of separate models and then finish with “full” model.   

 

We only have some advice: 

 

• Always also present an unadjusted analysis for your main association (i.e. 

simple regression). 

• Remember that confounders and mediators play different roles: we are 

supposed to get rid of the confounding, whereas the mediation could tell us 

something about possible explanations. In other words, make sure not to mix 

these up in the analysis (or, in the interpretation and discussion of the results). 

• Moderators are a different kind of animal, and are therefore treated and 

presented in a slightly different way in comparison to confounders and 

mediators.   

 

 

 

 

 

 

 

Cognitive ability in 

childhood  

(x) 

Gender  

(z/moderator) 

Educational 

attainment in 

adulthood (y) 

Parents’ educational 

attainment  

(z/confounder) 

School marks  

in childhood  

(z/mediator) 
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Unadjusted model 

 

First, start with a simple regression analysis of your main association: 

 

 

 

 

We would also encourage you to do the same for your other variables: 

 

 

 

 

 

 

 

 

 

 

Note If we would have had several confounders, and/or mediators, and/or moderators, 

these would also have generated their own simple regression model. 

 

Model 1 

 

We continue with multiple regression analysis, by focusing on our main association 

(x and y) and adding the confounding variable to the model. 

 

 

 

 

 

Here, we are interested to see if the estimate(s) for the association between x and y 

changes when the confounder is added. Does it become weaker (compared to the 

simple model)? 

 

Note In cases where you have several confounders, you can choose to enter them 

stepwise one at a time, a few at a time, or all at once. Just remember that if you enter 

more than one at a time, and you do see a change in the estimate for the association 

between x and y, you need to check which confounder(s) that might be causing this 

change.   

 

  

x y 

z/confounder y 

z/mediator y 

z/moderator y 

x 

z/confounder 

y 
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Model 2 

 

The next step is to add the mediator.  

 

 

 

 

 

Again, we are interested to see if the estimate(s) for the association between x and y 

changes when the mediator is added. Does it become weaker (compared to the simple 

model)? 

 

Note As for cases where you have several mediators: you can choose to enter them 

stepwise one at a time, a few at a time, or all at once. Just remember that if you enter 

more than one at a time, and you do see a change in the estimate for the association 

between x and y, you need to check which mediator(s) that might be causing this 

change.   

 

Note Remember that this kind of mediation approach might be criticised if you do a 

non-linear (e.g. logistic, ordinal, multinomial, Cox) regression analysis. See Chapter 

18 for an alternative approach to mediation analysis. 

 

Model 3 

 

And the final step is to add the moderator. Like it was said earlier, this is more 

complicated – we will save the details for Chapter 19. But for now, we will just specify 

this as the following:  

 

 

 

 

  

x 

z/mediator 

y 

x 

z/moderator 

x*z/moderator 

y 
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11.4 Missing data 

As we discussed earlier (see Section 3.2.3), it is common to have missing data. 

Missing data is sometimes called attrition (particularly in register studies) and 

sometimes non-response (particularly in survey/questionnaire studies). Missing data 

can be external or internal: 

 

External or internal? 

External Occurs when individuals have been sampled from the population but, 

for various reasons, they do not get included in the register study (they 

have immigrated, died, moved, are imprisoned, etc.) or do not 

participate in the survey (they decline, are too sick, cannot be reached, 

etc.). 

Internal Occurs when individuals who are part of the study, for various reasons 

(they missed a page of the questionnaire, they refuse to answer specific 

questions, etc.), have no information for a specific variable or a set or 

variables. 

 

As shown above, there are many reasons for missing data. If the missingness is 

problematic or not, depends on what type of missing data we have. In statistical 

analysis, there are three types of missing data: 

 

Types of missing data 

MCAR Missing Completely At Random: 

The probability of missing data is unrelated to both observed and 

unobserved data; it is completely by chance alone 

MAR Missing At Random:  

The probability of missing data is unrelated to unobserved data but may 

be related to observed data 

MNAR Missing Not At Random:  

The probability of missing data is related to unobserved data 

 

This was probably a bit confusing – let us exemplify the differences between MCAR, 

MAR and MNAR. Suppose we examine the distribution of income in the Swedish 

population. If missing data were MCAR, it means that the missingness is unrelated to 

both observed data (e.g. gender, employment status) and unobserved data (e.g. lower 

income does not influence the risk of missingness). If missing data were MAR, it 

would mean that missingness could be related to other variables in the dataset, but the 

probability of missingness is not increased by certain values of the variable itself (e.g. 

individuals having lower incomes). Finally, if individuals who had certain values of 

the variables itself were more likely to be missing, we would have MNAR. 
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11.4.1 How to deal with missing data? 

It is not very easy to statistically address whether missingness is MCAR, MAR or 

MNAR. The most important advice is that you have to know your data well: produce 

descriptive statistics for your study variables to see the extent of missingness in the 

data material. Obviously, if you have a small number of individuals in your data 

material, a couple of missing values would have more serious consequences than if 

you have a couple of missing values in a data material based on the total population 

of a country.  

 

A sound strategy to map out and illustrate potential problems with missingness is first 

to find out anything you can about the reasons for external attrition. Why are some 

individuals not included in your dataset? Is it likely that they similar in any important 

way or is the missingness due to technical reasons?  

 

Then you get into the issue of internal attrition. Analysing internal attrition is simply 

called attrition analysis or non-response analysis. What you do here is to pick one or 

more variables for which all individuals in the study sample has information, such as 

gender, age, or some other socio-demographic variable. Produce descriptive statistics 

(choice of type of descriptive statistics depends on the measurement scale) for those 

variables, for all individuals in the sample. Then you produce descriptive statistics for 

the same variables, but now only for the individuals in the analytical sample (Section 

11.5 describes how to define an analytical sample).  

 

For example, we have a study sample that contains 5,000 individuals. Approximately 

49% are men and 51% are women. The mean age is 38 years. Due to missing data on 

some of the variables we want to include in our analysis, our analytical sample is 

reduced to 4,500 individuals. In this sample, 46% are men and 54% are women. The 

mean age is 40 years. You can illustrate this in a simple descriptive table: 

 

 Sample (n=5,000) Analytical sample (n=4,500) 

Gender   

   Man 49% 46% 

   Woman 51% 54% 

 Age (mean) 38 years 40 years 

 

If we compare the distribution of gender and age in the study sample with the 

distribution of gender and age in the analytical sample, we can conclude that women 

and older individuals are more likely to be included in our analysis. This is 

information that could be important to have when we interpret our results. 

  



 

239 

 

11.5 From study sample to analytical sample 

This section is an attempt to connect the two previous sections. It is like this: we often 

split our analysis in different steps or models. Thus, different models include different 

sets of variables; and different variables have different amount of missing data. The 

total number of individuals may therefore vary across models, and this makes it 

difficult to compare the results between the models. In other words, we should ensure 

that all our analyses – and all steps of analysis – are based on the same individuals. 

These individuals represent our analytical sample (or effective sample). Put 

differently: our analytical sample is defined as only those individuals who have valid 

information (i.e. no missing) for all variables we use in our analysis.  

 

It is good to first check the amount of missing data for each of the variables included 

in the analysis, to see if any certain variable is particularly problematic in terms of 

missingness. If a variable has serious problems with missingness, it could be wise to 

exclude it from the analysis (but it depends on how important the variable is for your 

study).  

 

The analytical sample should not only be the basis for regression analysis, but all other 

statistical tests and descriptive statistics should also be based on the analytical sample. 

Moreover, make sure to state the total number of individuals in the heading of each 

table and each figure. It could look something like this (see Section 4.8, for more 

advice on how to write headings): 

 

Some examples 

Table 1. Descriptive statistics for all study variables (n=9,451). 

 

Figure 5. Histogram of annual income (n=9,451). 

 

Table 3. The association between educational attainment and mortality. Results 

from logistic regression analysis, separately for men (n=4,701) and women 

(n=4,750). 
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11.5.1 The “pop” variable 

It is easy to define an analytical sample in Stata. However, there are some different 

ways through which you can apply the analytical sample – below, we have described 

our favourite approach.  

 

You first need to determine exactly which variables are included in the analysis (i.e. 

all variable you use, not all variables in the data material). They should have been 

properly examined (i.e. reviewed and checked with some initial descriptive statistics) 

and recoded as you want them. 

 

In the example below, we have chosen four variables that we want to include in our 

study.  

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

sex    Sex 

bullied    Exposure to bullying (Age 15, Year 1985) 

gpa   Grade point average (Age 15, Year 1985) 

cognitive   Cognitive test score (Age 15, Year 1985) 

 

 

sum sex bullied gpa cognitive 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         sex |     10,000       .4892    .4999083          0          1 

     bullied |      8,719    .1076958    .3100137          0          1 

         gpa |      9,380    3.178614    .6996298          1          5 

   cognitive |      8,879    308.4708    72.18442        100        500 

 

 

Apart from sex, we can see that they all have (different amounts of) missing values. 

 

The first step is to create a “pop” variable – “pop” stands for population – with the 

gen command (see Section 5.2). 

 

gen pop=1 if sex!=. & bullied!=. & gpa!=. & cognitive!=. 
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Through this, we specify that the new variable pop is assigned the value 1 if there is 

no missing information for any of the four variables. Let us check what it looks like: 

 

tab pop 

 

 
        pop |      Freq.     Percent        Cum. 

------------+----------------------------------- 

          1 |      8,192      100.00      100.00 

------------+----------------------------------- 

      Total |      8,192      100.00 

 

 

We can then apply the pop variable to anything we like, using if. For example: 

 

tab sex if pop==1 

 

 
        Sex |      Freq.     Percent        Cum. 

------------+----------------------------------- 

        Man |      3,876       47.31       47.31 

      Woman |      4,316       52.69      100.00 

------------+----------------------------------- 

      Total |      8,192      100.00 

 

 

Note Of course, you do not have to call this variable “pop” – choose any name you 

like. 
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11.6 Imputation 

In the earlier sections, we suggested that the preferable strategy is to exclude 

individuals with missing data for any of the study variables from our analysis. This is 

often referred to as complete case analysis. Such an approach might, however, lead to 

biased estimates, inadequate power, and inaccurate standard errors.   

 

Different types of imputation 

An alternative is to apply imputation. Imputation means replacing missing data with 

substituted values, based on existing values in the data. An assumption is nonetheless 

that data are MCAR (or at least MAR) – which perhaps seldom is the case.  

 

Types of imputation 

Mean/Median Calculate the mean or median for the variable and impute that 

value for all individuals who have missing information for that 

variable.  

A simple approach, but cannot be recommended since it 

introduces so much bias (e.g. reduces the variance). 

Hot deck/cold 

deck 

Randomly (hot deck) or systematically (cold deck) choose a 

value from an individual in the sample who has similar values 

on all other study variables. 

Simple, but restricts the range of possible values to the range 

among observed values. 

Last observation 

carried forward 

Carry forward a value from the last observation for the same 

individual (works e.g. for repeated measurements) 

Simple, but reduces the variance. Yields (potentially too) 

conservative estimates. 

Regression Use the predicted value obtained by regressing the missing 

variable on other variables. 

Preserves the relationships between the variables but not the 

variability around the predicted values. 

Stochastic 

regression 

Use the predicted value obtained by regression the missing 

variable on other variables, plus a random residual value. 

Improves the regression imputation by adding a random 

component. 

Extrapolation Estimate a value from other observations for the same 

individual (works e.g., for repeated measurements). 

Might, however, mean that one would estimate values beyond 

the actual range of data. 
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Single versus multiple imputation 

Single imputation means coming up with one single value of the missing value – 

which is simple and therefore quite compelling approach. Unless the data are really 

MCAR (or at least MAR), single imputation might nevertheless produce bias that is 

worse than what you would get with a complete case analysis.   

 

The alternative is multiple imputation, which has become a very popular approach. 

This too assumes that missingness is MCAR or MAR. One starts by creating a number 

of sets of imputations for the missing values, based on an imputation method with a 

random component (such as hot deck imputation and stochastic regression 

imputation). After analysing each completed dataset, the results are combined. If 

performed well, multiple imputation leads to unbiased estimates and accurate standard 

errors.  

 

Multiple imputation is not easy, and it requires deep knowledge about the dataset at 

hand. Therefore, we urge you to think long and hard about whether this is really a 

good strategy for your analysis. This guide will not cover any practical details about 

multiple imputation, but feel free to explore it further. 

 

More information help mi 

 

 

 

 

 

 

    



 

244 

 

12. LINEAR REGRESSION 
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Content 

This chapter starts with an introduction to linear regression and then presents the 

function in Stata. After this, we offer some practical examples of how to perform 

simple and multiple linear regression, as well as how to generate and interpret model 

diagnostics.  
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12.1 Introduction 

Linear regression is used when y is continuous (ratio/interval; see Section 3.3).  

 

A linear regression model generally has the aim to predict or “forecast” the value of 

y, based on the values of one or more x-variables. Linear regression is concerned with 

finding the best-fitting straight line through the data points.  

 

The regression line has an intercept (or constant) and a slope. The intercept is where 

the regression line strikes the y-axis when the value of the x-variable(s) is 0. The slope 

is basically the steepness of the line; i.e. how much y changes when x increases. 

 

The regression model thus gives us predicted values of y across the values of the x-

variable(s). Of course, there is generally a difference between what the model predicts 

and what the individuals’ actual (observed) values are. This difference is called 

residual and is calculated as the observed value minus the predicted value. 

 

Often, the term error is used instead of residual, and although these terms are closely 

related, they are not the exact same thing: an error is the difference between the 

observed value and the population mean (and the population mean is typically 

unobservable), whereas a residual is the difference between the observed value and 

the sample mean (and the sample mean is observable).    

 

The most common method for fitting the linear equation is the method of ordinary 

least squares (OLS). It minimises the sum of squared differences between the 

observed and predicted values.  
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Just a little bit of maths 

We promised to not have (almost) any equations in this guide, but here is a very simple 

expression of the one for linear regression: 

 

y=a+bx+e 

 

• y (or rather y hat; ŷ) is the predicted value of y. 

• a is the intercept (or constant), i.e. the value of y when x=0. 

• b is the slope (steepness) of the regression line, i.e. how much y changes per 

unit increase in x. 

• x is the value of x. 

• e is the error term (or residual), i.e. the error in predicting the value of y given 

the value of x. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Other names for linear regression 

Linear regression is often referred to as OLS regression. 

  

e 

y 

x 

a 

b 
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12.1.1 Linear regression in short 

If you have only one x, it is called simple regression, and if you have more than one 

x, it is called multiple regression.  

 

Regardless of whether you are doing a simple or a multiple regression, x-variables 

can be categorical (nominal/ordinal) and/or continuous (ratio/interval). 

 

Key information from linear regression 

Effect  

B coefficient (B) The change in y, per unit increase in x 

Direction  

Negative B below 0 

Positive B above 0 

Statistical significance  

P-value p<0.05 Statistically significant at the 5% level 

p<0.01 Statistically significant at the 1% level 

p<0.001 Statistically significant at the 0.1% level 

95% Confidence intervals Interval does not include 0: 

Statistically significant at the 5% level 

Interval includes 0:  

Statistically non-significant at the 5% level 

 

B coefficient (B) 

In linear regression analysis, the effect that x has on y is reflected by a B coefficient 

(B): 

 

Negative B coefficient For every unit increase in x, y decreases by [B]. 

Positive B coefficient For every unit increase in x, y increases by [B]. 

 

Exactly how one interprets the B coefficient in plain writing depends on the 

measurement scale of the x-variable. That is why we will present examples later for 

continuous, binary, and categorical (non-binary) x-variables. 

 

Note What the B coefficient actually stands for depends on the values of x and y. 

 

P-values and confidence intervals 

In linear regression analysis you can get information about statistical significance, in 

terms of both p-values and confidence intervals.  

 

Note The p-values and the confidence intervals will give you partly different 

information, but they are not contradictory. If the p-value is below 0.05, the 95% 

confidence interval will not include 0 and, if the p-value is above 0.05, the 95% 

confidence interval will include 0.  
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When you look at the p-value, you can rather easily distinguish between the 

significance levels (i.e. you can directly say whether you have statistical significance 

at the 5% level, the 1% level, or the 0.1% level).  

 

When it comes to confidence intervals, Stata will by default choose 95% level 

confidence intervals. It is however possible to change the confidence level for the 

intervals. For example, you may instruct Stata to show 99% confidence intervals 

instead. 

 

For more information about statistical significance, see Chapter 5. 

 

R-Squared 

You also get information about something called R-Squared or R2. This term refers 

to amount of the variance in y that is explained by the inclusion of the x-variable. The 

R2 value ranges between 0 and 1 – a higher value means a higher amount of explained 

variance. Generally speaking, the higher the R2 values, the better the model fits the 

data (i.e. the model has better predictive ability).  

 

Simple versus multiple regression models 

The difference between simple and multiple regression models, is that in a multiple 

regression each x-variable’s effect on y is estimated while accounting for the other x-

variables’ effects on y. We then say that these other x-variables are “held constant”, 

or “adjusted for”, or “controlled for”. Because of this, multiple regression analysis is 

a way of dealing with the issue of confounding variables, and to some extent also 

mediating variables (see Section 9.3). 

 

It is highly advisable to run a simple regression for each of the x-variables before 

including them in a multiple regression. Otherwise, you will not have anything to 

compare the adjusted coefficients with (i.e. what happened to the coefficients when 

other x-variables were included in the analysis). Including multiple x-variables in the 

same model usually (but not always) means that they become weaker – which would 

of course be expected if the x-variables overlapped in their effect on y.   

 

A note    

Remember that a regression analysis should always follow from theory as well as a 

comprehensive set of descriptive statistics and knowledge about the data. In the 

following sections, we will – for the sake of simplicity – not form any elaborate 

analytical strategy where we distinguish between x-variables and z-variables (see 

Chapter 9). However, we will define an analytical sample and use a so-called pop 

variable (see Section 11.5).  
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12.2 Function 

Basic command reg depvar indepvars 

Explanations depvar 

indepvars 

Insert the name of the y-variable. 

Insert the name of the x-variable(s) that you 

want to use. 

Short names reg Regress 

More information help regress 

 

A walk-through of the output 

When we perform a linear regression in Stata, the table looks like this: 

 

 
      Source |       SS           df       MS      Number of obs   =     8,239 

-------------+----------------------------------   F(2, 8236)      =   1392.53 

       Model |  12513022.3         2  6256511.15   Prob > F        =    0.0000 

    Residual |  37003480.9     8,236  4492.89472   R-squared       =    0.2527 

-------------+----------------------------------   Adj R-squared   =    0.2525 

       Total |  49516503.2     8,238  6010.74329   Root MSE        =    67.029 

 

------------------------------------------------------------------------------ 

        yvar |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       xvar1 |   7.631827   1.476975     5.17   0.000     4.736583    10.52707 

       xvar2 |   5.815392   .1108175    52.48   0.000     5.598162    6.032622 

       _cons |   162.8872   3.044564    53.50   0.000     156.9191    168.8553 

------------------------------------------------------------------------------ 

 

 
In this example, yvar ranges between 0 and 500, whereas xvar1 is a binary (0/1) 

variable and xvar2 is a continuous variable ranging between 1 and 40. 

 

The upper left part of the table is an ANOVA table which shows distribution of 

variance. This is what the different columns mean: 

 

Column Explanation 

Source The Total variance is partitioned into Model and 

Residual. The former is the variance that can be 

explained by the Model, i.e. the x-variable(s) that we 

include. The latter is the variance which cannot be 

explained by the model. 

SS The sum of squares (SS) associated with the sources of 

variance. 

Df The degrees of freedom (df) associated with the sources 

of variance. 

MS The mean squares (MS), which is the sum of squares 

divided by the degrees of freedom. 
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The upper right part shows the overall model fit. This is what the different rows mean: 

 

Row Explanation 

Number of obs The number of observations included in the model. 

F F-value, calculated as the mean square model divided by 

the mean square residual. 

Prob > F The p-value associated with the F-value. If the p-value is 

below 0.05, it means that the x-variable(s) reliably 

predict the y-variable.   

R-squared The proportion of variance in the y-var that can be 

explained by the x-variable(s). 

Adj R-squared Same as R-squared, but accounts for the overlap in the 

variance explain by each x-variable. 

Root MSE Root mean square error (RMSE). This can be seen as a 

measure of accuracy (the lower the RMSE, the less 

errors, i.e. the better the predictive power). 

 

The lower part of the table presents the parameter estimates from the analysis. 

  

Column Explanation 

 The first column lists the y-variable on top, followed by 

our x-variable(s). The last row represents the constant 

(intercept). 

Coef. These are the B coefficients. 

Std. Err. The standard errors associated with the B coefficients. 

t T-value (B coefficient divided by its standard error). 

P>|t| P-value. 

[95% Conf. Interval] 95% confidence intervals (lower limit and upper limit). 
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The analytical sample used for the examples 

In the subsequent sections, we will use the following variables: 

 

 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

cognitive   Cognitive test score (Age 15, Year 1985) 

bullied   Exposure to bullying (Age 15, Year 1985) 

skipped   Skipped class (Age 15, Year 1985) 

 

 

sum gpa cognitive bullied skipped 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         gpa |      9,380    3.178614    .6996298          1          5 

   cognitive |      8,879    308.4708    72.18442        100        500 

     bullied |      8,719    .1076958    .3100137          0          1 

     skipped |      8,843    1.701911    .6934793          1          3 

 

 

We define our analytical sample through the following command: 

 

gen pop_linear=1 if gpa!=. & cognitive!=. & bullied!=. & skipped!=. 

 

This means that new the variable pop_linear gets the value 1 if the four variables do 

not have missing information. In this case, we have 8,136 individuals that are included 

in our analytical sample. 

  

tab pop_linear 

 

 
pop_linear |      Freq.     Percent        Cum. 

------------+----------------------------------- 

          1 |      8,136      100.00      100.00 

------------+----------------------------------- 

      Total |      8,136      100.00 
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12.3 Simple linear regression 

Quick facts 

Number of variables One dependent (y) 

One independent (x) 

Scale of variable(s) Dependent: continuous (ratio/interval) 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 

 

12.3.1 Simple linear regression with a continuous x 

 

Theoretical examples 

 

Example 1  

Suppose we want to examine the association between unemployment days (x) and 

income (y). Unemployment days are measured as the total number of days in 

unemployment during a year, and ranges from 0 to 365. Income is measured in 

thousands of Swedish crowns per month and ranges between 20 and 40. Let us say 

that we get a B coefficient that is -0.13. That would mean that for each unit increase 

in unemployment days, income would (on average) decrease by 0.13. Given the 

values of our variables, we can conclude that for each additional day in 

unemployment, monthly income would decrease by 130 SEK on average.  

 

Example 2 

In another example, we may examine the association between time spent reading 

at home (x) and cognitive test scores (y). Time spent reading at home is a 

continuous variable measured in hours per week, and ranges between 0 and 10. 

Intelligence scores are measured by a series of tests that render various amounts of 

points, and ranges between 20 and 160 points. Here, we get a B coefficient that is 

5.499 Given the values of our variables, we can conclude that for each hour spent 

reading at home, the cognitive test score increases (on average) by almost six 

points.  
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Practical example 

 
 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

cognitive   Cognitive test score (Age 15, Year 1985) 

 

 

sum gpa cognitive if pop_linear==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         gpa |      8,136    3.223144    .6860155          1          5 

   cognitive |      8,136    312.7443    69.53904        100        500 

 

 

reg gpa cognitive if pop_linear==1 

 

 
      Source |       SS           df       MS      Number of obs   =     8,136 

-------------+----------------------------------   F(1, 8134)      =   5060.73 

       Model |  1468.37846         1  1468.37846   Prob > F        =    0.0000 

    Residual |  2360.09351     8,134  .290151648   R-squared       =    0.3835 

-------------+----------------------------------   Adj R-squared   =    0.3835 

       Total |  3828.47197     8,135  .470617329   Root MSE        =    .53866 

 

------------------------------------------------------------------------------ 

         gpa |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   cognitive |   .0061096   .0000859    71.14   0.000     .0059412    .0062779 

       _cons |   1.312407   .0275152    47.70   0.000      1.25847    1.366343 

------------------------------------------------------------------------------ 

 

 

R-squared is 0.38. Thus, cognitive explains 38% of the variance in gpa. 

 

The B coefficient for cognitive is 0.006. In other words, for each point increase in the 

cognitive test score, the grade point average increases by 0.006. Although this is a 

very low estimate, we have to keep in mind that cognitive is a continuous variable 

ranging between 100 and 500. A unit increase in cognitive test scores is therefore not 

that much.  

 

Note You can rescale continuous x-variables to make the interpretation more 

reasonable. For example, by multiplying the B coefficient for cognitive by 50, we 

would end up with the following interpretation: for every 50-point increase in the 

cognitive test score, the grade point average increases by 0.3. Still a quite low 

estimate, but slightly more sensible. 
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Concerning statistical significance, there is a statistically significant association 

between cognitive and gpa, as reflected by the p-value (0.000) and the 95% confidence 

interval (0.006 to 0.006).  

 

Summary 

There is a positive (B=0.006) and statistically significant (95% CI=0.006-0.006) 

association between cognitive test score and grade point average at age 15. In other 

words, the higher the cognitive test score, the higher the grade point average. 
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12.3.2 Simple linear regression with a binary x 

 
Theoretical examples 

 

Example 1  

Suppose we want to examine the association between gender (x) and income (y). 

Gender has the values 0=Man and 1=Woman. Income is measured in thousands of 

Swedish crowns per month and ranges between 20 and 40. Let us assume that we 

get a B coefficient that is -1.3. That means that women have (on average) 1300 

SEK less in monthly income compared to men.  

 

Example 2 

Suppose we want to examine the association between having young children (x) 

and the number of furry pets (y). Having young children is measured as either 0=No 

young children and 1=Young children. The number of furry pets is measured as the 

number of cats, dogs, or other furry animals living in the household, and ranges 

between 0 and 10. We get a B coefficient that is 0.98. In other words, those who 

have young children have (on average) almost one additional furry pet compared 

to those without young children.  
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Practical example 

 
 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

bullied   Exposure to bullying (Age 15, Year 1985) 

 

 

sum gpa bullied if pop_linear==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         gpa |      8,136    3.223144    .6860155          1          5 

     bullied |      8,136    .1039823    .3052563          0          1 

 

 

The variable bullied is a binary variable with two categories: 0=No, 1=Yes. When we 

add it to the model, the category with the lowest value will be the reference category 

(i.e. No). 

 

reg gpa bullied if pop_linear==1 

 

 
      Source |       SS           df       MS      Number of obs   =     8,136 

-------------+----------------------------------   F(1, 8134)      =     82.48 

       Model |  38.4306413         1  38.4306413   Prob > F        =    0.0000 

    Residual |  3790.04133     8,134  .465950495   R-squared       =    0.0100 

-------------+----------------------------------   Adj R-squared   =    0.0099 

       Total |  3828.47197     8,135  .470617329   Root MSE        =    .68261 

 

------------------------------------------------------------------------------ 

         gpa |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     bullied |  -.2251621   .0247928    -9.08   0.000    -.2737624   -.1765618 

       _cons |   3.246557   .0079948   406.08   0.000     3.230885    3.262229 

------------------------------------------------------------------------------ 

 

 

R-squared is 0.01. Thus, bullied only explains 1% of the variance in gpa. 
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The B coefficient for bullied is -0.23. In other words, those who have been exposed 

to bullying have, on average, a 0.23 point lower grade point average compared to 

those who have not been exposed to bullying. This is not a very high estimate.  

 

Nonetheless, there is a statistically significant association between bullied and gpa, as 

reflected by the p-value (0.000) and the 95% confidence interval (-0.27 to -0.18).  

 

Summary 

At age 15, there is a negative (B=-0.23) and statistically significant (95% CI=-0.27 

to -0.18) association between exposure to bullying and grade point average. Put 

differently, individuals who were exposed to bullying received a lower grade point 

average compared to those who were not exposed. 
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12.3.3 Simple linear regression with a categorical (non-
binary) x 

 
Theoretical examples 

 
Example 1  

We want to investigate the association between educational attainment (x) and 

income (y). Educational attainment has the values: 1=Compulsory, 2=Upper 

secondary, and 3=University. We choose Compulsory as our reference category. 

Income is measured in thousands of Swedish crowns per month and ranges between 

20 and 40. Let us say that we get a B coefficient for Upper secondary that is 2.1 

and we get a B coefficient for University that is 3.4. In other words, those with 

upper secondary education have 2100 SEK higher income compared to those with 

compulsory education, and those with university education have 3400 SEK higher 

income compared to those with compulsory education. 

 

Example 2 

Suppose we are interested in the association between family type (x) and children’s 

average school marks (y). Family type has three categories: 1=Two-parent 

household, 2=Joint custody, and 3=Single-parent household. We choose Two-

parent household as our reference category. Children’s average school marks range 

from 1 to 5. The analysis results in a B coefficient of -0.1 for joint custody and a B 

coefficient of -0.9 for single-parent household. That would mean that children 

living in joint custody families have a 0.1 point lower score for average school 

marks compared to those living in two-parent households. Moreover, children 

living in single-parent households have a 0.9 point lower score for average school 

marks compared to those living in two-parent households. 
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Practical example 

 
 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

skipped   Skipped class (Age 15, Year 1985) 

 

 

sum gpa skipped if pop_linear==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         gpa |      8,136    3.223144    .6860155          1          5 

     skipped |      8,136    1.685226    .6906936          1          3 

 

 

The variable skipped has three categories: 1=Never, 2=Sometimes, and 3=Often. 

Here, we (with ib1) specify that the first category (Never) will be the reference 

category.  

 

reg gpa ib1.skipped if pop_linear==1 

 

 
      Source |       SS           df       MS      Number of obs   =     8,136 

-------------+----------------------------------   F(2, 8133)      =    147.39 

       Model |  133.908916         2  66.9544579   Prob > F        =    0.0000 

    Residual |  3694.56305     8,133  .454268173   R-squared       =    0.0350 

-------------+----------------------------------   Adj R-squared   =    0.0347 

       Total |  3828.47197     8,135  .470617329   Root MSE        =    .67399 

 

------------------------------------------------------------------------------ 

         gpa |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     skipped | 

  Sometimes  |  -.1792257   .0160331   -11.18   0.000    -.2106546   -.1477967 

      Often  |   -.376323   .0235095   -16.01   0.000    -.4224076   -.3302385 

             | 

       _cons |   3.348289    .011196   299.06   0.000     3.326342    3.370236 

------------------------------------------------------------------------------ 

 

 

R-squared is 0.04. Thus, skipped only explains 4% of the variance in gpa. 
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With regard to the B coefficient, we get two: one for skipped: Sometimes and one for 

skipped: Often. They are compared to the reference category skipped: Never. The 

refeence group in linear regression always has a B coefficient of 0.00. In this case we 

can see that the B coefficient for Sometimes is -0.18, and for Often it is -0.38. Put 

differently, the more the individuals have skipped class, the lower the grade point 

average.   

 

Both Sometimes and Often have p-values that are below 0.05 (0.000) and the 95% 

confidence intervals are -0.21 to -0.15 and -0.42 to -0.33, respectively. Thus, there is 

a statistically significant difference in gpa between Sometimes and Never, and 

between Often and Never. 

 

Test the overall effect 

 

The output presented and interpreted above, is based on the coefficients for the 

dummy variables of skipped. But what about the overall statistical effect of skipped 

on gpa? We can assess it through contrast, which is a postestimation command.  

 

contrast p.skipped, noeffects 

 

 
Contrasts of marginal linear predictions 

 

Margins      : asbalanced 

 

------------------------------------------------ 

             |         df           F        P>F 

-------------+---------------------------------- 

     skipped | 

   (linear)  |          1      256.23     0.0000 

(quadratic)  |          1        0.30     0.5865 

      Joint  |          2      147.39     0.0000 

             | 

 Denominator |       8133 

------------------------------------------------ 

 

 

Here, we focus on the row for linear, which shows a p-value (P>chi2) below 0.05. 

This suggests that we have a statistically significant trend in gpa according to skipped. 

 

More information help contrast 
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We will also produce a graph of the trend. First, however, we need to apply the post-

estimation command margins. 

 

Note This command can also be used for variables that are continuous or binary, but 

is particularly useful for categorical, non-binary (i.e. ordinal) variables.   

 

margins skipped 

 

 
Adjusted predictions                            Number of obs     =      8,136 

Model VCE    : OLS 

 

Expression   : Linear prediction, predict() 

 

------------------------------------------------------------------------------ 

             |            Delta-method 

             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     skipped | 

      Never  |   3.348289    .011196   299.06   0.000     3.326342    3.370236 

  Sometimes  |   3.169063   .0114765   276.13   0.000     3.146567     3.19156 

      Often  |   2.971966   .0206723   143.77   0.000     2.931443    3.012489 

------------------------------------------------------------------------------ 

 

 

Note that the estimate for Never in the column Margin is exactly reflecting the 

constant from the linear regression analysis (3.348289). Adding the B coefficient for 

Sometimes (-0.1792257), we end up with the estimate for Sometimes in this table 

(3.169063). Adding the B coefficient for Often (-0.376323), we get the estimate for 

Often in this table (2.971966).  
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marginsplot 

 

 

 
 

 

Note The y-axis shows predicted values (i.e. not B coefficients). 

 

More information help marginsplot 

 
Summary 

Among 15-year-olds, there is a negative and statistically significant association 

between having skipped class and grade point average. The association is graded: 

those who skipped class sometimes have a lower grade point average (B=-0.18, 

95% CI=-0.21 to -0.15) and those who skipped class often have even lower (B=-

0.38, 95% CI=-0.42 to -0.33), compared to those who never skipped class. 
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12.4 Multiple linear regression 

Quick facts 

Number of variables One dependent (y) 

At least two independent (x) 

Scale of variable(s) Dependent: continuous (ratio/interval) 

Independent: categorical (nominal/ordinal) and/or 

continuous (ratio/interval) 

 

Theoretical example 

 

Example 

Suppose we are interested to see if young children (x), residential area (x), and 

income (x) are related to the number of furry pets (y).  

 

Having young children is measured as either 0=No young children and 1=Young 

children. Residential area has the values 1=Metropolitan, 2=Smaller city, and 

3=Rural. We choose Metropolitan as our reference category. Income is measured 

as the yearly household income from salary in thousands of SEK (ranges between 

100 and 700). The number of furry pets is measured as the number of cats, dogs or 

other furry animals living in the household, and ranges between 0 and 10. 

 

We get a B coefficient for having young children that is 0.51. That means that the 

number of furry pets is higher among those who have young children. This 

association is adjusted for residential area and income.  

 

With regards to residential area, the B coefficient for Smaller city is 2.02 whereas 

the B coefficient for Rural is 4.99. That suggests, firstly, that the number of furry 

pets is higher (about two more pets, on average) among individuals living in smaller 

cities compared to metropolitan areas. Secondly, the number of furry pets is much 

higher (almost five more pets, on average) among individuals living in rural areas 

compared to metropolitan areas. This association is adjusted for having young 

children and income.  

 

Finally, the B coefficient for income is -0.1. This suggests that for every unit 

increase in income (i.e. for every additional one thousand SEK), the number of 

furry pets decrease by 0.1. This association is adjusted for having young children 

and residential area.     
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Practical example 

 
 

Dataset: StataData1.dta 

 

Name    Label 

gpa   Grade point average (Age 15, Year 1985) 

cognitive   Cognitive test score (Age 15, Year 1985) 

bullied   Exposure to bullying (Age 15, Year 1985) 

skipped   Skipped class (Age 15, Year 1985) 

 

 

sum gpa cognitive bullied skipped if pop_linear==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         gpa |      8,136    3.223144    .6860155          1          5 

   cognitive |      8,136    312.7443    69.53904        100        500 

     bullied |      8,136    .1039823    .3052563          0          1 

     skipped |      8,136    1.685226    .6906936          1          3 

 

 

In this model, we have three x-variables: cognitive, bullied, and skipped. When we 

put them together, their statistical effect on gpa is mutually adjusted. 
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reg gpa cognitive bullied ib1.skipped if pop_linear==1 

 

 
      Source |       SS           df       MS      Number of obs   =     8,136 

-------------+----------------------------------   F(4, 8131)      =   1465.17 

       Model |  1603.62921         4  400.907303   Prob > F        =    0.0000 

    Residual |  2224.84276     8,131   .27362474   R-squared       =    0.4189 

-------------+----------------------------------   Adj R-squared   =    0.4186 

       Total |  3828.47197     8,135  .470617329   Root MSE        =    .52309 

 

------------------------------------------------------------------------------ 

         gpa |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   cognitive |   .0060635   .0000841    72.13   0.000     .0058987    .0062283 

     bullied |  -.0737877    .019177    -3.85   0.000    -.1113795   -.0361959 

             | 

     skipped | 

  Sometimes  |  -.1813156   .0124573   -14.56   0.000    -.2057351   -.1568962 

      Often  |  -.3741848   .0182611   -20.49   0.000    -.4099812   -.3383884 

             | 

       _cons |   1.460238   .0280723    52.02   0.000     1.405209    1.515266 

------------------------------------------------------------------------------ 

 

 

In the simple regression models, we had R-squared values of 0.3835 (for cognitive), 

0.0100 (for bullied), and 0.0350 (for skipped). Now that we have a multiple regression 

analysis, it is better to look at the adjusted R-squared, which in this case is 0.4186. 

This means that 42% of the variance in gpa is explained by our three x-variables.  

 

When it comes to the B coefficients, they are roughly the same or somewhat lower 

(i.e. closer to 0) in comparison to the simple regression models. For example, the B 

coefficient for cognitive is still 0.006. The B coefficient for bullied is lower: -0.07 

here instead of -0.23. Concerning the categories of skipped, we see that the B 

coefficient for Sometimes is still -0.18 and the B coefficient for Often is -0.37 instead 

of -0.38. 

 

The associations between the x-variables and gpa are still statistically significant (p< 

0.05) after mutual adjustment. 

 

Summary 

In the fully adjusted model, it can be observed that the associations with grade point 

average are not altered in any substantial way in comparison to the simple models. 

To conclude, cognitive test scores, exposure to bullying, and having skipped class 

are associated with grade point average at a statistically significant level (all: 

p=0.000). Nonetheless, the associations are generally rather weak. 
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Estimates table and coefficients plot 

 

If we have multiple models, we can facilitate comparisons between the regression 

models by asking Stata to construct estimates tables and coefficients plots. What we 

do is to run the regression models one-by-one, save the estimates after each, and than 

use the commands estimates table and coefplot.  

 

The coefplot option is not part of the standard Stata program, so unless you already 

have added this package, you need to install it: 

 

ssc install coefplot 

 

As an example, we can include the three simple regression models as well as the 

multiple regression model. The quietly option is included in the beginning of the 

regression commands to suppress the output. 

 

Run and save the first simple regression model: 

 

quietly reg gpa cognitive if pop_linear==1 

 

estimates store model1 

 

Run and save the second simple regression model: 

 

quietly reg gpa bullied if pop_linear==1 

 

estimates store model2 

 

Run and save the third simple regression model: 

 

quietly reg gpa ib1.skipped if pop_linear==1 

 

estimates store model3 

 

Run and save the multiple regression model: 

 

quietly reg gpa cognitive bullied ib1.skipped if pop_linear==1 

 

estimates store model4 
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Produce the estimates table: 

 

estimates table model1 model2 model3 model4 

 

 
------------------------------------------------------------------ 

    Variable |   model1       model2       model3       model4     

-------------+---------------------------------------------------- 

   cognitive |  .00610958                              .00606352   

     bullied |              -.22516213                -.07378769   

             | 

     skipped | 

  Sometimes  |                           -.17922569   -.18131564   

      Often  |                           -.37632305   -.37418481   

             | 

       _cons |  1.3124067    3.2465569    3.3482892    1.4602375   

------------------------------------------------------------------ 

 

 

Produce the coefficients plot: 

 

coefplot model1 model2 model3 model4 

 

 

 
 

 

Note You can improve the graph by using the Graph Editor to delete “_cons” as well 

as to adjust the category and label names. 
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12.5 Model diagnostics 

Before we can trust the results from our linear regression analysis to be valid, we need 

to assess our model to check that it does not violate any of the fundamental 

assumptions of linear regression. 

 

More information help reg postestimation 

 

Checklist 

Continuous and 

normally 

distributed 

outcome 

The y-variable has to be continuous. It should also be 

normally distributed. Check this with a histogram. If it is not 

normally distributed, you might need to consider another 

alternative. For example, you can transform your y-variable 

(e.g. through categorisation, or log transformation). 

Correct model 

specification 

Your model should be correctly specified. This means that 

the x-variables that are included should be meaningful and 

contribute to the model. No important (confounding) 

variables should be omitted (often referred to as omitted 

variable bias). 

No outliers Outliers are individuals who do not follow the overall pattern 

of data. Sometimes referred to as influential observations 

(however, not all outliers are influential). 

Homoscedasticity The variance around the regression line should be constant 

across all values of the x-variable(s). 

Normality The residuals for our x-variables should be normally 

distributed. 

Linearity The effect of x on y should be linear. 

No 

multicollinearity 

Multicollinearity may occur when two or more x-variables 

that are included simultaneously in the model are strongly 

correlated with each another. Actually, this does not violate 

the assumptions, but is does create greater standard errors 

which makes it harder to reject the null hypothesis.  

 

Types of model diagnostics 

Link test Assess model specification 

Residual plot Check for linearity, homoscedasticity, and outliers 

Breusch-Pagan/Cook-

Weisberg test 

Check for homoscedasticity 

Density plot Check for normality 

Normal probability plot Check for normality 

Normal quantile plot Check for normality 

Variance inflation factor Check for multicollinearity 

Correlation matrix Check for multicollinearity 
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12.5.1 Link test 

With the command linktest, we can assess whether our model is correctly specified. 

This test uses the linear predicted value (called _hat) and the linear predicted value 

squared (_hatsq) to rebuild the model. We expect _hat to be statistically significant, 

and _hatsq to be statistically non-significant. If one or both of these expectations are 

not met, the model is mis-specified. 

 

However, do not rely too much on this test – remember that you should also use theory 

and common sense to guide your decisions. It is very seldom relevant to focus on this 

test if our ambition is to investigate associations (and not to make the best possible 

prediction of the outcome).   

 

More information help linktest 

 

Practical example 

We perform this test for the full model, so let us go back to the example from the 

multiple linear regression analysis. The quietly option is included in the beginning of 

the command to suppress the output. 

 

quietly reg gpa cognitive bullied ib1.skipped if pop_linear==1 

 

And then we run the test: 

 

linktest 

 

 
      Source |       SS           df       MS      Number of obs   =     8,136 

-------------+----------------------------------   F(2, 8133)      =   3032.82 

       Model |   1635.5178         2  817.758901   Prob > F        =    0.0000 

    Residual |  2192.95417     8,133  .269636563   R-squared       =    0.4272 

-------------+----------------------------------   Adj R-squared   =    0.4271 

       Total |  3828.47197     8,135  .470617329   Root MSE        =    .51927 

 

------------------------------------------------------------------------------ 

         gpa |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        _hat |  -.5712423   .1450631    -3.94   0.000    -.8556031   -.2868815 

      _hatsq |   .2478382   .0227898    10.87   0.000     .2031644     .292512 

       _cons |   2.440784   .2283713    10.69   0.000     1.993118     2.88845 

------------------------------------------------------------------------------ 

 

 

The p-value for _hat is below 0.05, but since the p-value for the variable _hatsq is also 

below 0.05, it means that our model is not correctly specified. We could try to amend 

this by transforming any of the included variables (e.g. through categorisation, or log 

transformation), excluding any of the included variables, or adding more variables to 

the model (other x-variables or e.g. interactions between the included variables).  



 

270 

 

12.5.2 Residual plot 

A residual plot graphs the residuals (on the y-axis) against the fitted values (on the x-

axis). Residual plots can be produced with the rvfplot command. This is a 

postestimation command, so you need to order it right after your regression analysis. 

 

If the points in the plot are evenly/randomly dispersed around the x-axis, it means that 

a linear regression is appropriate. If not – and there is some type of pattern (e.g. cone-

shaped) emerging in the plot – then you most likely have problems with 

heteroskedasticity. If the pattern is such that the points are not following the regression 

line (e.g. showing a curve-linear pattern), you may have problems with non-linearity. 

Moreover, you will quite clearly see if there are any outliers in the plot. 

 

More information help rvfplot 
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Practical example 

Usually, we would conduct model diagnostics for the full model, so we go back to the 

example from the multiple linear regression analysis. The quietly option is included 

in the beginning of the command to suppress the output. 

 

quietly reg gpa cognitive bullied ib1.skipped if pop_linear==1 

 

We then order the residual plot:  

 

rvfplot, yline(0) 

 

 

 
 

 

It looks pretty OK – apart from the points in the upper left corner and the lower right 

corner. This suggests that this model might not have any massive problems with 

heteroskedasticity, non-linearity, or outliers. 
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12.5.3 Breusch-Pagan/Cook-Weisberg test 

There are some tests that can be used to assess whether our assumption of 

homoskedasticity holds or not. One of them is the Breusch-Pagan/Cook-Weisberg test 

of heteroskedasticity (estat hettest command). It uses the fitted values of the y-variable 

and produces a p-value: if p<0.05, it means that our assumption is violated. 

    

More information help estat hettest 

 
Practical example 

The first step is re-run the multiple linear regression model. The quietly option is 

included in the beginning of the command to suppress the output. 

 
quietly reg gpa cognitive bullied ib1.skipped if pop_linear==1 

 

Then we run the test. 

 

estat hettest 

 

 
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity  

         Ho: Constant variance 

         Variables: fitted values of gpa 

 

         chi2(1)      =     2.90 

         Prob > chi2  =   0.0884 

 

 
Since the p-value is above 0.05 (0.0884), we can conclude that our model does not 

have problems with heteroskedasticity.   
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12.5.4 Density plot, normal probability plot, and normal 
quantile plot 

A density plot is a graph of the residuals with a normal distribution curve 

superimposed. It can be used to check whether the normality assumption holds. In 

Stata, kdensity (k=kernel) can be used to generate the density plot. 

 

More information help kdensity 

 

The normal probability plot (pnorm) constitutes another a way of testing whether the 

residuals are normally distributed. Compared to the normal quantile plot, it is more 

sensitive to anomalies in the middle of the distribution. 

 

More information help pnorm 

 

Yet another alternative for checking the normality assumption is the normal quantile 

plot (qnorm). Compared to the normal probability plot, it is more sensitive to 

anomalies in the tails of the distribution. 

 

More information help pnorm 
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Practical example 

The first step is re-run the multiple linear regression model. The quietly option is 

included in the beginning of the command to suppress the output. 

 
quietly reg gpa cognitive bullied ib1.skipped if pop_linear==1 

 

Then we have to save the residuals from the model by creating a new variable, here 

called res, using the predict command. 

 

predict res, resid 

 

The next step is to produce the density plot (the option “normal” means that we 

include a normal distribution curve in the graph). 

 

kdensity res, normal 

 

 

 
 

 

In this example, the residuals seem to be pretty normally distributed (apart from the 

small dip at the top of the peak). 
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Now we will generate a normal probability plot. We can re-use the variable res for 

this. 

 

pnorm res 

 

 

 
 

 

A straight, diagonal line like this means that the residuals are normally distributed. 
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The final step is to create the normal quantile plot. 

 

qnorm res 

 

 

 
 

 

This plot too looks good. Deviation at the tails is almost inevitable – it is more 

problematic if the points are distributed in a wider s-shaped pattern and deviate from 

the diagonal over the whole range of values. 
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12.5.5 Variance inflation factor and correlation matrix 

As the x-variables become more strongly correlated, it becomes more difficult to 

determine which of the variables are actually producing the statistical effect on the y-

variable. This is a problem of multicollinearity.  

 

One way of assessing problems with multicollinearity is through the estat vif 

command (vif=variance inflation factor). This tells us how much of the variance that 

is being inflated by multicollinearity. As a rule of thumb, a vif-value that is near 10 or 

higher calls for concern.  

 

More information help estat vif 

 

Another way of assessing multicollinearity is using the estat vce command, with the 

corr (short for correlation) option.  

 

More information help estat vce 

 

Practical example 

The first step is re-run the multiple linear regression model. The quietly option is 

included in the beginning of the command to suppress the output. 

 
quietly reg gpa cognitive bullied ib1.skipped if pop_linear==1 

 

Next, we try the estat vif command.  

 

estat vif 

 

 
    Variable |       VIF       1/VIF   

-------------+---------------------- 

   cognitive |      1.02    0.984328 

     bullied |      1.02    0.981538 

     skipped | 

          2  |      1.13    0.887427 

          3  |      1.13    0.887926 

-------------+---------------------- 

    Mean VIF |      1.07 

 

 

We get a mean vif-value of 1.07, which tells us that we do not seem to have any 

problems with multicollinearity in this model. 
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Let us also try the estat vce command. By adding the corr (=correlation) option, we 

will get a correlation matrix instead of a covariance matrix. 

 

estat vce, corr 

 

 
Correlation matrix of coefficients of regress model 

 

             |                            2.        3.           

        e(V) | cognit~e   bullied   skipped   skipped     _cons  

-------------+-------------------------------------------------- 

   cognitive |   1.0000                                          

     bullied |   0.1251    1.0000                                

   2.skipped |   0.0061    0.0472    1.0000                      

   3.skipped |   0.0088    0.0406    0.3338    1.0000            

       _cons |  -0.9473   -0.2005   -0.2255   -0.1589    1.0000 

 

 

The table shows the correlations between the different variables/categories. In line 

with the earlier sections on correlation analysis (see Chapter 7.2), we can conclude 

that the coefficients suggest (very) weak correlations here.   
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Content 

This chapter starts with an introduction to logistic regression and then presents the 

function in Stata. After this, we offer some practical examples of how to perform 

simple and multiple logistic regression, as well as how to generate and interpret model 

diagnostics.  
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13.1 Introduction 

Logistic regression is used when y is categorical with only two categories, i.e. 

dichotomous/binary (see Section 3.3).  

 

Cases and non-cases 

A logistic regression is based on the fact that the outcome has only two possible 

values: 0 or 1. Often, the value 1 is used to denote a “case” whereas the value 0 is then 

a “non-case”. What is meant by case or non-case depends on how the hypothesis is 

formulated. 

 

Example 

a. We want to investigate the association between educational attainment (x) and 

employment (y). Our hypothesis is that educational attainment is positively 

associated with employment (i.e. higher educational attainment = more likely to be 

employed). 

Coding of employment: 0=Unemployment (non-case); 1=Employment (case). 

 

b. We want to investigate the association between educational attainment (x) and 

unemployment (y). Our hypothesis is that educational attainment is negatively 

associated with unemployment (i.e. higher educational attainment = less likely to 

be unemployed). 

Coding of unemployment: 0=Employment (non-case); 1=Unemployment (case). 

 

Logistic regression is used to predict the odds of being a case, compared to not being 

a case, based on the values of x. We get a coefficient – called log odds – that shows 

the effect of x on y. The log odds are the natural logarithm of the odds. These 

coefficients are not easy to interpret. Instead, we usually focus on something called 

the odds ratio (OR). The OR is calculated by taking the exponent of the coefficient. 

This part is further explained below. 
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Why not use linear regression? 

With linear regression, we model the mean outcome. When we have a binary outcome, 

the mean is a probability. 

 

What is a probability? 

• The extent to which an event is likely to occur. Or, if we stick to the 

terminology presented earlier: the extent to which the outcome is likely to 

be a case. 

• If the probability of the outcome being a case is p, then the probability of 

the outcome being a non-case is 1-p. 

• The formula can be expressed as: p(case)=number of cases/total number of 

cases+non-cases. 

• Probabilities always range between 0 and 1. 

 
Example  

We have a sample of 10 individuals, of which 3 are diagnosed with depression 

(cases), and 7 are not (non-cases). The probability of depression in the sample is 

thus 3/10=0.3 (can also be expressed as percentages, which would be 30%). 

 

Moreover, 5 of the individuals are men, of which 1 is a case and 4 are non-cases. 

The remaining 5 individuals are women, of which 2 are cases and 3 are non-cases. 

The probability of depression among men is thus 1/5=0.2 (20%) whereas the 

probability of depression among women is 2/5=0.4 (40%). 
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If we were to fit a linear regression for a binary outcome, it is fully possible that we 

will have predicted values that are outside of the range of probabilities (i.e. below 0 

and/or above 1). See for example the figure below, where a binary outcome is 

modelled together with a continuous x-variable, using linear regression. 

 

 

 
 

 

Apart from this, applying a linear regression to a binary outcome will violate several 

of the other assumptions of linear regression analysis (normality, homoscedasticity).  
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The logistic function 

Instead, we can apply a generalised linear model (GLM) which uses a link function 

that allows the outcome to vary linearly with the predicted values instead of varying 

linearly with the x-variable(s). For logistic regression, the link function that we choose 

is the logistic function. Through this, we restrict the probabilities to vary between 0 

and 1. See for example the figure below, where a binary outcome is modelled together 

with a continuous x-variable, using logistic regression. 
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But how does the logistic function work? Well, it transforms probabilities to log odds, 

using maximum likelihood estimation. For logistic regression, the maximum 

likelihood method is the equivalent to ordinary least squares (OLS). 

   

What are odds? 

• The probability that the outcome will be a case, divided by the probability 

that the outcome will be a non-case.  

• Can take any value from zero to infinity. 

• If the probability of the outcome being a case is p, then the odds of the 

outcome being a case is p/(1-p). 

 

Example: In our sample, the probability of having been diagnosed with depression 

is 0.3. This means that the odds of depression are 0.3/1-0.3=0.4286 (rounded value). 

 

For men, the probability of having been diagnosed with depression is 0.2. Their 

odds of depression are thus 0.2/1-0.2=0.25. For women, the probability of having 

been diagnosed with depression is 0.4. Their odds of depression are thus 0.4/1-

0.4=0.6667 (rounded value). 

 

What are log odds? 

• The logarithm of the odds (the logarithm is the power to which a number 

must be raised in order to produce some other number). 

• Also referred to as the logit of the probability. 

• Can take any value. 

• Is symmetric around zero. 

• Estimated as: log(p/1-p). 

 

Example: In our sample, the odds of depression are 0.4286. This corresponds to log 

odds of -0.8472. For men, the odds of depression are 0.25, which means that the 

log odds are -1.3863. The odds among women are 0.667 and their log odds are thus 

-0.4054. That is a difference of 0.9808 (rounded value) between men and women 

(women have 0.9808 higher log odds than men).  
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So far, so good! But as we previously mentioned, the log odds are not easy to interpret. 

That is why it is very common to convert them to odds ratios. 

 

What is an odds ratio (OR)? 

• The exponent of the log odds (the exponent is a special way expressing 

repeated multiplications). 

• Can take any value from zero to infinity. 

• Estimated as: exp(log odds). 

 

Example: A difference of 0.9808 between men and women, corresponds to an OR 

of 2.67 (rounded value). Thus, women have 2.67 times the odds of depression 

compared to men.  

 

Before we continue, let us revisit the mathematical expression for linear regression: 

 

y=a+bx+e 

 

• y (or rather y hat; ŷ) is the predicted value of y. 

• a is the intercept (or constant), i.e. the value of y when x=0. 

• b is the slope (steepness) of the regression line, i.e. how much y changes per 

unit increase in x. 

• x is the value of x. 

• e is the error term (or residual), i.e. the error in predicting the value of y given 

the value of x. 

 

For logistic regression, the formula is: 

 

log(p/1-p)=a+bx+e 

 

• log(p/1-p) is the log transformation of the probability that the outcome will 

be a case, divided by the probability that the outcome will be a non-case. 

• a is the intercept (or constant), i.e. the log odds of y when x=0. 

• b is the change in log odds per unit increase in x. Can be transformed to odds 

ratio by taking the exponent of b. Can be transformed back to log odds by 

taking the log of the odds ratio. 

• x is the value of x. 

• e is the error term (or residual), i.e. the error in predicting the probability of y 

given the value of x. 

 
Other names for logistic regression 

We have chosen to use the term logistic regression when we refer to binary logistic 

regression or binomial regression (in reality, ordinal regression and multinomial 

regression are also types of logistic regressions, see Chapters 14-15). Other names for 

this type of regression model are, e.g., logit regression and generalized linear model 

(GLM) with logit link function.  
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13.1.1 Logistic regression in short 

If you have only one x, it is called simple regression, and if you have more than one 

x, it is called multiple regression.  

 

Regardless of whether you are doing a simple or a multiple regression, x-variables 

can be categorical (nominal/ordinal) and/or continuous (ratio/interval). 

 

Key information from logistic regression 

Effect  

Odds ratio (OR) The exponent of log odds 

Log odds The logarithm of odds 

Odds The probability of the outcome being 

case divided by the probability of the 

outcome being a non-case 

Probability The probability of an event 

happening 

Direction   

Negative OR below 1 

Positive OR above 1 

Statistical significance  

P-value p<0.05 Statistically significant at the 5% level 

p<0.01 Statistically significant at the 1% level 

p<0.001 Statistically significant at the 0.1% level 

95% Confidence intervals Interval does not include 1: 

Statistically significant at the 5% level 

Interval includes 1:  

Statistically non-significant at the 5% level 

 

Odds ratio (OR) 

In logistic regression analysis, the effect that x has on y is reflected by an odds ratio 

(OR): 

 

OR below 1 For every unit increase in x, the odds of y decreases. 

OR above 1 For every unit increase in x, the odds of y increases. 

 

Exactly how one interprets the OR in plain writing depends on the measurement scale 

of the x-variable. That is why we will present examples later for continuous, binary, 

and categorical (non-binary) x-variables. 

 

Note Unlike linear regression, where the null value (i.e. value that denotes no 

difference) is 0, the null value for logistic regression is 1.  

 

Note An OR can never be negative – it can range between 0 and infinity. 
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How to not interpret odds ratios 

 

Odds ratios are not the same as risk ratios (see Section 4.7.6). ORs tend to be inflated 

when they are above 1 and understated when they are below 1. This becomes more 

problematic the more common the outcome is (i.e. the more “cases” we have). 

However, the rarer the outcome is (<10% is usually considered a reasonable cut-off 

here), the closer odds ratios and risks ratios become. 

 

Many would find it compelling to interpret ORs in terms of percentages. For example, 

an OR of 1.20 might lead to the interpretation that the odds of the outcome increase 

by 20%. If the OR is 0.80, some would then suggest that the odds decrease by 20%. 

We would to urge you to carefully reflect upon the latter kind of interpretation since 

odds ratios are not symmetrical: it can take any value above 1 but cannot be below 0. 

Thus, the choice of reference category might lead to quite misleading conclusions 

about effect size. The former kind of interpretation is usually considered reasonable 

when ORs are below 2. If they are above 2, it is better to refer to “times”, i.e. an OR 

of 4.07 could be interpreted as “more than four times the odds of…”.  

 

Take home messages 

Do not interpret odds ratios as risk ratios, unless the outcome is rare (<10%, but 

even then, be careful). 

It is completely fine to discuss the results more generally in terms of higher or lower 

odds/risks. However, if you want to give exact numbers to exemplify, you need to 

consider the asymmetry of odds ratios as well as the size of the OR. 

 

Some examples  

• The results suggest that women (OR=0.84) are less likely than men to 

subscribe to a daily newspaper. 

• Based on logistic regression analysis, it may be concluded that individuals 

with more behavioural problems in childhood have a greater risk of drug 

abuse in adulthood (OR=1.49). 

• There is a negative association between educational attainment and number 

of children: the higher the educational attainment, the lower the number of 

children (OR=0.90). 

• Individuals living in urban areas (OR=0.33) are less likely compared to 

those living in rural areas to own a horse. 

 

Note Do you have a binary outcome and would like to produce risk ratios instead of 

odds ratios? Perform a Poisson regression analysis for your binary outcome. The 

coefficients that you produce will be equivalent to risk ratios (and not incidence rate 

ratios). For more information on how to conduct Poisson regression, see Chapter 15. 
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P-values and confidence intervals 

In logistic regression analysis you can get information about statistical significance, 

in terms of both p-values and confidence intervals (also see Section 5.2).  

 

Note The p-values and the confidence intervals will give you partly different 

information, but they are not contradictory. If the p-value is below 0.05, the 95% 

confidence interval will not include 1 and, if the p-value is above 0.05, the 95% 

confidence interval will include 1. 

  

When you look at the p-value, you can rather easily distinguish between the 

significance levels (i.e. you can directly say whether you have statistical significance 

at the 5% level, the 1% level, or the 0.1% level).  

 

Concerning confidence intervals, Stata will by default choose 95% level confidence 

intervals. It is however possible to change the confidence level for the intervals. For 

example, you may instruct Stata to show 99% confidence intervals instead. 

 

R-Squared 

R-Squared (or R2) does not work very well due to the assumptions behind logistic 

regression. Stata produces a pseudo R2, but due to inherent bias this is seldom used. 

 

Simple versus multiple regression models 

The difference between simple and multiple regression models, is that in a multiple 

regression each x-variable’s effect on y is estimated while accounting for the other x-

variables’ effects on y. We then say that these other x-variables are “held constant”, 

or “adjusted for”, or “controlled for”. Because of this, multiple regression analysis is 

a way of dealing with the issue of confounding variables, and to some extent also 

mediating variables (see Section 9.3). 

 

It is highly advisable to run a simple regression for each of the x-variables before 

including them in a multiple regression. Otherwise, you will not have anything to 

compare the adjusted coefficients with (i.e. what happened to the coefficients when 

other x-variables were included in the analysis). Including multiple x-variables in the 

same model usually (but not always) means that they become weaker – which would 

of course be expected if the x-variables overlapped in their effect on y.   

 

A note    

Remember that a regression analysis should follow from theory as well as a 

comprehensive set of descriptive statistics and knowledge about the data. In the 

following sections, we will – for the sake of simplicity – not form any elaborate 

analytical strategy where we distinguish between x-variables and z-variables (see 

Section 9.3). However, we will define an analytical sample and use a so-called pop 

variable (see Section 11.5).  
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13.2 Function 

Basic command logistic depvar indepvars 

Explanations depvar 

indepvars 

Insert the name of the y-variable. 

Insert the name of the x-variable(s) that you 

want to use. 

More information help logistic 

 
Note The logistic command automatically produces odds ratios. If you, for some 

reason, want to produce log odds instead, try logit.  

 

A walk-through of the output 

When we perform a logistic regression in Stata, the table looks like this: 

 

 
Logistic regression                             Number of obs     =      8,886 

                                                LR chi2(2)        =      89.41 

                                                Prob > chi2       =     0.0000 

Log likelihood = -2694.8097                     Pseudo R2         =     0.0163 

 

------------------------------------------------------------------------------ 

        yvar | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       xvar1 |   .5758398   .0436167    -7.29   0.000     .4963954    .6679986 

       xvar2 |   .9695844   .0051825    -5.78   0.000     .9594798    .9797953 

       _cons |   .2809438   .0389031    -9.17   0.000     .2141663    .3685427 

------------------------------------------------------------------------------ 

Note: _cons estimates baseline odds. 

 

 
In this example, yvar is a binary (0/1) variable, whereas xvar1 is a binary (0/1) variable 

and xvar2 is a continuous variable ranging between 1 and 40. 
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The upper part of the table shows a model summary. This is what the different rows 

mean: 

 

Row Explanation 

Log likelihood This value does not mean anything in itself, but can be 

used if we would like compare nested models. 

Number of obs The number of observations included in the model. 

LR chi2(x) The likelihood ratio (LR) chi-square test. The number 

within the brackets shows the degrees of freedom (one 

per variable). 

Prob >chi2 Shows the probability of obtaining the chi-square statistic 

given that there is no statistical effect of the x-variables 

on y. If the p-value is below 0.05, we can conclude that 

the overall model is statistically significant.    

Pseudo R2 A type of R-squared value. Seldom used. 

 

The lower part of the table presents the parameter estimates from the analysis. 

  

Column Explanation 

 The first column lists the y-variable on top, followed by 

our x-variable(s). The last row represents the constant 

(intercept).  

Odds ratio These are the odds ratios. 

Std. Err. The standard errors associated with the coefficient. 

Z Z-value (coefficient divided by the standard error of the 

coefficient). 

P>|z| P-value. 

[95% Conf. Interval] 95% confidence intervals (lower limit and upper limit). 
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The analytical sample used for the examples 

In the subsequent sections, we will use the following variables: 

 

 

Dataset: StataData1.dta 

 

Name    Label 

earlyret  Early retirement (Age 50, Year 2020) 

bmi   Body mass index (Age 20, Year 1990) 

sex   Sex 

educ   Educational level (Age 40, Year 2010) 

 

 

sum earlyret bmi sex educ 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

    earlyret |      8,773    .1371253    .3439992          0          1 

         bmi |      8,385    22.64526     3.50581   10.97624   39.25653 

         sex |     10,000       .4892    .4999083          0          1 

        educ |      9,183    2.173691    .7263263          1          3 

 

 

We define our analytical sample through the following command: 

 

gen pop_logistic=1 if earlyret!=. & bmi!=. & sex!=. & educ!=. 

 

This means that new the variable pop_logistic gets the value 1 if the four variables do 

not have missing information. In this case, we have 7,406 individuals that are included 

in our analytical sample. 

 

tab pop_logistic 

 

 
pop_logisti | 

          c |      Freq.     Percent        Cum. 

------------+----------------------------------- 

          1 |      7,406      100.00      100.00 

------------+----------------------------------- 

      Total |      7,406      100.00 

 

 

  



 

292 

 

13.3 Simple logistic regression 

Quick facts 

Number of variables One dependent (y) 

One independent (x) 

Scale of variable(s) Dependent: binary 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 

 

13.3.1 Simple logistic regression with a continuous x 

 

Theoretical examples 

 

Example 1  

Suppose we want to examine the association between unemployment days (x) and 

depression (y) by means of simple logistic regression analysis. Unemployment days 

are measured as the total number of days in unemployment during a year, and 

ranges from 0 to 365. Depression has the values 0=No and 1=Yes. Let us say that 

we get an OR that is 1.03. That would mean that we have a positive association: the 

higher the number of unemployment days, the higher the risk of depression. 

 

Example 2  

In another example, we may examine the association between intelligence scores 

(x) and drug use (y). Intelligence scores are measured by a series of tests that render 

various amounts of points, and ranges between 20 and 160 points. Drug use has the 

values 0=No and 1=Yes. Here, we get an OR of 0.91. We can thus conclude that 

the risk of using drugs decreases for every unit increase in intelligence scores. 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

earlyret  Early retirement (Age 50, Year 2020) 

bmi   Body mass index (Age 20, Year 1990) 

 

 

sum earlyret bmi if pop_logistic==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

    earlyret |      7,406    .1259789     .331848          0          1 

         bmi |      7,406    22.62361    3.506361   11.11549   39.25653 

 

 

logistic earlyret bmi if pop_logistic==1 

 

 
Logistic regression                             Number of obs     =      7,406 

                                                LR chi2(1)        =       0.27 

                                                Prob > chi2       =     0.6024 

Log likelihood = -2804.2996                     Pseudo R2         =     0.0000 

 

------------------------------------------------------------------------------ 

    earlyret | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         bmi |   1.005211   .0100237     0.52   0.602     .9857555     1.02505 

       _cons |   .1281317   .0293128    -8.98   0.000     .0818326    .2006257 

------------------------------------------------------------------------------ 

Note: _cons estimates baseline odds. 

 

 

When we look at the results for bmi, we see that the odds ratio (OR) is 1.00 or, more 

precisely, 1.005211. Thus, one unit increase in bmi does almost not change the odds 

of earlyret at all.  

 

The association between bmi and earlyret is not statistically significant, as reflected 

in the p-value (0.60) and the 95% confidence intervals (0.99-1.03). 

 

Summary 

There is a positive association between body mass index at age 15 and early 

retirement at age 50. The association is nonetheless very weak (OR=1.005) and 

statistically non-significant (95% CI=0.99-1.03).   
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13.3.2 Simple logistic regression with a binary x 

 

Theoretical examples 

 

Example 1  

Suppose we want to examine the association between gender (x) and alcohol abuse 

(y). Gender has the values 0=Man and 1=Woman, whereas alcohol abuse has the 

values 0=No and 1=Yes. Now, we get an OR of 0.66. This would mean that women 

are less likely compared to men to abuse alcohol.  

 

Example 2 

Here, we want to examine the association between having young children (x) and 

owning a pet (y). Having young children is measured as either 0=No young children 

and 1=Young children. Owning a pet has the values 0=No and 1=Yes. Let us say 

that we get an OR that is 1.49. We can hereby conclude that it is more common to 

own a pet in families with young children compared to families without young 

children. 
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Practical example 

 
 

Dataset: StataData1.dta 

 

Name    Label 

earlyret  Early retirement (Age 50, Year 2020) 

sex   Sex 

 

 

sum earlyret sex if pop_logistic==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

    earlyret |      7,406    .1259789     .331848          0          1 

         sex |      7,406    .5213341    .4995784          0          1 

 

 

The variable sex is binary: 0=Man, 1=Woman. When we add it to the model, the 

category with the lowest value will be the reference category (i.e. Man). 

 

logistic earlyret sex if pop_logistic==1 

 

 
Logistic regression                             Number of obs     =      7,406 

                                                LR chi2(1)        =      55.53 

                                                Prob > chi2       =     0.0000 

Log likelihood = -2776.6704                     Pseudo R2         =     0.0099 

 

------------------------------------------------------------------------------ 

    earlyret | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         sex |   1.701551   .1231687     7.34   0.000     1.476487    1.960921 

       _cons |   .1064295   .0060624   -39.33   0.000     .0951866    .1190003 

------------------------------------------------------------------------------ 

Note: _cons estimates baseline odds. 

 

 

When we look at the results for sex, we see that the odds ratio (OR) is 1.70. Now, it 

is important to remember the coding of sex: 0=Man, 1=Woman. Thus, a unit increase 

in sex is the same as being a woman compared to a man. Since men are the reference 

category, they automatically get the OR 1.00. The specific odds ratio of 1.70 can be 

interpreted as women having higher odds of earlyret compared to men. 

 

There is a statistically significant association between sex and earlyret, as reflected in 

the p-value (0.000) and the 95% confidence intervals (1.48-1.96). 

 

Summary 

Women are more likely to have experienced early retirement at the age of 50, as 

compared to men (OR=1.70, 95% CI=1.48 to 1.96).  
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13.3.3 Simple logistic regression with a categorical (non-
binary) x 

 

Theoretical examples 

 

Example 1 

We want to investigate the association between educational attainment (x) and 

divorce (y). Educational attainment has the values: 1=Compulsory, 2=Upper 

secondary, and 3=University. We choose Compulsory as our reference category. 

Let us say that we get an OR for upper secondary education that is 0.82 and we get 

an OR for university education that is 0.69. We can thus conclude – based on the 

direction of the estimates – that higher levels of educational attainment are 

associated with a lower risk of divorce.  

 

Example 2 

Suppose we are interested in the association between family type (x) and children’s 

average school marks (y). Family type has three categories: 1=Two-parent 

household, 2=Joint custody, and 3=Single-parent household. We choose Two-

parent household as our reference category. Children’s average school marks are 

categorised into 0=Above average and 1=Below average. The analysis results in an 

OR of 1.02 for Joint custody and an OR of 1.55 for Single-parent household. That 

would mean that children living in family types other than two-parent households 

are more likely to have school marks below average.  
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Practical example 

 
 

Dataset: StataData1.dta 

 

Name    Label 

earlyret  Early retirement (Age 50, Year 2020) 

educ   Educational level (Age 40, Year 2010) 

 

 

sum earlyret educ if pop_logistic==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

    earlyret |      7,406    .1259789     .331848          0          1 

        educ |      7,406     2.20902    .7122387          1          3 

 

 

The variable educ has three categories: 1=Compulsory, 2=Upper secondary, and 

3=University. Here, we (with ib1) specify that the first category (Compulsory) will be 

the reference category.  

 

logistic earlyret ib1.educ if pop_logistic==1 

 

 
Logistic regression                             Number of obs     =      7,406 

                                                LR chi2(2)        =     138.66 

                                                Prob > chi2       =     0.0000 

Log likelihood = -2735.1032                     Pseudo R2         =     0.0247 

 

---------------------------------------------------------------------------------- 

        earlyret | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

            educ | 

Upper secondary  |   .7062803   .0611141    -4.02   0.000     .5961053    .8368184 

     University  |   .3291693   .0334052   -10.95   0.000     .2697966    .4016077 

                 | 

           _cons |   .2399608   .0170711   -20.06   0.000       .20873    .2758645 

---------------------------------------------------------------------------------- 

Note: _cons estimates baseline odds. 

 

 

When we look at the results for educ, we see two odds ratios: one for Upper secondary 

and one for University. They are compared to the reference category, which in this 

case in Compulsory (OR=1.00). The odds ratio for Upper secondary is 0.71, meaning 

that those with upper secondary education have lower odds of earlyret, compared to 

those with compulsory education. The odds ratio for University is 0.33, which 

suggests that these individuals are even less likely to having retired at age 50, 

compared to those with compulsory education. 

 

The dummies for educ are both significantly different from the reference category, as 
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reflected in the p-value (0.000) and the 95% confidence intervals (0.60-0.84, and 0.27-

0.40 respectively). 

 

Test the overall effect 

 

The output presented and interpreted above, is based on the odds ratios for the dummy 

variables of educ. But what about the overall statistical effect of educ on earlyret? We 

can assess it through contrast, which is a postestimation command.  

 

contrast p.educ, noeffects 

 

 
Contrasts of marginal linear predictions 

 

Margins      : asbalanced 

 

------------------------------------------------ 

             |         df        chi2     P>chi2 

-------------+---------------------------------- 

        educ | 

   (linear)  |          1      119.89     0.0000 

(quadratic)  |          1        8.64     0.0033 

      Joint  |          2      127.75     0.0000 

------------------------------------------------ 

 

 

Here, we focus on the row for linear, which shows a p-value (P>chi2) below 0.05. 

This suggests that we have a statistically significant trend in earlyret according to 

educ. 

 

More information help contrast 
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We will also produce a graph of the trend. First, however, we need to apply the post-

estimation command margins. 

 

Note This command can also be used for variables that are continuous or binary, but 

is particularly useful for categorical, non-binary (i.e. ordinal) variables.   

 

margins educ 

 

 
Adjusted predictions                            Number of obs     =      7,406 

Model VCE    : OIM 

 

Expression   : Pr(earlyret), predict() 

 

---------------------------------------------------------------------------------- 

                 |            Delta-method 

                 |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

            educ | 

     Compulsory  |   .1935229   .0111031    17.43   0.000     .1717612    .2152846 

Upper secondary  |   .1449188   .0061039    23.74   0.000     .1329555    .1568822 

     University  |   .0732054   .0049102    14.91   0.000     .0635815    .0828293 

---------------------------------------------------------------------------------- 
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marginsplot 

 

 

 
 

 

This is our marginsplot. A quite clear trend is shown here. 

 

Note The y-axis shows predicted probabilities (i.e. not log odds or odds ratios).  

 

More information help marginsplot 

 

Summary 

There is a negative association between educational level and early retirement; the 

higher the educational level, the lower the odds of early retirement (Upper 

secondary vs Compulsory: OR=0.71, 95% CI=0.60-0.84; University vs 

Compulsory: OR=0.33, 95% CI=0.27-0.40). 
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13.4 Multiple logistic regression 

Quick facts 

Number of variables One dependent (y) 

At least two independent (x) 

Scale of variable(s) Dependent: binary 

Independent: categorical (nominal/ordinal) and/or 

continuous (ratio/interval) 

 

Example 

Suppose we are interested to see if having young children (x), residential area (x), 

and income (x) are related to owning a pet (y). Having young children is measured 

as either 0=No young children and 1=Young children. Residential area has the 

values 1=Metropolitan, 2=Smaller city, and 3=Rural. We choose Metropolitan as 

our reference category. Income is measured as the yearly household income from 

salary in thousands of SEK (ranges between 100 and 700 SEK). Owning a pet has 

the values 0=No and 1=Yes.   

 

We get an OR for Young children that is 1.30. That means that those who have 

young children are more likely to also own a pet, compared to those who do not 

have young children. This association is adjusted for residential area and income.  

 

With regards to residential area, we get an OR for Smaller city of 1.78, whereas the 

OR for Rural is 4.03. This suggests that those who live in a smaller city are more 

likely to own a pet, and so are those living in rural areas. These results are adjusted 

for having young children and income.  

 

Finally, the OR for income is 0.93. This suggests that for every unit increase in 

income (i.e. for every additional one thousand SEK), the likelihood of owning a pet 

decreases. This association is adjusted for having young children as well as 

residential area.     
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Practical example 

 
 

Dataset: StataData1.dta 

 

Name    Label 

earlyret  Early retirement (Age 50, Year 2020) 

bmi   Body mass index (Age 20, Year 1990) 

sex   Sex 

educ   Educational level (Age 40, Year 2010) 

 

 

sum earlyret bmi sex educ if pop_logistic==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

    earlyret |      7,406    .1259789     .331848          0          1 

         bmi |      7,406    22.62361    3.506361   11.11549   39.25653 

         sex |      7,406    .5213341    .4995784          0          1 

        educ |      7,406     2.20902    .7122387          1          3 

 

 

logistic earlyret bmi sex ib1.educ if pop_logistic==1 

 

 
Logistic regression                             Number of obs     =      7,406 

                                                LR chi2(4)        =     205.06 

                                                Prob > chi2       =     0.0000 

Log likelihood = -2701.9047                     Pseudo R2         =     0.0366 

 

---------------------------------------------------------------------------------- 

        earlyret | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

             bmi |   1.013217   .0101501     1.31   0.190     .9935174    1.033308 

             sex |   1.815529   .1349486     8.02   0.000     1.569398     2.10026 

                 | 

            educ | 

Upper secondary  |   .6751302   .0590041    -4.50   0.000     .5688469    .8012715 

     University  |   .3129199   .0320419   -11.35   0.000     .2560195    .3824664 

                 | 

           _cons |   .1316595   .0330562    -8.08   0.000     .0804893    .2153607 

---------------------------------------------------------------------------------- 

Note: _cons estimates baseline odds. 

 

 

In this model, we have three x-variables: bmi, sex, and educ. When we put them 

together, their statistical effect on earlyret is mutually adjusted. 
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When it comes to the odds ratios, they have changed in comparison to the simple 

regression models. For example, the odds ratio for bmi has increased slightly from 

1.005 to 1.013. The odds ratio for sex is also higher now: 1.82 instead of 1.70. 

Concerning the categories of educ, we see that the odds ratio for Upper secondary has 

also become slightly stronger (i.e. become further from 1) from 0.71 to 0.68, and the 

odds ratio for University is 0.31 instead of 0.33. 

 

The associations between the sex and earlyret on the one hand, and between educ and 

earlyret on the other hand, are still statistically significant (p<0.05) after mutual 

adjustment. The association between bmi and earlyret remains statistically non-

significant. 

 

Note A specific odds ratio from a simple logistic regression model can increase when 

other x-variables are included. Usually, it is just “noise”, i.e. not any large increases, 

and therefore not much to be concerned about. But it can also reflect that there is 

something going on that we need to explore further. There are many possible 

explanations for increases in multiple regression models: a) We actually adjust for a 

confounder and then “reveal” the “true” statistical effect. b) There are interactions 

among the x-variables in their effect on the y-variable. c) There is something called 

collider bias (which we will not address in this guide) which basically mean that both 

the x-variable and the y-variable causes another x-variable in the model. d) The simple 

regression models and the multiple regression model are based on different samples. 

e) It can be due to rescaling bias (see Chapter 18). 

 

Summary 

In the fully adjusted model, it can be observed that odds ratios for body mass index 

at age 20, sex, and educational level at age 40, with regard to early retirement at 

age 50, become slightly stronger in comparison to the simple (unadjusted) models. 
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Estimates table and coefficients plot 

 

If we have multiple models, we can facilitate comparisons between the regression 

models by asking Stata to construct estimates tables and coefficients plots. What we 

do is to run the regression models one-by-one, save the estimates after each, and than 

use the commands estimates table and coefplot.  

 

The coefplot option is not part of the standard Stata program, so unless you already 

have added this package, you need to install it: 

 

ssc install coefplot 

 

As an example, we can include the three simple regression models as well as the 

multiple regression model. The quietly option is included in the beginning of the 

regression commands to suppress the output. 

 

Run and save the first simple regression model: 

 

quietly logistic earlyret bmi if pop_logistic==1 

 

estimates store model1 

 

Run and save the second simple regression model: 

 

quietly logistic earlyret sex if pop_logistic==1 

 

estimates store model2 

 

Run and save the third simple regression model: 

 

quietly logistic earlyret ib1.educ if pop_logistic==1 

 

estimates store model3 

 

Run and save the multiple regression model: 

 

quietly logistic earlyret bmi sex ib1.educ if pop_logistic==1 

 

estimates store model4 
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Produce the estimates table (include the option eform to show odds ratios): 

 

estimates table model1 model2 model3 model4, eform 

 

 
------------------------------------------------------------------ 

    Variable |   model1       model2       model3       model4     

-------------+---------------------------------------------------- 

         bmi |  1.0052109                              1.0132172   

         sex |               1.7015507                 1.8155285   

             | 

        educ | 

Upper sec..  |                            .70628032    .67513018   

 University  |                            .32916928    .31291986   

             | 

       _cons |  .12813166    .10642947    .23996082    .13165953   

------------------------------------------------------------------ 

 

 

Produce the coefficients plot (include the option eform to show odds ratios): 

 

coefplot model1 model2 model3 model4, eform 

 

 

 
 

 

Note You can improve the graph by using the Graph Editor to delete “_cons” as well 

as to adjust the category and label names. 
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13.5 Model diagnostics 

The assumptions behind logistic regression are different from linear regression. For 

example, we do not need to assume that the effect of the x-variable(s) on y is linear, 

homoscedasticity or normality.  

 

More information help logistic postestimation 

 

Checklist 

Binary outcome The y-variable has to be binary. Also double-check that the 

proportion of “cases” (or “non-cases”, for that matter) is 

not too small. 

Independence of 

errors 

Data should be independent, i.e. not derived from any 

dependent samples design, e.g. before-after 

measurements/paired samples. 

Correct model 

specification 

Your model should be correctly specified. This means that 

the x-variables that are included should be meaningful and 

contribute to the model. No important (confounding) 

variables should be omitted (often referred to as omitted 

variable bias). 

Linear 

relationship 

There has to be a linear relationship between any continuous 

x-variable(s) and the log odds of the y-variable (not the same 

as the linearity assumed for linear regression). 

No outliers 

 

Outliers are individuals who do not follow the overall pattern 

of data. Sometimes referred to as influential observations 

(however, not all outliers are influential). Only relevant for 

continuous x-variables. 

No 

multicollinearity 

Multicollinearity may occur when two or more x-variables 

that are included simultaneously in the model are strongly 

correlated with each another. Actually, this does not violate 

the assumptions, but is does create greater standard errors 

which makes it harder to reject the null hypothesis.  

 

Most importantly, the model should fit the data. There are several tests to determine 

“goodness of fit” or, put differently, if the estimated model (i.e. the model with one 

or more x-variables) predicts the outcome better than the null model (i.e. a model 

without any x-variables).  
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Before going into any specific tests, we need to address the issues of “sensitivity” and 

“specificity”. By comparing the cases and non-cases predicted by the model with the 

cases and non-cases actually present in the outcome, we can draw a conclusion about 

the proportion of correctly predicted cases (sensitivity) and the proportion of correctly 

classified non-cases (specificity).   

 

Sensitivity and specificity 

 Estimated model 

  Non-case Case 

“Truth” 
Non-case True negative False positive 

Case False negative True positive 

 

A general comment about model fit: if the main interest was to identify the best model 

to predict a certain outcome, that would solely guide which x-variables we put into 

the analysis. For example, we would exclude x-variables that do not contribute to the 

model’s predictive ability. However, research is typically guided by theory and by the 

interest of examining associations between variables. If we thus have good theoretical 

reasons for keeping a certain x-variable or sticking to a certain model, we should most 

likely do that (but still, the model should not fit the data horribly). Model diagnostics 

will then be a way of showing others the potential problems with the model we use.  

 

Types of model diagnostics 

Link test Assess model specification 

Box-Tidwell and 

exponential regression 

models 

Check for linearity 

Deviance and leverage Check for influential observations 

Correlation matrix Check for multicollinearity 

The Hosmer and 

Lemeshow test 

Asses goodness of fit 

ROC curve Assess goodness of fit 
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13.5.1 Link test 

With the command linktest, we can assess whether our model is correctly specified. 

This test uses the linear predicted value (called _hat) and the linear predicted value 

squared (_hatsq) to rebuild the model. We expect _hat to be statistically significant, 

and _hatsq to be statistically non-significant. If one or both of these expectations are 

not met, the model is mis-specified. 

 

However, do not rely too much on this test – remember that you should also use theory 

and common sense to guide your decisions. It is very seldom relevant to focus on this 

test if our ambition is to investigate associations (and not to make the best possible 

prediction of the outcome).   

 

More information help linktest 

 

Practical example 

We perform this test for the full model, so let us go back to the example from the 

multiple regression analysis. The quietly option is included in the beginning of the 

command to suppress the output. 

 

quietly logistic earlyret bmi sex ib1.educ if pop_logistic==1 

 

And then we run the test: 

 

linktest 

 

 
Logistic regression                             Number of obs     =      7,406 

                                                LR chi2(2)        =     212.82 

                                                Prob > chi2       =     0.0000 

Log likelihood = -2698.0244                     Pseudo R2         =     0.0379 

 

------------------------------------------------------------------------------ 

    earlyret |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        _hat |  -.4574558   .5367606    -0.85   0.394    -1.509487    .5945756 

      _hatsq |  -.3739188    .136949    -2.73   0.006    -.6423339   -.1055036 

       _cons |  -1.330509   .5051462    -2.63   0.008    -2.320578   -.3404411 

------------------------------------------------------------------------------ 
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Since the p-value for the variable _hat is above 0.05 and the p-value for _hatsq is 

below 0.05, it means that our model is completely mis-specified. This was not 

surprising, given our problems with the multiple regression analysis earlier.  

 

We could try to amend this by transforming any of the included variables (e.g. through 

categorisation, or log transformation), excluding any of the included variables, or 

adding more variables to the model (other x-variables or e.g. interactions between the 

included variables).  

 

Of course, this should be explored before we continue to assess model fit – but for the 

sake of simplicity, we will ignore this problem in the following sections. 
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13.5.2 Box-Tidwell and exponential regression models 

The command boxtid might be helpful in checking for linearity in the effect of any 

continuous x-variable(s) on the log odds of the y-variable. Note that this can also 

provide some clues as to why the link test produced such poor results. 

 

This command requires that you install a user-written package first. So, if you have 

not installed it already, type: 

 

ssc install boxtid 

 

More information help boxtid 

 

Practical example 

Let us apply boxtid to our multiple regression model: 

 

boxtid logistic earlyret bmi sex ib1.educ if pop_logistic==1 

 

 
Logistic regression                             Number of obs     =      7,406 

                                                LR chi2(5)        =     211.62 

                                                Prob > chi2       =     0.0000 

Log likelihood = -2698.6253                     Pseudo R2         =     0.0377 

 

---------------------------------------------------------------------------------- 

        earlyret | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

         Ibmi__1 |   1.000026   .0000832     0.31   0.758     .9998625    1.000189 

         Ibmi_p1 |   .9999966   .0000672    -0.05   0.960     .9998649    1.000128 

             sex |    1.80429   .1334461     7.98   0.000     1.560814    2.085747 

                 | 

            educ | 

Upper secondary  |   .6765092   .0591659    -4.47   0.000     .5699407    .8030042 

     University  |   .3135918   .0321475   -11.31   0.000     .2565102    .3833759 

                 | 

           _cons |   .1728802   .0145507   -20.85   0.000     .1465896    .2038861 

---------------------------------------------------------------------------------- 

Note: _cons estimates baseline odds. 

------------------------------------------------------------------------------ 

bmi          |   .0131306   .0100177     1.31 Nonlin. dev. 6.556   (P = 0.010) 

          p1 |   8.513755   3.082357 

------------------------------------------------------------------------------ 

Deviance: 5397.253. 

 

 

The test of non-linearity for our continuous variable bmi is statistically significant 

(p=0.010), suggesting that the assumption of a linear effect is violated. Although we 

will not explore this further here, we could consider transformations of this variable 

(e.g. through categorisation, or log transformation). For example, we could categorise 

bmi into underweight, normal weight, overweight, and obesity.  
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13.5.3 Deviance and leverage 

We will explore three complementary ways of identifying influential observations. 

Remember that this is only relevant for the continuous x-variables in our model. 

 

 Explanation Rule of thumb 

Standardised 

Pearson residuals 

The relative deviations between the 

observed and fitted values. 

Statistic >+/-2 

Deviance residuals The difference between the maxima of 

the observed and the fitted log 

likelihood functions. 

Statistic >+/-2 

Leverage How far that an x-variable deviates 

from its mean. 

Statistic >3 times 

of the average of 

leverage 

 

More information help logistic postestimation 
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Practical example 

The first step is to re-run our multiple regression model. The quietly option is included 

in the beginning of the command to suppress the output. 

 

quietly logistic earlyret bmi sex ib1.educ if pop_logistic==1 

 

Then we generate a new variable – rstandard – that contains the standardised Pearson 

residuals. 

 

predict rstandard, rstandard 

 

Next, we generate a scatterplot for rstandard, displaying the id variable on the x-axis. 

We also include the so-called marker labels (the values of id, in this case), and a 

regression line at y=0. 

 

graph twoway scatter rstandard id, mlab(id) yline(0) 

 

 

 
 

 

Well, we can see that there are plenty of observations that have residuals greater than 

2. 
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Let us continue with the deviance residuals. We start with generating a new variable 

– deviance – which contains the deviance residuals. 

 

predict deviance, deviance 

  

Next, we generate a scatterplot for deviance, displaying the id variable on the x-axis. 

We also include the so-called marker labels (the values of id, in this case), and a 

regression line at y=0. 

 

graph twoway scatter deviance id, mlab(id) yline(0) 

 

 

 
 

 

This graph too shows that there are a lot of observations that have higher deviance 

residuals than we would like (>2). 
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Next, we consider the leverage. We begin by generating a new variable – hat – which 

contains the leverage values. 

 

predict hat, hat 

 

Next, we generate a scatterplot for hat, displaying the id variable on the x-axis. We 

also include the so-called marker labels (the values of id, in this case), and a regression 

line at y=0. 

 

graph twoway scatter hat id, mlab(id) yline(0) 
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In order to know which observations that display problematic values for leverage, we 

need to know what the mean leverage is: 

 

mean hat 

 

 
Mean estimation                   Number of obs   =      7,406 

 

-------------------------------------------------------------- 

             |       Mean   Std. Err.     [95% Conf. Interval] 

-------------+------------------------------------------------ 

         hat |   .0017924   .0000123      .0017682    .0018166 

-------------------------------------------------------------- 

 

 

Mean leverage x 3 (our preferred cut-off value, specified earlier), equals 0.0053772 

(i.e. 0.017924 x 3).  

 

There are some observations with higher values than this, but it is a bit tricky to see 

how many. Let explore this further. 

 

sum id if hat>0.0053772 & hat!=. 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

          id |         43    3770.721    2986.881         70       8585 

 

 

We thus have 43 observations with leverage values that might be considered too high. 

To see their id number, we can order another table (output will be omitted due to how 

long it gets…): 

 

tab id if hat>0.0053772 & hat!=. 

 

So, what should we do with all of this information? There as some additional 

commands that can be used to explore the importance of each (potentially) influential 

observation further. However, once again, our advice would be to give up on the 

continuous version of bmi and use a categorised one instead. 
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 13.5.4 Correlation matrix 

As the x-variables become more strongly correlated, it becomes more difficult to 

determine which of the variables are actually producing the statistical effect on the y-

variable. This is the problem with multicollinearity.  

 

One way of assessing multicollinearity is using the estat vce command, with the corr 

(short for correlation) option.  

 

More information help estat vce 

 

Practical example 

The first step is re-run the multiple logistic regression model. The quietly option is 

included in the beginning of the command to suppress the output. 

 
quietly logistic earlyret bmi sex ib1.educ if pop_logistic==1 

 

Next, we try the estat vce command. By adding the corr (=correlation) option, we will 

get a correlation matrix instead of a covariance matrix. 

 

estat vce, corr 

 

 
Correlation matrix of coefficients of logistic model 

 

             | earlyret                                          

             |                            2.        3.           

        e(V) |      bmi       sex      educ      educ     _cons  

-------------+-------------------------------------------------- 

earlyret     |                                                   

         bmi |   1.0000                                          

         sex |   0.1609    1.0000                                

      2.educ |   0.0398   -0.0692    1.0000                      

      3.educ |   0.0438   -0.0725    0.5812    1.0000            

       _cons |  -0.9452   -0.3089   -0.2593   -0.2282    1.0000 

 

 

The table shows the correlations between the different variables/categories. In line 

with the earlier sections on correlation analysis (see Chapter 7.2), we can conclude 

that the coefficients suggest (very) weak correlations here. The only exceptions are 

two of the dummies for educ, which is irrelevant since they reflect the same variable.  
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13.5.5 The Hosmer and Lemeshow test 

This test is a type of chi-square test. It indicates the extent to which the estimated 

model provides a better fit to the data (i.e. has better predictive power) than the null 

model. The test will produce a p-value: if the p-value is above 0.05 (statistically non-

significant) the estimated model has adequate fit, and if the p-value is below 0.05 

(statistically significant) the estimated model does not adequately fit the data.  

 

More information help estat gof 

 

Practical example 

Let us first go back to the example from the multiple linear regression analysis. The 

quietly option is included in the beginning of the command to suppress the output. 

 

quietly logistic earlyret bmi sex ib1.educ if pop_logistic==1 

 

And then we run the test: 

 

estat gof 

 

 
Logistic model for earlyret, goodness-of-fit test 

 

       number of observations =      7406 

 number of covariate patterns =      3782 

           Pearson chi2(3777) =      3778.63 

                  Prob > chi2 =         0.4895 

 

 

The p-value for the test (Prob > chi2) is above 0.05, suggesting that the estimated 

model has adequate fit. 
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13.5.6 ROC curve 

The ROC curve is a graph that shows how well the estimated model predicts cases 

(sensitivity) and non-cases (specificity). What we are interested in here is the “area 

under the curve” (AUC). The AUC ranges between 0.5 and 1.0. The nearer the AUC 

is to 1, the better the predictive power. On the other hand, a value of 0.5 suggests that 

we may just flip a coin to decide on whether the outcome is a case or non-case. Here 

are some commonly used cut-off points when it comes to AUC: 

 

Area under the curve (AUC) 

0.5-0.6 Fail 

0.6-0.7 Poor 

0.7-0.8 Fair 

0.8-0.9 Good 

0.9-1.0 Excellent 

 

More information help estat 

 

Practical example 

Let us first go back to the example from the multiple linear regression analysis. The 

quietly option is included in the beginning of the command to suppress the output. 

 

quietly logistic earlyret bmi sex ib1.educ if pop_logistic==1 
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Then we order the ROC curve: 

 

lroc 

 

 

 
 

 

The AUC value is 0.64, suggesting that our model has poor predictive power.  
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13.6 Linear probability modelling 

Finally, we would like to make you aware that a viable alternative to the logistic 

regression model is the linear probability model (LPM). Estimating an LPM means 

that you enforce a linear regression model (following the instructions in Chapter 12) 

on your binary outcome. The coefficients (estimates) that are derived from this 

analysis would then be interpreted as the mean difference in the outcome, i.e. 

difference in probabilities. The coefficients can thus be interpreted as risk differences. 

 

As long as we are interested in estimating and interpreting associations, and have a 

strong interest in comparing crude (i.e. unadjusted) and adjusted coefficients between 

models and/or across samples, the LPM has clear advantages over the logistic 

regression model. Apart from the fact that we do not have to bother with the 

interpretation of odds ratios, the potential problem of rescaling bias when we perform 

mediation analysis (see Chapter 18) is obliterated. We also retain statistical power for 

interaction analysis (see Chapter 19).    

 

A clear disadvantage with LPM, as highlighted in the introduction of this chapter, is 

that we might end up with predicted probabilities that are larger than 1 or smaller than 

0. This might not be a problem if the goal with our analysis is - as mentioned above - 

to examine associations rather than making predictions. Another disadvantage is that 

the interpretations of coefficients for continuos x-variables become problematic (the 

slope of the linear equation does not approximate well for values at the beginning and 

the end of the range of values). Consequently, if we have a strong interest in 

interpreting such associations we need to recode the continuos variables into groups 

and use dummy variables in our regression. Also, an additional disadvantage is that 

the error term is not normally distributed, but this is really only a problem with small 

samples.  
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14. ORDINAL REGRESSION 
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Content 

This chapter starts with an introduction to ordinal regression and then presents the 

function in Stata. After this, we offer some practical examples of how to perform 

simple and multiple ordinal regression, as well as to generate and interpret model 

diagnostics.  
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14.1 Introduction 

Ordinal regression is used when y is ordinal. This means that the outcome consists of 

three or more categories that are possible to rank (i.e. ordered categories; see Section 

3.3).  

 

Some examples 

Educational level (1=Compulsory; 2=Upper secondary; 3=University) 

 

School marks (1=Low; 2=Average; 3=High) 

 

Self-rated health (1=Excellent; 2=Good; 3=Fair; 4=Poor) 

 

Statement: “Eurovision Song Contest is entertaining” (1=Strongly agree; 2=Agree; 

3=Neither agree nor disagree; 4=Disagree; 5=Strongly disagree) 

 

Proportional odds 

Ordinal regression is a type of logistic regression that can handle the fact that the 

outcome has multiple (ordered) outcome categories. Instead of modelling the 

probability of the outcome being a case, we consider the cumulative probability across 

the outcome categories. This means that we estimate the odds of being at or above a 

given threshold across all cumulative splits.  

 

In the model, each outcome category has its own intercept (at each threshold) but the 

same coefficient for the overall x-variable. Because of this, we have to assume that 

the effect of x on the odds of the outcome being a case for each subsequent category 

is the same for every category. This reflects the notion of proportional odds 

(sometimes referred to as parallel lines), which is a key assumption behind ordinal 

regression analysis. Put differently, the proportional odds assumption means that the 

estimate between each pair of outcome categories are assumed to be the same 

regardless of which pair is considered. 

 

Other names for ordinal regression 

Sometimes, ordinal regression analysis is referred to as, e.g., ordered logit regression, 

ordinal logistic regression, or proportional odds regression.  
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14.1.1 Ordinal regression in short 

If you have only one x, it is called simple regression, and if you have more than one 

x, it is called multiple regression.  

 

Regardless of whether you are doing a simple or a multiple regression, x-variables 

can be categorical (nominal/ordinal) and/or continuous (ratio/interval). 

 

Key information from ordinal regression 

Effect  

Odds ratio (OR) The exponent of log odds 

Log odds The logarithm of odds 

Odds The probability of the outcome being 

case divided by the probability of the 

outcome being a non-case 

Probability The probability of an event 

happening 

Direction   

Negative OR below 1 

Positive OR above 1 

Statistical significance  

P-value p<0.05 Statistically significant at the 5% level 

p<0.01 Statistically significant at the 1% level 

p<0.001 Statistically significant at the 0.1% level 

95% Confidence intervals Interval does not include 1: 

Statistically significant at the 5% level 

Interval includes 1:  

Statistically non-significant at the 5% level 

 

Odds ratio (OR) 

In ordinal regression analysis, the effect that x has on y is reflected by an odds ratio 

(OR): 

 

OR below 1 For every unit increase in x, the odds of being in a higher 

ordered category of y decreases. 

OR above 1 For every unit increase in x, the odds of being in a higher 

ordered category of y increases. 

 

Exactly how one interprets the OR in plain writing depends on the measurement scale 

of the x-variable. That is why we will present examples later for continuous, binary, 

and categorical (non-binary) x-variables. 

 

Note Unlike linear regression, where the null value (i.e. value that denotes no 

difference) is 0, the null value for ordinal regression is 1.  
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Note An OR can never be negative – it can range between 0 and infinity. 

 

How to not interpret odds ratios 

 

Odds ratios are not the same as risk ratios (see Section 4.7.6). ORs tend to be inflated 

when they are above 1 and understated when they are below 1. This becomes more 

problematic the more common the outcome is (i.e. the more “cases” we have). 

However, the rarer the outcome is (<10% is usually considered a reasonable cut-off 

here), the closer odds ratios and risks ratios become. 

 

Many would find it compelling to interpret ORs in terms of percentages. For example, 

an OR of 1.20 might lead to the interpretation that the odds of being in a higher ordered 

category of the outcome increase by 20%. If the OR is 0.80, some would then suggest 

that the odds of being in a higher ordered category of the outcome decrease by 20%. 

We would to urge you to carefully reflect upon the latter kind of interpretation since 

odds ratios are not symmetrical: it can take any value above 1 but cannot be below 0. 

Thus, the choice of reference category might lead to quite misleading conclusions 

about effect size. The former kind of interpretation is usually considered reasonable 

when ORs are below 2. If they are above 2, it is better to refer to “times”, i.e. an OR 

of 4.07 could be interpreted as “more than four times the odds of…”. 

 

Take home messages 

Do not interpret odds ratios as risk ratios, unless the outcome is rare (<10%, but 

even then, be careful). 

It is completely fine to discuss the results more generally in terms of higher or lower 

odds/risks. However, if you want to give exact numbers to exemplify, you need to 

consider the asymmetry of odds ratios as well as the size of the OR. 

 

P-values and confidence intervals 

In ordinal regression analysis you can get information about statistical significance, 

in terms of both p-values and confidence intervals (also see Section 5.2).  

 

Note The p-values and the confidence intervals will give you partly different 

information, but they are not contradictory. If the p-value is below 0.05, the 95% 

confidence interval will not include 1 and, if the p-value is above 0.05, the 95% 

confidence interval will include 1. 

  

When you look at the p-value, you can rather easily distinguish between the 

significance levels (i.e. you can directly say whether you have statistical significance 

at the 5% level, the 1% level, or the 0.1% level).  

 

When it comes to confidence intervals, Stata will by default choose 95% level 

confidence intervals. It is however possible to change the confidence level for the 

intervals. For example, you may instruct Stata to show 99% confidence intervals 

instead. 
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R-Squared 

R-Squared (or R2) does not work very well due to the assumptions behind ordinal 

regression. Stata produces a pseudo R2, but due to inherent bias this is seldom used. 

 

Simple versus multiple regression models 

The difference between simple and multiple regression models, is that in a multiple 

regression each x-variable’s effect on y is estimated while accounting for the other x-

variables’ effects on y. We then say that these other x-variables are “held constant”, 

or “adjusted for”, or “controlled for”. Because of this, multiple regression analysis is 

a way of dealing with the issue of confounding variables, and to some extent also 

mediating variables (see Section 9.3). 

 

It is highly advisable to run a simple regression for each of the x-variables before 

including them in a multiple regression. Otherwise, you will not have anything to 

compare the adjusted coefficients with (i.e. what happened to the coefficients when 

other x-variables were included in the analysis). Including multiple x-variables in the 

same model usually (but not always) means that they become weaker – which would 

of course be expected if the x-variables overlapped in their effect on y.   

 

A note    

Remember that a regression analysis should follow from theory as well as a 

comprehensive set of descriptive statistics and knowledge about the data. In the 

following sections, we will – for the sake of simplicity – not form any elaborate 

analytical strategy where we distinguish between x-variables and z-variables (see 

Section 9.3). However, we will define an analytical sample and use a so-called pop 

variable (see Section 11.5). 
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14.2 Function 

Basic command ologit depvar indepvars 

Useful options ologit depvar indepvars, or 

Explanations depvar 

indepvars 

 

or 

Insert the name of the y-variable. 

Insert the name of the x-variable(s) that you 

want to use. 

Produces odds ratios. 

More information help ologit 

 
Note The ologit command produces log odds, unless otherwise specified. 

 
A walk-through of the output 

When we perform an ordinal regression in Stata, the table looks like this: 

 

 
Ordered logistic regression                     Number of obs     =      8,291 

                                                LR chi2(2)        =     457.54 

                                                Prob > chi2       =     0.0000 

Log likelihood = -10785.127                     Pseudo R2         =     0.0208 

 

------------------------------------------------------------------------------ 

        yvar | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       xvar1 |     .80466   .0322698    -5.42   0.000     .7438342    .8704597 

       xvar2 |   1.065727   .0033413    20.30   0.000     1.059198    1.072296 

-------------+---------------------------------------------------------------- 

       /cut1 |  -.2824731   .0865445                     -.4520973   -.1128489 

       /cut2 |   .8467749    .085935                      .6783453    1.015204 

       /cut3 |   2.431372   .0897729                      2.255421    2.607324 

------------------------------------------------------------------------------ 

Note: Estimates are transformed only in the first equation. 

 

 
In this example, yvar is an ordinal variable with four categories, whereas xvar1 is a 

binary (0/1) variable and xvar2 is a continuous variable ranging between 1 and 40. 
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The upper part of the table shows a model summary. This is what the different rows 

mean: 

 

Row Explanation 

Log likelihood This value does not mean anything in itself, but can be 

used if we would like compare nested models. 

Number of obs The number of observations included in the model. 

LR chi2(x) The likelihood ratio (LR) chi-square test. The number 

within the brackets shows the degrees of freedom (one 

per variable). 

Prob >chi2 Shows the probability of obtaining the chi-square statistic 

given that there is no statistical effect of the x-variables 

on y. If the p-value is below 0.05, we can conclude that 

the overall model is statistically significant.    

Pseudo R2 A type of R-squared value. Seldom used. 

 

The lower part of the table presents the parameter estimates from the analysis. 

  

Column Explanation 

 The first column lists the y-variable on top, followed by 

our x-variable(s). We also get the cut points for the levels 

of the y-variable. These are usually not interpreted. 

Odds ratio These are the odds ratios. 

Std. Err. The standard errors associated with the coefficient. 

Z Z-value (coefficient divided by the standard error of the 

coefficient). 

P>|z| P-value. 

[95% Conf. Interval] 95% confidence intervals (lower limit and upper limit). 
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The analytical sample used for the examples 

In the subsequent sections, we will use the following variables: 

 

 

Dataset: StataData1.dta 

 

Name    Label 

educ   Educational level (Age 40, Year 2010) 

gpa  Grade point average (Age 15, Year 1985) 

bullied   Exposure to bullying (Age 15, Year 1985) 

bestfriends  Number of best friends (Age 15, Year 1985)  

 

 

sum educ gpa bullied bestfriends 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

        educ |      9,183    2.173691    .7263263          1          3 

         gpa |      9,380    3.178614    .6996298          1          5 

     bullied |      8,719    .1076958    .3100137          0          1 

 bestfriends |      8,714    2.852536     1.11414          1          5 

 

 

We define our analytical sample through the following command: 

 

gen pop_ordinal=1 if educ!=. & gpa!=. & bullied!=. & bestfriends!=. 

 

This means that new the variable pop_ordinal gets the value 1 if the four variables do 

not have missing information. In this case, we have 7,986 individuals that are included 

in our analytical sample. 

 

tab pop_ordinal 

 

 
pop_ordinal |      Freq.     Percent        Cum. 

------------+----------------------------------- 

          1 |      7,986      100.00      100.00 

------------+----------------------------------- 

      Total |      7,986      100.00 
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14.3 Simple ordinal regression 

Quick facts 

Number of variables One dependent (y) 

One independent (x) 

Scale of variable(s) Dependent: ordinal 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 

 

14.3.1 Simple ordinal regression with a continuous x 

 

Theoretical examples 

 

Example 1  

Suppose we want to examine the association between unemployment days (x) and 

self-rated health (y). Unemployment days are measured as the total number of days 

in unemployment during a year, and ranges from 0 to 365. Self-rated health has the 

values 1=Poor; 2=Fair; and 3=Good. Let us say that we get an OR that is 0.93. That 

would mean that we have a negative association: the higher the number of 

unemployment days, the lower the odds of having better health. 

 

Example 2  

In another example, we may examine the association between intelligence scores 

(x) and the number of books read per month (y). Intelligence scores are measured 

by a series of tests that render various amounts of points, and ranges between 20 

and 160 points. Book reading has the values 1=0 books; 2=1-3 books; and 3=4 or 

more books. Here, we get an OR of 1.18. We can thus conclude that a higher 

intelligence score is associated with more reading of books. 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

educ  Educational level (Age 40, Year 2010) 

gpa   Grade point average (Age 15, Year 1985) 

 

 
sum educ gpa if pop_ordinal==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

        educ |      7,986    2.203231    .7143889          1          3 

         gpa |      7,986    3.214425    .6854603        1.1          5 

 

 

ologit educ gpa if pop_ordinal==1, or 

 

 
Ordered logistic regression                     Number of obs     =      7,986 

                                                LR chi2(1)        =    2024.97 

                                                Prob > chi2       =     0.0000 

Log likelihood = -7227.5609                     Pseudo R2         =     0.1229 

 

------------------------------------------------------------------------------ 

        educ | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         gpa |   4.629276    .171564    41.35   0.000     4.304939    4.978049 

-------------+---------------------------------------------------------------- 

       /cut1 |   3.035526   .1118891                      2.816228    3.254825 

       /cut2 |   5.531312   .1249445                      5.286425    5.776198 

------------------------------------------------------------------------------ 

Note: Estimates are transformed only in the first equation. 

 

 

When we look at the results for gpa, we see that the odds ratio (OR) is 4.63. In other 

words, a unit increase in gpa (e.g. going from a grade point average of 2 to 3, or from 

4 to 5) is associated with higher educational level.  

 

The association between gpa and educ is statistically significant, as reflected in the p-

value (0.000) and the 95% confidence intervals (4.30-4.98). 

 

Summary 

There is a positive association between grade point average at age 15 and 

educational level at age 40 (OR=4.63). The association is statistically significant 

(95% CI=4.30-4.98).   
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14.3.2 Simple ordinal regression with a binary x 

 

Theoretical examples 

 

Example 1  

Suppose we want to examine the association between gender (x) and educational 

level (y) by means of a simple ordinal regression analysis. Gender has the values 

0=Man and 1=Woman, whereas educational level has the values 1=Low, 

2=Medium, and 3=High. Now, we get an OR of 1.62. This would mean that women 

have higher educational attainment compared to men. 

 

Example 2  

Here we want to examine the association between having young children (x) and 

number of pets (y). Having young children is measured as either 0=No young 

children and 1=Young children. Number of pets has the values 1=No pet, 2=1-2 

pets, and 3=3 or more pets. Let us say that we get an OR that is 1.29. We can hereby 

conclude that families with young children own more pets than families without 

young children. 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

educ  Educational level (Age 40, Year 2010) 

bullied   Exposure to bullying (Age 15, Year 1985) 

 

 
sum educ bullied if pop_ordinal==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

        educ |      7,986    2.203231    .7143889          1          3 

     bullied |      7,986    .1033058    .3043769          0          1 

 

 

ologit educ bullied if pop_ordinal==1, or 

 

 
Ordered logistic regression                     Number of obs     =      7,986 

                                                LR chi2(1)        =      23.74 

                                                Prob > chi2       =     0.0000 

Log likelihood = -8228.1754                     Pseudo R2         =     0.0014 

 

------------------------------------------------------------------------------ 

        educ | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     bullied |   .7140462   .0493383    -4.87   0.000      .623607    .8176014 

-------------+---------------------------------------------------------------- 

       /cut1 |  -1.594357   .0306383                     -1.654407   -1.534307 

       /cut2 |   .4674008   .0240525                      .4202587    .5145428 

------------------------------------------------------------------------------ 

Note: Estimates are transformed only in the first equation. 

 

 

When we look at the results for bullied, we see that the odds ratio (OR) is 0.71. Put 

differently, a unit increase in bullied is associated with lower educational level. This 

means that those who were exposed to bullying are less likely to reach a higher level 

of educational attainment. 

 

The association between bullied and educ is statistically significant, as reflected in the 

p-value (0.000) and the 95% confidence intervals (0.63-0.82). 

 

Summary 

Those who were exposed to bullying at age 15 are less likely to reach higher levels 

of educational attainment at age 40 (OR=0.71; 95% CI=0.62-0.82).   
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14.3.3 Simple ordinal regression with a categorical (non-
binary) x 

 

Theoretical examples 

 

Example 1  

We want to investigate the association between educational attainment (x) and 

happiness (y). Educational attainment has the values: 1=Compulsory, 2=Upper 

secondary, and 3=University. We choose Compulsory as our reference category. 

Happiness has the values 1=Happy, 2=Neither happy not unhappy; 3=Unhappy. 

Let us say that we get an OR for Upper secondary that is 0.87 and we get an OR 

for University that is 0.66. We can thus conclude that higher educational attainment 

is associated with less unhappiness (or more happiness). 

 

Example 2  

Suppose we are interested in the association between family type (x) and adolescent 

smoking (y). Family type has three categories: 1=Two-parent household, 2=Joint 

custody, and 3=Single-parent household. We choose Two-parent household as our 

reference category. Adolescent smoking has the values 1=No, 2=Occasionally, and 

3=Frequently. The analysis results in an OR of 1.33 for Joint custody and an OR of 

3.01 for Single-parent household. That would mean that adolescents living in 

family types other than two-parent households smoke more.  
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

educ  Educational level (Age 40, Year 2010) 

bestfriends   Number of best friends (Age 15, Year 1985) 

 

 
sum educ bestfriends if pop_ordinal==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

        educ |      7,986    2.203231    .7143889          1          3 

 bestfriends |      7,986    2.865515    1.109054          1          5 

 

 

The variable bestfriends has five categories: 1=No best friends, 2=One best friend, 

3=Two best friends, 4=Three best friends, and 5=Four or more best friends. Here, we 

(with ib1) specify that the first category (No best friends) will be the reference 

category.  

 

ologit educ ib1.bestfriends if pop_ordinal==1, or 

 

 
Ordered logistic regression                     Number of obs     =      7,986 

                                                LR chi2(4)        =     259.65 

                                                Prob > chi2       =     0.0000 

Log likelihood = -8110.2232                     Pseudo R2         =     0.0158 

 

------------------------------------------------------------------------------------ 

              educ | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------------+---------------------------------------------------------------- 

       bestfriends | 

  One best friend  |   1.182315   .0859868     2.30   0.021     1.025244    1.363449 

 Two best friends  |   1.592136   .1040421     7.12   0.000     1.400736    1.809689 

Three best frie..  |     2.2905   .1618419    11.73   0.000      1.99428    2.630719 

Four or more be..  |   3.599876   .3881071    11.88   0.000     2.914194    4.446892 

-------------------+---------------------------------------------------------------- 

             /cut1 |   -1.12101   .0573805                     -1.233473   -1.008546 

             /cut2 |    .986406   .0569578                      .8747709    1.098041 

------------------------------------------------------------------------------------ 

Note: Estimates are transformed only in the first equation. 
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When we look at the results for the dummies for bestfriends, we see that the odds 

ratios range from 1.18 for One best friend, to 3.60 for Four or more best friends. Put 

differently, having more best friends is associated with higher levels of educational 

attainment.  

 

All dummies for bestfriends are significantly different from the reference category, as 

reflected in the p-values and the 95% confidence intervals. 

 

Test the overall effect 

 

The output presented and interpreted above, is based on the odds ratios for the dummy 

variables of bestfriends. Let us also assess the overall statistical effect of bestfriends 

on educ? We can assess it through contrast, which is a postestimation command.  

 

contrast p.bestfriends, noeffects 

 

 
Contrasts of marginal linear predictions 

 

Margins      : asbalanced 

 

------------------------------------------------ 

             |         df        chi2     P>chi2 

-------------+---------------------------------- 

educ         | 

 bestfriends | 

   (linear)  |          1      203.83     0.0000 

(quadratic)  |          1        7.33     0.0068 

    (cubic)  |          1        0.06     0.8038 

  (quartic)  |          1        0.06     0.8047 

      Joint  |          4      253.38     0.0000 

------------------------------------------------ 

 

 

Here, we focus on the row for linear, which shows a p-value (P>chi2) below 0.05. 

This suggests that we have a statistically significant trend in educ according to 

bestfriends. 

 

More information help contrast 
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We will also produce a graph of the trend. First, however, we need to apply the post-

estimation command margins. 

 

Note This command can also be used for variables that are continuous or binary, but 

is particularly useful for categorical, non-binary (i.e. ordinal) variables.   

 

margins bestfriends 

 

 
Adjusted predictions                            Number of obs     =      7,986 

Model VCE    : OIM 

 

1._predict   : Pr(educ==1), predict(pr outcome(1)) 

2._predict   : Pr(educ==2), predict(pr outcome(2)) 

3._predict   : Pr(educ==3), predict(pr outcome(3)) 

 

---------------------------------------------------------------------------------------------- 

                             |            Delta-method 

                             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------------------+---------------------------------------------------------------- 

        _predict#bestfriends | 

          1#No best friends  |    .245824    .010638    23.11   0.000     .2249739    .2666742 

          1#One best friend  |   .2161095   .0086269    25.05   0.000      .199201     .233018 

         1#Two best friends  |   .1699353   .0057761    29.42   0.000     .1586143    .1812562 

       1#Three best friends  |   .1245774   .0054542    22.84   0.000     .1138873    .1352675 

1#Four or more best friends  |   .0830272   .0073103    11.36   0.000     .0686992    .0973553 

          2#No best friends  |   .4825534   .0059961    80.48   0.000     .4708013    .4943055 

          2#One best friend  |      .4779   .0061759    77.38   0.000     .4657955    .4900045 

         2#Two best friends  |   .4575234   .0062073    73.71   0.000     .4453573    .4696894 

       2#Three best friends  |   .4147502   .0074558    55.63   0.000     .4001371    .4293633 

2#Four or more best friends  |   .3438769   .0158128    21.75   0.000     .3128844    .3748695 

          3#No best friends  |   .2716225   .0112687    24.10   0.000     .2495362    .2937089 

          3#One best friend  |   .3059905   .0104606    29.25   0.000     .2854881    .3264928 

         3#Two best friends  |   .3725414   .0084756    43.95   0.000     .3559295    .3891532 

       3#Three best friends  |   .4606724   .0109558    42.05   0.000     .4391996    .4821453 

3#Four or more best friends  |   .5730958   .0225505    25.41   0.000     .5288977     .617294 

---------------------------------------------------------------------------------------------- 

 

 

  



 

337 

 

marginsplot 

 

 

 
 

 

Note The y-axis shows predicted probabilities (i.e. not log odds or odds ratios). The 

different colours reflect the different levels of the y-variable. 

 

This graph is quite interesting. It shows that the greater the number of best friends, the 

lower the probabilities of compulsory education, and the higher the probabilities of 

university education. The trend for upper secondary education is rather unexpected it 

is quite flat first, and then decreasing. 

 

More information help marginsplot 

 

Summary 

There seem to be a quite clear, and statistically significant, trend in level of 

educational attainment at age 40 according to the number of best friends at age 15. 

Having more friends is particularly associated with higher probabilities of 

university education.  
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14.4 Multiple ordinal regression 

Quick facts 

Number of variables One dependent (y) 

At least two independent (x) 

Scale of variable(s) Dependent: ordinal 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 

 

Theoretical examples 

 

Example 

Suppose we are interested to see if having young children (x), residential area (x), 

and income (x) is related to alcohol consumption (y). Having young children is 

measured as either 0=No young children and 1=Young children. Residential area 

has the values 1=Metropolitan, 2=Smaller city, and 3=Rural. We choose 

Metropolitan as our reference category. Income is measured as the yearly 

household income from salary in thousands of SEK (ranges between 100 and 700 

SEK). Alcohol consumption has the values 1=None/low, 2=Medium, 3=High. 

 

In the regression analysis, we get an OR for Young children that is 0.65. That means 

that those who have young children drink less alcohol. This association is adjusted 

for residential area and income.  

 

With regards to residential area, we get an OR for Smaller city of 1.32, whereas the 

OR for Rural is 2.44. This suggests that those who live in a smaller city drink more 

alcohol, and so do those living in rural areas. These results are adjusted for having 

young children and income.  

 

Finally, the OR for income is 0.95. This suggests that for every unit increase in 

income (i.e. for every additional one thousand SEK), the consumption of alcohol 

decreases. This association is adjusted for having young children and residential 

area.     
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

educ  Educational level (Age 40, Year 2010) 

gpa  Grade point average (Age 15, Year 1985) 

bullied   Exposure to bullying (Age 15, Year 1985) 

bestfriends  Number of best friends (Age 15, Year 1985) 

 

 
sum educ gpa bullied bestfriends if pop_ordinal==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

        educ |      7,986    2.203231    .7143889          1          3 

         gpa |      7,986    3.214425    .6854603        1.1          5 

     bullied |      7,986    .1033058    .3043769          0          1 

 bestfriends |      7,986    2.865515    1.109054          1          5 

 

 

ologit educ gpa bullied ib1.bestfriends if pop_ordinal==1, or 

 

 
Ordered logistic regression                     Number of obs     =      7,986 

                                                LR chi2(6)        =    2027.37 

                                                Prob > chi2       =     0.0000 

Log likelihood = -7226.3627                     Pseudo R2         =     0.1230 

 

-------------------------------------------------------------------------------------------- 

                      educ | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------------------+---------------------------------------------------------------- 

                       gpa |   4.675346   .1850569    38.97   0.000     4.326353    5.052491 

                   bullied |   .9650606   .0901579    -0.38   0.703     .8035884    1.158979 

                           | 

               bestfriends | 

          One best friend  |   1.035933   .0916915     0.40   0.690     .8709449    1.232175 

         Two best friends  |   1.047919   .0901688     0.54   0.586     .8852896    1.240423 

       Three best friends  |   .9814308    .091428    -0.20   0.841     .8176427    1.178029 

Four or more best friends  |   .9443533   .1222976    -0.44   0.658     .7326566    1.217218 

---------------------------+---------------------------------------------------------------- 

                     /cut1 |   3.079316   .1299124                      2.824693     3.33394 

                     /cut2 |    5.57622   .1415543                      5.298779    5.853662 

-------------------------------------------------------------------------------------------- 

Note: Estimates are transformed only in the first equation. 

 

 

In this model, we have three x-variables: gpa, bullied, and bestfriends. When we put 

them together, their statistical effect on educ is mutually adjusted. 

 

When it comes to the odds ratios, they have changed in comparison to the simple 

regression models. For example, the odds ratio for gpa has increased from 4.63 to 4.68 

– however, this is really a minor change. The odds ratio for bullied has become close 

to 1 (from 0.71 to 0.97). Concerning the dummies of bestfriends, we see that all odds 

ratios are more or less around 1. 
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The association between the gpa and educ remains statistically significant (p<0.05) 

after mutual adjustment. The associations between bullied and educ on the one hand, 

and between bestfriends and educ on the other hand, have now reached statistically 

non-significant levels. 

 

Note A specific odds ratio from a simple ordinal regression model can increase when 

other x-variables are included. Usually, it is just “noise”, i.e. not any large increases, 

and therefore not much to be concerned about. But it can also reflect that there is 

something going on that we need to explore further. There are many possible 

explanations for increases in multiple regression models: a) We actually adjust for a 

confounder and then “reveal” the “true” statistical effect. b) There are interactions 

among the x-variables in their effect on the y-variable. c) There is something called 

collider bias (which we will not address in this guide) which basically mean that both 

the x-variable and the y-variable causes another x-variable in the model. d) The simple 

regression models and the multiple regression model are based on different samples. 

e) It can be due to rescaling bias (see Chapter 18). 

 

Summary 

In the fully adjusted model, it can be observed that the association between grade 

point average at age 15 and the level of educational attainment at age 40, remains 

strong and statistically significant (OR=4.68; 95% CI=4.33-5.05). Exposure to 

bullying and number of best friends are, however, no longer associated with the 

outcome. 
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Estimates table and coefficients plot 

 

If we have multiple models, we can facilitate comparisons between the regression 

models by asking Stata to construct estimates tables and coefficients plots. What we 

do is to run the regression models one-by-one, save the estimates after each, and than 

use the commands estimates table and coefplot.  

 

The coefplot option is not part of the standard Stata program, so unless you already 

have added this package, you need to install it: 

 

ssc install coefplot 

 

As an example, we can include the three simple regression models as well as the 

multiple regression model. The quietly option is included in the beginning of the 

regression commands to suppress the output. 

 

Run and save the first simple regression model: 

 

quietly ologit educ gpa if pop_ordinal==1, or 

 

estimates store model1 

 

Run and save the second simple regression model: 

 

quietly ologit educ bullied if pop_ordinal==1, or 

 

estimates store model2 

 

Run and save the third simple regression model: 

 

quietly ologit educ ib1.bestfriends if pop_ordinal==1, or 

 

estimates store model3 

 

Run and save the multiple regression model: 

 

quietly ologit educ gpa bullied ib1.bestfriends if pop_ordinal==1, or 

 

estimates store model4 
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Produce the estimates table (include the option eform to show odds ratios): 

 

estimates table model1 model2 model3 model4, eform 

 

 
------------------------------------------------------------------ 

    Variable |   model1       model2       model3       model4     

-------------+---------------------------------------------------- 

educ         | 

         gpa |  4.6292758                              4.6753457   

     bullied |               .71404623                 .96506061   

             | 

 bestfriends | 

One best ..  |                             1.182315    1.0359326   

Two best ..  |                            1.5921357    1.0479185   

Three bes..  |                               2.2905     .9814308   

Four or m..  |                            3.5998758    .94435326   

-------------+---------------------------------------------------- 

       /cut1 |  20.811928    .20303902    .32595053     21.74353   

       /cut2 |  252.47482    1.5958408    2.6815796    264.07166   

------------------------------------------------------------------ 
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Produce the coefficients plot (include the option eform to show odds ratios): 

 

coefplot model1 model2 model3 model4, eform 

 

 

 
 

 

Note You can improve the graph by using the Graph Editor to adjust the category and 

label names. 
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14.5 Model diagnostics 

The assumptions behind ordinal regression are similar to the ones for logistic 

regression.  

 

More information help ologit postestimation 

 

Checklist 

Ordinal outcome The y-variable has to be ordinal. 

Independence of 

errors 

Data should be independent, i.e. not derived from any 

dependent samples design, e.g. before-after 

measurements/paired samples. 

Correct model 

specification 

Your model should be correctly specified. This means that 

the x-variables that are included should be meaningful and 

contribute to the model. No important (confounding) 

variables should be omitted (often referred to as omitted 

variable bias). 

No 

multicollinearity 

Multicollinearity may occur when two or more x-variables 

that are included simultaneously in the model are strongly 

correlated with each another. Actually, this does not violate 

the assumptions, but is does create greater standard errors 

which makes it harder to reject the null hypothesis.  

Parallel 

lines/Proportional 

odds 

The relationship between each pair of outcome groups is the 

same, i.e. the coefficients that describe the relationship 

between, for example, the lowest versus all higher categories 

of the outcome variable are the same as those that describe 

the relationship between the next lowest category and all 

higher categories, and so on. 

 

Types of model diagnostics 

Link test Assess model specification 

Correlation matrix Check for multicollinearity 

Brant test Check parallel lines/proportional odds assumption 
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14.5.1 Link test 

With the command linktest, we can assess whether our model is correctly specified. 

This test uses the linear predicted value (called _hat) and the linear predicted value 

squared (_hatsq) to rebuild the model. We expect _hat to be statistically significant, 

and _hatsq to be statistically non-significant. If one or both of these expectations are 

not met, the model is mis-specified. 

 

However, do not rely too much on this test – remember that you should also use theory 

and common sense to guide your decisions. It is very seldom relevant to focus on this 

test if our ambition is to investigate associations (and not to make the best possible 

prediction of the outcome).   

 

More information help linktest 

 

Practical example 

We perform this test for the full model, so let us go back to the example from the 

multiple regression analysis. The quietly option is included in the beginning of the 

command to suppress the output. 

 

quietly ologit educ gpa bullied ib1.bestfriends if pop_ordinal==1 

 

And then we run the test: 

 

linktest 

 

 
Ordered logistic regression                     Number of obs     =      7,986 

                                                LR chi2(2)        =    2051.87 

                                                Prob > chi2       =     0.0000 

Log likelihood = -7214.1101                     Pseudo R2         =     0.1245 

 

------------------------------------------------------------------------------ 

        educ |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        _hat |   .1419645   .1752914     0.81   0.418    -.2016003    .4855293 

      _hatsq |   .0880618    .017913     4.92   0.000      .052953    .1231705 

-------------+---------------------------------------------------------------- 

       /cut1 |   1.082786   .4177953                       .263922    1.901649 

       /cut2 |   3.568574   .4231193                      2.739276    4.397873 

------------------------------------------------------------------------------ 

 

 

Since the p-value for the variable _hat is above 0.05 and the p-value for _hatsq is 

below 0.05, it means that our model is mis-specified.  
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We could try to amend this by transforming any of the included variables (e.g. through 

categorisation, or log transformation), excluding any of the included variables, or 

adding more variables to the model (other x-variables or e.g. interactions between the 

included variables).  

 

Of course, this should be explored before we continue to assess model fit – but for the 

sake of simplicity, we will ignore this problem in the following sections. 
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14.5.2 Correlation matrix 

As the x-variables become more strongly correlated, it becomes more difficult to 

determine which of the variables are actually producing the statistical effect on the y-

variable. This is the problem with multicollinearity.  

 

One way of assessing multicollinearity is using the estat vce command, with the corr 

(short for correlation) option.  

 

More information help estat vce 

 

Practical example 

The first step is re-run the multiple ordinal regression model. The quietly option is 

included in the beginning of the command to suppress the output. 

 

quietly ologit educ gpa bullied ib1.bestfriends if pop_ordinal==1 

 

Next, we try the estat vce command. By adding the corr (=correlation) option, we will 

get a correlation matrix instead of a covariance matrix. 

 

estat vce, corr 

 

 
Correlation matrix of coefficients of ologit model 

 

             | educ                                                       | /                   

             |                            2.        3.        4.        5.|                     

        e(V) |      gpa   bullied  bestfr~s  bestfr~s  bestfr~s  bestfr~s |     cut1      cut2  

-------------+------------------------------------------------------------+-------------------- 

educ         |                                                            |                     

         gpa |   1.0000                                                   |                     

     bullied |  -0.0581    1.0000                                         |                     

2.bestfrie~s |  -0.0607    0.5189    1.0000                               |                     

3.bestfrie~s |  -0.1409    0.6053    0.7457    1.0000                     |                     

4.bestfrie~s |  -0.2393    0.5757    0.7015    0.7811    1.0000           |                     

5.bestfrie~s |  -0.2642    0.4171    0.5097    0.5750    0.5672    1.0000 |                     

-------------+------------------------------------------------------------+-------------------- 

/            |                                                            |                     

        cut1 |   0.7919    0.3552    0.4390    0.4118    0.2933    0.1334 |   1.0000            

        cut2 |   0.8264    0.3250    0.4052    0.3812    0.2700    0.1207 |   0.9645    1.0000 

 

 

The table shows the correlations between the different variables/categories. In line 

with the earlier sections on correlation analysis (see Chapter 7.2), we can conclude 

that the coefficients suggest weak to moderate correlations here (with the exception 

of the dummies of bestfriends, which is not a problem since they reflect the same 

underlying variable).  

 

  



 

348 

 

14.5.3 Brant test 

One critical thing that we need to consider is called the proportional odds assumption 

(or parallel lines assumption). This means that the coefficients that describe the 

relationship between, for example, the lowest versus all higher categories of the 

outcome variable are the same as those that describe the relationship between the next 

lowest category and all higher categories, and so on. Because the relationships 

between all pairs of categories are assumed to be the same, we only get one estimate 

for each x-variable. 

 

For this purpose, we can use the brant command. This command requires that you 

install a user-written package first. So, if you have not installed it already, type: 

 

ssc install spost13 

 

More information help brant 

 

Practical example 

The first step is re-run the multiple ordinal regression model. The quietly option is 

included in the beginning of the command to suppress the output. 

 

quietly ologit educ gpa bullied ib1.bestfriends if pop_ordinal==1 
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Then we use the brant command, which produces the following output: 

 

brant, detail 

 

 
Estimated coefficients from binary logits 

 

------------------------------------ 

    Variable |  y_gt_1     y_gt_2    

-------------+---------------------- 

         gpa |    1.347      1.699   

             |    24.34      34.81   

     bullied |   -0.015     -0.045   

             |    -0.12      -0.38   

             | 

 bestfriends | 

One best ..  |    0.104     -0.009   

             |     0.92      -0.08   

Two best ..  |    0.121      0.003   

             |     1.09       0.03   

Three bes..  |    0.058     -0.088   

             |     0.46      -0.77   

Four or m..  |    0.209     -0.200   

             |     0.97      -1.35   

             | 

       _cons |   -2.603     -6.057   

             |   -15.09     -34.10   

------------------------------------ 

                         legend: b/t 

 

Brant test of parallel regression assumption 

 

                |       chi2     p>chi2      df 

 ---------------+------------------------------ 

            All |      31.32      0.000       6 

 ---------------+------------------------------ 

            gpa |      29.89      0.000       1 

        bullied |       0.04      0.835       1 

  2.bestfriends |       0.69      0.407       1 

  3.bestfriends |       0.80      0.373       1 

  4.bestfriends |       1.02      0.312       1 

  5.bestfriends |       3.21      0.073       1 

 

A significant test statistic provides evidence that the parallel 

regression assumption has been violated. 

 

 

We can see from the test that we have an occurrence of a significant test statistic: gpa 

has a p-value (p>chi2) which is below 0.05 (0.000), thus violating the proportional 

odds assumption. While we will not explore this matter further here, a possible 

solution would be to transform this variable (e.g. through categorisation, or log 

transformation), or to choose some other type of analysis (e.g. transforming the 

outcome into a binary version and conduct logistic regression instead). 

 

Additional alternatives 

If the proportional odds assumption is violated, it might be interesting to explore other 

alternatives to ologit. Among these, we have the gologit2 and omodel commands. 

Both of them are user-written packages.  
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REGRESSION 

Outline 
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Content 

This chapter starts with an introduction to multinomial regression and then present the 

function in Stata. After this, we offer some practical examples of how to perform 

simple and multiple multinomial regression, as well as how to generate and interpret 

model diagnostics. 

  



 

351 

 

15.1 Introduction 

Multinomial regression is used when y is nominal with more than two categories, i.e. 

polytomous (see Section 3.3). However, it is a good idea not to have too many 

categories because the interpretation quickly gets quite messy (if you have more than 

5-6, try to collapse some of the categories).  

 

Multinomial regression analysis can be seen as an extension of logistic regression. 

The most complicated part about the multinomial regression is that we decide on a 

reference category in the outcome variable as well (for linear, logistic and ordinal 

regression, we only had to deal with reference categories for the x-variables). To make 

it easier to distinguish between reference categories in x on the one hand, and in y on 

the other hand, this chapter will use the term reference category when x-variables are 

concerned, but use base outcome with regard to the y-variable. 

 

Our outcome should have a base outcome – what is that? Let us use an example: 

 

Example 

We want to investigate the association between gender (x) and preferred ice-cream 

flavour (y). Gender has the values 0=Man and 1=Woman. Preferred ice-cream 

flavour has the values: 1=Vanilla, 2=Chocolate, 3=Strawberry. We choose the first 

category (vanilla) as our base outcome. When we run the multinomial regression 

analysis, we will get two relative risk ratios; one for the risk of the outcome being 

chocolate instead of vanilla depending on the values of the x-variable, and one for 

the outcome being strawberry instead of vanilla depending on the values of the x-

variable. 

 

Other names for multinomial regression 

Multinomial regression analysis is also called multinomial logistic regression. 
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15.1.1 Multinomial regression in short 

If you have only one x, it is called simple regression, and if you have more than one 

x, it is called multiple regression.  

 

Regardless of whether you are doing a simple or a multiple regression, x-variables 

can be categorical (nominal/ordinal) and/or continuous (ratio/interval). 

 

Key information from multinomial regression 

Effect  

Relative risk ratio (RRR) The exponent of log relative risk 

Log 

relative risk 

The logarithm of relative risk 

Relative 

risk 

The probability of the outcome being 

case divided by the probability of the 

outcome being a non-case 

Probability The probability of an event 

happening 

Direction   

Negative RRR below 1 

Positive RRR above 1 

Statistical significance  

P-value p<0.05 Statistically significant at the 5% level 

p<0.01 Statistically significant at the 1% level 

p<0.001 Statistically significant at the 0.1% level 

95% Confidence intervals Interval does not include 1: 

Statistically significant at the 5% level 

Interval includes 1:  

Statistically non-significant at the 5% level 

 

Relative risk ratio (RRR) 

In multinomial regression analysis, the effect that x has on y is reflected by a relative 

risk ratio (RRR): 

 

RRR below 1 For every unit increase in x, the relative risk of ending up 

in a certain category of y, compared to the base outcome, 

decreases. 

RRR above 1 For every unit increase in x, the relative risk of ending up 

in a certain category of y, compared to the base outcome, 

increases. 

 

A relative risk ratio is not an odds ratio – it is rather a relative odds ratio since it 

estimates the risk relative to the base outcome. For the sake of simplicity, we will 

leave it at that. 
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Exactly how one interprets the RRR in plain writing depends on the measurement 

scale of the x-variable. That is why we will present examples later for continuous, 

binary, and categorical (non-binary) x-variables. 

 

Note Unlike linear regression, where the null value (i.e. value that denotes no 

difference) is 0, the null value for multinomial regression is 1.  

 

Note An RRR can never be negative – it can range between 0 and infinity. 

 

How to not interpret relative risk ratios 

 

The relative risk ratios produced with multinomial regression analysis are not the same 

as risk ratios (see Section 4.7.6). RRRs tend to be inflated when they are above 1 and 

understated when they are below 1. This becomes more problematic the more 

common the outcome is (i.e. the more “cases” we have). However, the rarer the 

outcome is (<10% is usually considered a reasonable cut-off here), the closer odds 

ratios and risks ratios become. 

 

Many would find it compelling to interpret RRRs in terms of percentages. For 

example, an RRR of 1.20 might lead to the interpretation that the relative risk of 

ending up in a certain category of the outcome, instead of the base outcome, increase 

by 20%. If the RRR is 0.80, some would then suggest that the relative risk of ending 

up in a certain category of the outcome, instead of the base outcome, decrease by 20%. 

We would to urge you to carefully reflect upon the latter kind of interpretation since 

relative risk ratios are not symmetrical: it can take any value above 1 but cannot be 

below 0. Thus, the choice of reference category might lead to quite misleading 

conclusions about effect size. The former kind of interpretation is usually considered 

reasonable when RRRs are below 2. If they are above 2, it is better to refer to “times”, 

i.e. an RRR of 4.07 could be interpreted as “more than four times the relative risk 

of…”. 

 

Take home messages 

Do not interpret relative risk ratios as risk ratios, unless the outcome is very rare 

(<10%, but even then, be careful). 

It is completely fine to discuss the results more generally in terms of higher or lower 

relative risks/risks. However, if you want to give exact numbers to exemplify, you 

need to consider the asymmetry of relative risk ratios as well as the size of the RRR. 

 

P-values and confidence intervals 

In multinomial regression analysis you can get information about statistical 

significance, in terms of both p-values and confidence intervals (also see Section 5.2).  

 

Note The p-values and the confidence intervals will give you partly different 

information, but they are not contradictory. If the p-value is below 0.05, the 95% 

confidence interval will not include 1 and, if the p-value is above 0.05, the 95% 
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confidence interval will include 1. 

 

 When you look at the p-value, you can rather easily distinguish between the 

significance levels (i.e. you can directly say whether you have statistical significance 

at the 5% level, the 1% level, or the 0.1% level).  

 

When it comes to confidence intervals, Stata will by default choose 95% level 

confidence intervals. It is however possible to change the confidence level for the 

intervals. For example, you may instruct Stata to show 99% confidence intervals 

instead. 

 

R-Squared 

R-Squared (or R2) does not work very well due to the assumptions behind 

multinomial regression. Stata produces a pseudo R2, but due to inherent bias this is 

seldom used. 
 

Simple versus multiple regression models 

The difference between simple and multiple regression models, is that in a multiple 

regression each x-variable’s effect on y is estimated while accounting for the other x-

variables’ effects on y. We then say that these other x-variables are “held constant”, 

or “adjusted for”, or “controlled for”. Because of this, multiple regression analysis is 

a way of dealing with the issue of confounding variables, and to some extent also 

mediating variables (see Section 9.3). 

 

It is highly advisable to run a simple regression for each of the x-variables before 

including them in a multiple regression. Otherwise, you will not have anything to 

compare the adjusted coefficients with (i.e. what happened to the coefficients when 

other x-variables were included in the analysis). Including multiple x-variables in the 

same model usually (but not always) means that they become weaker – which would 

of course be expected if the x-variables overlapped in their effect on y.   

 

 

 

  



 

355 

 

15.2 Function 

Basic command mlogit depvar indepvars 

Useful options mlogit depvar indepvars, rrr 

mlogit depvar indepvars, rrr b(x) 

Explanations depvar 

indepvars 

 

rrr 

b(x) 

Insert the name of the y-variable. 

Insert the name of the x-variable(s) that you 

want to use. 

Produces relative risk ratios. 

Specify the value of the base outcome. By 

default, the category with the most 

observations is chosen. 

Short names b Base outcome 

More information help mlogit 

 
Note The mlogit command produces log relative risk, unless otherwise specified. 

 
A walk-through of the output 

When we perform an ordinal regression in Stata, the table looks like this: 

 

 
Multinomial logistic regression                 Number of obs     =      8,236 

                                                LR chi2(4)        =    1441.30 

                                                Prob > chi2       =     0.0000 

Log likelihood = -7843.4583                     Pseudo R2         =     0.0841 

 

------------------------------------------------------------------------------ 

        yvar |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

1            |  (base outcome) 

-------------+---------------------------------------------------------------- 

2            | 

       xvar1 |   .4091507   .0624971     6.55   0.000     .2866587    .5316428 

       xvar2 |   .0594214   .0047894    12.41   0.000     .0500344    .0688084 

       _cons |  -.6833348   .1172279    -5.83   0.000    -.9130974   -.4535723 

-------------+---------------------------------------------------------------- 

3            | 

       xvar1 |   .4501309   .0682677     6.59   0.000     .3163288     .583933 

       xvar2 |   .1780728   .0056612    31.45   0.000      .166977    .1891686 

       _cons |  -4.067188   .1494159   -27.22   0.000    -4.360038   -3.774338 

------------------------------------------------------------------------------ 

 

 
In this example, yvar is a nominal variable with three categories, whereas xvar1 is a 

binary (0/1) variable and xvar2 is a continuous variable ranging between 1 and 40. 
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The upper part of the table shows a model summary. This is what the different rows 

mean: 

 

Row Explanation 

Log likelihood This value does not mean anything in itself, but can be 

used if we would like compare nested models. 

Number of obs The number of observations included in the model. 

LR chi2(x) The likelihood ratio (LR) chi-square test. The number 

within the brackets shows the degrees of freedom (one 

per variable). 

Prob >chi2 Shows the probability of obtaining the chi-square statistic 

given that there is no statistical effect of the x-variables 

on y. If the p-value is below 0.05, we can conclude that 

the overall model is statistically significant.    

Pseudo R2 A type of R-squared value. Seldom used. 

 

The lower part of the table presents the parameter estimates from the analysis. 

  

Column Explanation 

 The first column lists the y-variable on top, followed by 

our x-variable(s). We get one set of x-variables per level 

of the y-variable (always in comparison to the base 

outcome).  

RRR These are the relative risk ratios. 

Std. Err. The standard errors associated with the coefficient. 

Z Z-value (coefficient divided by the standard error of the 

coefficient). 

P>|z| P-value. 

[95% Conf. Interval] 95% confidence intervals (lower limit and upper limit). 
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The analytical sample used for the examples 

In the subsequent sections, we will use the following variables: 

 

 

Dataset: StataData1.dta 

 

Name    Label 

marstat40  Marital status (Age 40, Year 2010) 

gpa   Grade point average (Age 15, Year 1985) 

sex   Sex 

educ   Educational level (Age 40, Year 2010) 

 

 

sum marstat40 gpa sex educ 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

   marstat40 |      8,950     1.69933    .8147083          1          4 

         gpa |      9,380    3.178614    .6996298          1          5 

         sex |     10,000       .4892    .4999083          0          1 

        educ |      9,183    2.173691    .7263263          1          3 

 

 

We define our analytical sample through the following command: 

 

gen pop_multinom=1 if marstat40!=. & gpa!=. & sex!=. & educ!=. 

 

This means that new the variable pop_multinom gets the value 1 if the four variables 

do not have missing information. In this case, we have 8,409 individuals that are 

included in our analytical sample. 

 

tab pop_multinom 

 

 
pop_multino | 

          m |      Freq.     Percent        Cum. 

------------+----------------------------------- 

          1 |      8,409      100.00      100.00 

------------+----------------------------------- 

      Total |      8,409      100.00 
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15.3 Simple multinomial regression 

Quick facts 

Number of variables One dependent (y) 

One independent (x) 

Scale of variable(s) Dependent: nominal (with more than two categories) 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 

 

15.3.1 Simple multinomial regression with a continuous x 

 

Theoretical examples 

 

Example 1 

Suppose we want to examine the association between unemployment days (x) and 

type of health care visit (y). Unemployment days are measured as the total number 

of days in unemployment during a year, and ranges from 0 to 365. Type of health 

care visit has the values 1=No health care visit, 2=Out-patient care, and 3=In-

patient care. We choose No health care visit as our base outcome. Let us say that 

we get an RRR for unemployment days and Out-patient care that is 2.88. That 

would mean that for every unit increase of employment days, the risk of 

experiencing out-patient care compared to having had no health care visit increases. 

Moreover, we get an RRR for unemployment days and In-patient care that is 4.02. 

This would suggest that for every unit increase of employment days, the risk of 

experiencing in-patient care compared to having had no health care visit increases. 

 

Example 2 

In another example, we examine the association between intelligence scores (x) and 

the preferred type of books (y). Intelligence scores are measured by a series of tests 

that render various amounts of points, and ranges between 20 and 160 points. 

Preferred type of books has the values 1=Fiction, 2=Non-fiction, 3=Comic books. 

We choose Fiction as our base outcome. Here, we get an RRR of 1.40 for 

intelligence scores and Non-fiction, meaning that for every unit increase of 

intelligence, the likelihood of preferring non-fiction books over fiction books 

increases. For intelligence scores and Comic books, the RRR is 0.92. This suggests 

that for every unit increase of intelligence, the likelihood of preferring comic books 

over fiction books decreases.  
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

marstat40  Marital status (Age 40, Year 2010) 

gpa   Grade point average (Age 15, Year 1985) 

 

 

sum marstat40 gpa if pop_multinom==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

   marstat40 |      8,409     1.69378    .8148308          1          4 

         gpa |      8,409    3.184861    .6931467          1          5 

 

 

mlogit marstat40 gpa if pop_multinom==1, rrr b(1) 

 

 
Multinomial logistic regression                 Number of obs     =      8,409 

                                                LR chi2(3)        =     109.57 

                                                Prob > chi2       =     0.0000 

Log likelihood = -8840.1483                     Pseudo R2         =     0.0062 

 

------------------------------------------------------------------------------ 

   marstat40 |        RRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

Married      |  (base outcome) 

-------------+---------------------------------------------------------------- 

Unmarried    | 

         gpa |   .7239121   .0273391    -8.55   0.000     .6722636    .7795287 

       _cons |   1.451043   .1770005     3.05   0.002     1.142482     1.84294 

-------------+---------------------------------------------------------------- 

Divorced     | 

         gpa |   .7156152     .03019    -7.93   0.000     .6588241    .7773017 

       _cons |    1.09113   .1480386     0.64   0.520     .8363535    1.423517 

-------------+---------------------------------------------------------------- 

Widowed      | 

         gpa |   1.189674   .1938083     1.07   0.286     .8644893    1.637179 

       _cons |   .0104002   .0057745    -8.22   0.000     .0035029    .0308786 

------------------------------------------------------------------------------ 

Note: _cons estimates baseline relative risk for each outcome. 

 

 

When we look at the results for gpa, we see that the relative risk ratio (RRR) is 0.72 

for Unmarried, 0.72 for Divorced, and 1.19 for Widowed. This means that the higher 

the gpa, the lower the risk of being unmarried or divorced, but the higher the risk of 

being widowed, as compared to being married. 

 

There are statistically significant differences between Married and Unmarried, and 

between Married and Divorced, according to gpa – as reflected in the p-values (0.000) 

and the 95% confidence intervals (0.67-0.78 and 0.66-0.78, respectively). The 
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difference between Married and widowed is not statistically significant (p=0.29 and 

95% CI=0.86-1.64). 

 

Summary 

At age 40, individuals who had higher grade point average at age 15 are less likely 

to be unmarried (RRR=0.72, 95% CI=0.67-0.78) or divorced (RRR=0.72, 95% 

CI=0.66-0.78), in comparison to being married. No significant differences in being 

widowed versus married according to grade point average, were found (RRR=1.19, 

95% CI=0.86-1.64). 
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15.3.2 Simple multinomial regression with a binary x 

 
Theoretical examples 

 
Example 1 

Suppose we want to examine the association between gender (x) and political views 

(y). Gender has the values 0=Man and 1=Woman, whereas political views has the 

values 1=Conservative, 2=Centre, and 3=Liberal. We choose Centre as the base 

outcome. Now, we get an RRR of 0.82 for Conservative, which means that women 

are less likely to be conservative than centre compared to men. The RRR for Liberal 

is 1.39, suggesting that women are more likely to be liberal than centre compared 

to men. 

 

Example 2 

Here we want to examine the association between having young children (x) and 

the type of pet owned (y). Having young children is measured as either 0=No young 

children and 1=Young children. Type of pet owned has the values 1=No pet, 2=Cat, 

3=Dog, and 4=Other type of pet. The category No pet is chosen as the base 

outcome. Let us say that we get an RRR for Cat that is 1.50. This means that those 

who have young children are more likely to own a cat than no pet at all, compared 

to those who do not have young children. The RRR for Dog is 1.75, suggesting that 

those who have young children are more likely to own a dog than no pet at all, 

compared to those who do not have young children. Moreover, the RRR for Other 

type of pet is 1.96, which tells us that those who have young children are more 

likely to own another type of pet than no pet at all, compared to those who do not 

have young children. 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

marstat40  Marital status (Age 40, Year 2010) 

sex   Sex 

 

 

sum marstat40 sex if pop_multinom==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

   marstat40 |      8,409     1.69378    .8148308          1          4 

         sex |      8,409    .4960162    .5000139          0          1 

 

 

mlogit marstat40 sex if pop_multinom==1, rrr b(1) 

 

 
Multinomial logistic regression                 Number of obs     =      8,409 

                                                LR chi2(3)        =      86.17 

                                                Prob > chi2       =     0.0000 

Log likelihood = -8851.8486                     Pseudo R2         =     0.0048 

 

------------------------------------------------------------------------------ 

   marstat40 |        RRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

Married      |  (base outcome) 

-------------+---------------------------------------------------------------- 

Unmarried    | 

         sex |    .762002   .0395645    -5.23   0.000     .6882722    .8436299 

       _cons |   .5896851   .0206845   -15.06   0.000     .5505065     .631652 

-------------+---------------------------------------------------------------- 

Divorced     | 

         sex |   1.239931   .0718404     3.71   0.000     1.106827    1.389042 

       _cons |   .3363761   .0143237   -25.59   0.000     .3094417    .3656549 

-------------+---------------------------------------------------------------- 

Widowed      | 

         sex |   3.484098    .937082     4.64   0.000     2.056608    5.902409 

       _cons |   .0082154   .0019443   -20.29   0.000     .0051663    .0130642 

------------------------------------------------------------------------------ 

Note: _cons estimates baseline relative risk for each outcome. 

 

 

When we look at the results for sex, we see that the relative risk ratio (RRR) is 0.76 

for Unmarried, 1.24 for Divorced, and 3.48 for Widowed. This means that women 

(who are coded as 1 and thus compared to men who are coded as 0), have a lower risk 

of being unmarried, but a higher risk of being a divorced or widowed, as compared to 

being married/having a registered partner. 

 

There are statistically significant differences between Married and Unmarried, 

Married and Divorced, as well as Married and Widowed, according to sex – as 
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reflected in the p-values (0.000) and the 95% confidence intervals (0.69-0.84, 1.11-

1.39, and 2.06-5.90, respectively).  

 

Summary 

At age 40, women are less likely than men to be unmarried (RRR=0.76, 95% 

CI=0.69-0.84) but more likely to be divorced (RRR=1.24, 95% CI=1.11-1.39) or 

widowed (RRR=3.48, 95% CI=2.06-5.90), in comparison to being married. 
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15.3.3 Simple multinomial regression with a categorical 
(non-binary) x 

 
Theoretical examples 

 
Example 1 

We want to investigate the association between educational attainment (x) and 

building type (y). Educational attainment has the values: 1=Compulsory, 2=Upper 

secondary, and 3=University. Building type has the values 1=Apartment, 2=Town 

house, and 3=Villa. We choose Compulsory as our reference category and 

Apartment as our base outcome. The RRR for Upper secondary in combination 

with Town house is 2.01, meaning that those with upper secondary education are 

more likely to live in a town house than an apartment, compared to those with 

compulsory education. The RRR for Upper secondary in combination with Villa is 

1.32, meaning that those with upper secondary education are more likely to live in 

a villa than an apartment, compared to those with compulsory education. For 

University in combination with Town house, the RRR is 0.95, suggesting that those 

who have university education are less likely to live in a town house than an 

apartment compared to those with compulsory education. Finally, the RRR for 

University in combination with Villa is 3.44, meaning that those with university 

education are more likely to live in a villa than an apartment, compared to those 

with compulsory education. 
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Example 2 

Suppose we are interested in the association between family type (x) and adolescent 

health behaviour (y). Family type has three categories: 1=Two-parent household, 

2=Joint custody, and 3=Single-parent household. Adolescent health behaviour has 

the values 1=No smoking or alcohol consumption, 2=Smoking, 3=Alcohol 

consumption, and 4=Both smoking and alcohol consumption. We choose Two-

parent household as our reference category, and No smoking or alcohol 

consumption as our base outcome. The RRR for Joint custody and Smoking is 1.20, 

meaning that adolescents living in joint custody are more likely to smoke than not 

to smoke or drink alcohol compared to those living in a two-parent household. The 

RRR for the Single-parent household and Smoking is 1.49, meaning that 

adolescents living in single-parent household are more likely to smoke than not to 

smoke or drink alcohol compared to those living in a two-parent household. The 

RRR for the Joint custody and Alcohol consumption is 1.00, meaning that 

adolescents living in joint custody are as likely to drink alcohol as not to smoke or 

drink alcohol compared to those living in a two-parent household. The RRR for the 

Single-parent household and Alcohol consumption is 2.02, meaning that 

adolescents living in single-parent household are more likely to drink alcohol than 

not to smoke or drink alcohol compared to those living in a two-parent household. 

The RRR for Joint custody and Both smoking and alcohol consumption is 1.55, 

meaning that adolescents living in joint custody are more likely to both smoke and 

drink alcohol than not to smoke or drink alcohol compared to those living in a two-

parent household. The RRR for the Single-parent household and Both smoking and 

alcohol consumption is 4.45, meaning that adolescents living in single-parent 

household are more likely to both smoke and drink alcohol than not to smoke or 

drink alcohol compared to those living in a two-parent household. 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

marstat40  Marital status (Age 40, Year 2010) 

educ   Educational level (Age 40, Year 2010) 

 

 

sum marstat40 educ if pop_multinom==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

   marstat40 |      8,409     1.69378    .8148308          1          4 

        educ |      8,409    2.181234    .7204204          1          3 
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mlogit marstat40 ib1.educ if pop_multinom==1, rrr b(1) 

 

 
Multinomial logistic regression                 Number of obs     =      8,409 

                                                LR chi2(6)        =     196.39 

                                                Prob > chi2       =     0.0000 

Log likelihood = -8796.7378                     Pseudo R2         =     0.0110 

 

---------------------------------------------------------------------------------- 

       marstat40 |        RRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

Married          |  (base outcome) 

-----------------+---------------------------------------------------------------- 

Unmarried        | 

            educ | 

Upper secondary  |   .7047889   .0495791    -4.97   0.000      .614017    .8089798 

     University  |   .4596606   .0338321   -10.56   0.000     .3979119    .5309917 

                 | 

           _cons |   .8080495   .0475563    -3.62   0.000     .7200159    .9068467 

-----------------+---------------------------------------------------------------- 

Divorced         | 

            educ | 

Upper secondary  |   .7640576    .059078    -3.48   0.001     .6566138    .8890828 

     University  |   .4203944   .0349833   -10.41   0.000      .357128    .4948687 

                 | 

           _cons |   .5789474   .0376173    -8.41   0.000     .5097204    .6575763 

-----------------+---------------------------------------------------------------- 

Widowed          | 

            educ | 

Upper secondary  |    .761382   .2323877    -0.89   0.372      .418601    1.384857 

     University  |    .640873   .2005333    -1.42   0.155     .3470768    1.183364 

                 | 

           _cons |   .0247678   .0062682   -14.61   0.000     .0150823    .0406731 

---------------------------------------------------------------------------------- 

Note: _cons estimates baseline relative risk for each outcome. 

 

 

When we look at the results for the dummies of educ, we see that the relative risk 

ratios (RRR) are 0.70 (Upper secondary) and 0.46 (University) for Unmarried, 0.76 

(Upper secondary) and 0.42 (University) for Divorced, and 0.76 (Upper secondary) 

and 0.64 (University) for Widowed. In other words, individuals with higher levels of 

educational attainment are less likely to be unmarried, divorced, and widowed, as 

compared to being married. 

 

All estimates are statistically significant except the ones for Widowed.  
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Test the overall effect 

 

The output presented and interpreted above, is based on the relative risk ratios for the 

dummy variables of educ. But what about the overall statistical effect of educ on 

marstat40? We could assess it through contrast, which is a postestimation command. 

However, since the outcome has four categories, it quickly gets quite messy. We will 

therefore skip this here. 

 

More information help contrast 

 

We will nonetheless produce a graph of the trend. First, however, we need to apply 

the post-estimation command margins. 

 

Note This command can also be used for variables that are continuous or binary, but 

is particularly useful for categorical, non-binary (i.e. ordinal) variables.   

 

margins educ 

 

 
Adjusted predictions                            Number of obs     =      8,409 

Model VCE    : OIM 

 

1._predict   : Pr(marstat40==Married), predict(pr outcome(1)) 

2._predict   : Pr(marstat40==Unmarried), predict(pr outcome(2)) 

3._predict   : Pr(marstat40==Divorced), predict(pr outcome(3)) 

4._predict   : Pr(marstat40==Widowed), predict(pr outcome(4)) 

 

------------------------------------------------------------------------------------ 

                   |            Delta-method 

                   |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------------+---------------------------------------------------------------- 

     _predict#educ | 

     1#Compulsory  |   .4146341   .0124814    33.22   0.000     .3901711    .4390972 

1#Upper secondary  |   .4924383   .0081434    60.47   0.000     .4764775    .5083991 

     1#University  |   .6132382   .0087724    69.91   0.000     .5960445    .6304318 

     2#Compulsory  |   .3350449   .0119581    28.02   0.000     .3116074    .3584825 

2#Upper secondary  |   .2804457   .0073172    38.33   0.000     .2661044    .2947871 

     2#University  |   .2277742   .0075545    30.15   0.000     .2129675    .2425808 

     3#Compulsory  |   .2400513   .0108208    22.18   0.000     .2188429    .2612598 

3#Upper secondary  |   .2178297   .0067235    32.40   0.000     .2046518    .2310075 

     3#University  |   .1492537   .0064187    23.25   0.000     .1366733    .1618341 

     4#Compulsory  |   .0102696   .0025542     4.02   0.000     .0052635    .0152757 

4#Upper secondary  |   .0092863   .0015624     5.94   0.000     .0062241    .0123485 

     4#University  |   .0097339   .0017685     5.50   0.000     .0062678    .0132001 

------------------------------------------------------------------------------------ 
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marginsplot 

 

 

 
 

 

Note The y-axis shows predicted probabilities (i.e. not relative log odds or relative 

risk ratios). The different colours reflect the different categories of the y-variable.  

 

More information help marginsplot 

 

Summary 

Individuals with higher levels of educational attainment are less likely to be 

unmarried, divorced, and widowed, as compared to being married. Except for the 

educational differences in the risk of being widowed, the associations are 

statistically significant. 
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15.4 Multiple multinomial regression 

Quick facts 

Number of variables One dependent (y) 

At least two independent (x) 

Scale of variable(s) Dependent: nominal (with more than two categories) 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 
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Theoretical example 

 

Example 

Suppose we are interested to see if having young children (x), residential area (x), 

and income (x) are related to smoking (y). Having young children is measured as 

either 0=No young children and 1=Young children. Residential area has the values 

1=Metropolitan, 2=Smaller city, and 3=Rural. We choose Metropolitan as our 

reference category. Income is measured as the yearly household income from salary 

in thousands of SEK (ranges between 100 and 700 SEK). Smoking has the values 

1=Non-smoker, 2=Former smoker, and 3=Current smoker. We choose Non-smoker 

as our base outcome. 

 

In the regression analysis, we get an RRR of 1.19 for Young children and Former 

smoker, suggesting that those who have young children are more likely to be former 

smokers than non-smokers compared to those who do not have young children. 

Then we get an RRR of 0.77 for Young children and Current smoker, which means 

that those who have young children are less likely to be current smokers than non-

smokers compared to those who do not have young children. These results are 

adjusted for residential area and income.  

 

The RRR for Smaller city and Former smoker is 2.09, which suggests that those 

who live in a smaller city are more likely to be former smokers than non-smokers 

compared to those who live in a metropolitan area. The RRR for Smaller city and 

Current smoker is 3.71, which suggests that those who live in a smaller city are 

more likely to be current smokers than non-smokers compared to those who live in 

a metropolitan area. The RRR for Rural and Former smoker is 3.59, which suggests 

that those who live in a rural area are more likely to be former smokers than non-

smokers compared to those who live in a metropolitan area. The RRR for Rural and 

Current smoker is 5.01, which suggests that those who live in a rural area are more 

likely to be current smokers than non-smokers compared to those who live in a 

metropolitan area. These results are adjusted for having young children and income.  

 

With regard to income, the RRR for Former smoker is 0.93, suggesting that for 

every unit increase in income, the risk of being a former smoker decreases. The 

RRR for Current smoker is 0.78, which means that for every unit increase in 

income, the risk of being a current smoker also decreases. These results are adjusted 

for having young children and residential area. 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

marstat40  Marital status (Age 40, Year 2010) 

gpa   Grade point average (Age 15, Year 1985) 

sex   Sex 

educ   Educational level (Age 40, Year 2010) 

 

 
sum marstat40 gpa sex educ if pop_multinom==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

   marstat40 |      8,409     1.69378    .8148308          1          4 

         gpa |      8,409    3.184861    .6931467          1          5 

         sex |      8,409    .4960162    .5000139          0          1 

        educ |      8,409    2.181234    .7204204          1          3 
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mlogit marstat40 gpa sex ib1.educ if pop_multinom==1, rrr b(1) 

 

 
Multinomial logistic regression                 Number of obs     =      8,409 

                                                LR chi2(12)       =     300.63 

                                                Prob > chi2       =     0.0000 

Log likelihood = -8744.6189                     Pseudo R2         =     0.0169 

 

---------------------------------------------------------------------------------- 

       marstat40 |        RRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

Married          |  (base outcome) 

-----------------+---------------------------------------------------------------- 

Unmarried        | 

             gpa |   .8715537   .0379514    -3.16   0.002      .800256    .9492036 

             sex |   .8087497   .0428008    -4.01   0.000     .7290658    .8971428 

                 | 

            educ | 

Upper secondary  |   .7527687   .0541059    -3.95   0.000      .653854    .8666472 

     University  |   .5317268   .0440554    -7.62   0.000     .4520262    .6254801 

                 | 

           _cons |   1.271671   .1666211     1.83   0.067     .9836622    1.644008 

-----------------+---------------------------------------------------------------- 

Divorced         | 

             gpa |   .8495054   .0414234    -3.34   0.001      .772076    .9346999 

             sex |   1.327299   .0786335     4.78   0.000     1.181791    1.490722 

                 | 

            educ | 

Upper secondary  |   .7818215   .0618434    -3.11   0.002     .6695393    .9129334 

     University  |   .4696683   .0438977    -8.09   0.000      .391051     .564091 

                 | 

           _cons |   .7964132    .116721    -1.55   0.120     .5975686    1.061425 

-----------------+---------------------------------------------------------------- 

Widowed          | 

             gpa |   1.281508   .2422937     1.31   0.190     .8846783    1.856339 

             sex |   3.463111   .9400099     4.58   0.000     2.034325    5.895388 

                 | 

            educ | 

Upper secondary  |   .6237379   .1947216    -1.51   0.131     .3382749    1.150097 

     University  |   .4522459   .1601109    -2.24   0.025     .2259537    .9051693 

                 | 

           _cons |   .0061186   .0037411    -8.34   0.000     .0018459    .0202817 

---------------------------------------------------------------------------------- 

Note: _cons estimates baseline relative risk for each outcome. 

 

 

In this model, we have three x-variables: gpa, sex, and educ. When we put them 

together, their statistical effect on marstat40 is mutually adjusted. 

 

When it comes to the relative risk ratios, they have changed in comparison to the 

simple regression models. For example, the relative risk ratios for gpa have decreased 

(become closer to 1). The relative risk ratios for sex have also decreased slightly – 

apart from the one for Divorced (which is a bit higher now). Concerning the dummies 

of educ, they are also closer to 1 now, except for the ones for Widowed.    

 

Regarding statistical significance, the same results are in the single regression models 

are found here. 

 

Note A specific relative risk ratio from a simple multinomial regression model can 

increase when other x-variables are included. Usually, it is just “noise”, i.e. not any 

large increases, and therefore not much to be concerned about. But it can also reflect 
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that there is something going on that we need to explore further. There are many 

possible explanations for increases in multiple regression models: a) We actually 

adjust for a confounder and then “reveal” the “true” statistical effect. b) There are 

interactions among the x-variables in their effect on the y-variable. c) There is 

something called collider bias (which we will not address in this guide) which 

basically mean that both the x-variable and the y-variable causes another x-variable 

in the model. d) The simple regression models and the multiple regression model are 

based on different samples. e) It can be due to rescaling bias (see Chapter 18). 

 

Summary 

In the fully adjusted model, most differences are attenuated but the overall patterns 

remain the same. 
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Estimates table and coefficients plot 

 

If we have multiple models, we can facilitate comparisons between the regression 

models by asking Stata to construct estimates tables and coefficients plots. What we 

do is to run the regression models one-by-one, save the estimates after each, and than 

use the commands estimates table and coefplot.  

 

The coefplot option is not part of the standard Stata program, so unless you already 

have added this package, you need to install it: 

 

ssc install coefplot 

 

As an example, we can include the three simple regression models as well as the 

multiple regression model. The quietly option is included in the beginning of the 

regression commands to suppress the output. 

 

Run and save the first simple regression model: 

 

quietly mlogit marstat40 gpa if pop_multinom==1, rrr b(1) 

 

estimates store model1 

 

Run and save the second simple regression model: 

 

quietly mlogit marstat40 sex if pop_multinom==1, rrr b(1) 

 

estimates store model2 

 

Run and save the third simple regression model: 

 

quietly mlogit marstat40 ib1.educ if pop_multinom==1, rrr b(1) 

 

estimates store model3 

 

Run and save the multiple regression model: 

 

quietly mlogit marstat40 gpa sex ib1.educ if pop_multinom==1, rrr b(1) 

 

estimates store model4 
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Produce the estimates table (include the option eform to show relative risk ratios): 

 

estimates table model1 model2 model3 model4, eform 

 

 
------------------------------------------------------------------ 

    Variable |   model1       model2       model3       model4     

-------------+---------------------------------------------------- 

Married      | 

         gpa |  (omitted)                              (omitted)   

         sex |               (omitted)                 (omitted)   

             | 

        educ | 

Upper sec..  |                            (omitted)    (omitted)   

 University  |                            (omitted)    (omitted)   

             | 

       _cons |  (omitted)    (omitted)    (omitted)    (omitted)   

-------------+---------------------------------------------------- 

Unmarried    | 

         gpa |  .72391212                              .87155368   

         sex |                 .762002                 .80874972   

             | 

        educ | 

Upper sec..  |                            .70478886     .7527687   

 University  |                            .45966065    .53172679   

             | 

       _cons |  1.4510425    .58968508    .80804954    1.2716714   

-------------+---------------------------------------------------- 

Divorced     | 

         gpa |  .71561519                              .84950536   

         sex |                1.239931                 1.3272988   

             | 

        educ | 

Upper sec..  |                             .7640576    .78182146   

 University  |                            .42039442    .46966833   

             | 

       _cons |  1.0911296    .33637608    .57894737    .79641316   

-------------+---------------------------------------------------- 

Widowed      | 

         gpa |  1.1896736                              1.2815081   

         sex |               3.4840981                  3.463111   

             | 

        educ | 

Upper sec..  |                            .76138199    .62373791   

 University  |                              .640873    .45224591   

             | 

       _cons |  .01040019    .00821543     .0247678    .00611861   

------------------------------------------------------------------ 
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Produce the coefficients plot (include the option eform to show relative risk ratios): 

 

coefplot model1 model2 model3 model4, eform 

 

 

 
 

 

Note You can improve the graph by using the Graph Editor to delete “_cons” as well 

as to adjust the category and label names. 
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15.4.1 Alternative base outcomes 

Regardless of whether you are performing a simple or multiple multinomial regression 

analysis, you always need to choose a base outcome for the y-variable. Our results 

will only show us to differences between the base outcome and the other categories 

of the outcome, and not contrast the remaining combinations. Of course, you can 

repeat your analysis and alternate between the base outcomes – or you can use the 

listcoef command. This command requires that you install a user-written package first. 

So, if you have not installed it already, type: 

 

search spost13_ado 

 

Click on the first link in the list, and then choose Click here to install. 

 

Let us go back to the multiple regression analysis that we conducted earlier. There, 

we chose Married as the base outcome. The quietly option is included in the beginning 

of the command to suppress the output. 

 

quietly mlogit marstat40 gpa sex ib1.educ if pop_multinom==1, rrr b(1) 

 

We move on to the listcoef command (which is a postestimation command). Beware 

that this often produces comprehensive output. 
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listcoef 

 

 
mlogit (N=8409): Factor change in the odds of marstat40  

 

Variable: gpa (sd=0.693) 

------------------------------------------------------------------------------ 

                             |         b        z    P>|z|       e^b   e^bStdX 

-----------------------------+------------------------------------------------ 

Married      vs Unmarried    |    0.1375    3.157    0.002     1.147     1.100 

Married      vs Divorced     |    0.1631    3.345    0.001     1.177     1.120 

Married      vs Widowed      |   -0.2480   -1.312    0.190     0.780     0.842 

Unmarried    vs Married      |   -0.1375   -3.157    0.002     0.872     0.909 

Unmarried    vs Divorced     |    0.0256    0.472    0.637     1.026     1.018 

Unmarried    vs Widowed      |   -0.3855   -2.021    0.043     0.680     0.766 

Divorced     vs Married      |   -0.1631   -3.345    0.001     0.850     0.893 

Divorced     vs Unmarried    |   -0.0256   -0.472    0.637     0.975     0.982 

Divorced     vs Widowed      |   -0.4111   -2.144    0.032     0.663     0.752 

Widowed      vs Married      |    0.2480    1.312    0.190     1.282     1.188 

Widowed      vs Unmarried    |    0.3855    2.021    0.043     1.470     1.306 

Widowed      vs Divorced     |    0.4111    2.144    0.032     1.509     1.330 

------------------------------------------------------------------------------ 

 

Variable: sex (sd=0.500) 

------------------------------------------------------------------------------ 

                             |         b        z    P>|z|       e^b   e^bStdX 

-----------------------------+------------------------------------------------ 

Married      vs Unmarried    |    0.2123    4.011    0.000     1.236     1.112 

Married      vs Divorced     |   -0.2831   -4.779    0.000     0.753     0.868 

Married      vs Widowed      |   -1.2422   -4.576    0.000     0.289     0.537 

Unmarried    vs Married      |   -0.2123   -4.011    0.000     0.809     0.899 

Unmarried    vs Divorced     |   -0.4954   -7.514    0.000     0.609     0.781 

Unmarried    vs Widowed      |   -1.4544   -5.327    0.000     0.234     0.483 

Divorced     vs Married      |    0.2831    4.779    0.000     1.327     1.152 

Divorced     vs Unmarried    |    0.4954    7.514    0.000     1.641     1.281 

Divorced     vs Widowed      |   -0.9590   -3.496    0.000     0.383     0.619 

Widowed      vs Married      |    1.2422    4.576    0.000     3.463     1.861 

Widowed      vs Unmarried    |    1.4544    5.327    0.000     4.282     2.069 

Widowed      vs Divorced     |    0.9590    3.496    0.000     2.609     1.615 

------------------------------------------------------------------------------ 

 

Variable: 2.educ (sd=0.497) 

------------------------------------------------------------------------------ 

                             |         b        z    P>|z|       e^b   e^bStdX 

-----------------------------+------------------------------------------------ 

Married      vs Unmarried    |    0.2840    3.951    0.000     1.328     1.152 

Married      vs Divorced     |    0.2461    3.112    0.002     1.279     1.130 

Married      vs Widowed      |    0.4720    1.512    0.131     1.603     1.265 

Unmarried    vs Married      |   -0.2840   -3.951    0.000     0.753     0.868 

Unmarried    vs Divorced     |   -0.0379   -0.449    0.654     0.963     0.981 

Unmarried    vs Widowed      |    0.1880    0.599    0.549     1.207     1.098 

Divorced     vs Married      |   -0.2461   -3.112    0.002     0.782     0.885 

Divorced     vs Unmarried    |    0.0379    0.449    0.654     1.039     1.019 

Divorced     vs Widowed      |    0.2259    0.717    0.473     1.253     1.119 

Widowed      vs Married      |   -0.4720   -1.512    0.131     0.624     0.791 

Widowed      vs Unmarried    |   -0.1880   -0.599    0.549     0.829     0.911 

Widowed      vs Divorced     |   -0.2259   -0.717    0.473     0.798     0.894 

------------------------------------------------------------------------------ 

 

Variable: 3.educ (sd=0.482) 

------------------------------------------------------------------------------ 

                             |         b        z    P>|z|       e^b   e^bStdX 

-----------------------------+------------------------------------------------ 

Married      vs Unmarried    |    0.6316    7.623    0.000     1.881     1.356 

Married      vs Divorced     |    0.7557    8.086    0.000     2.129     1.439 

Married      vs Widowed      |    0.7935    2.241    0.025     2.211     1.466 

Unmarried    vs Married      |   -0.6316   -7.623    0.000     0.532     0.738 

Unmarried    vs Divorced     |    0.1241    1.212    0.226     1.132     1.062 

Unmarried    vs Widowed      |    0.1619    0.454    0.650     1.176     1.081 

Divorced     vs Married      |   -0.7557   -8.086    0.000     0.470     0.695 

Divorced     vs Unmarried    |   -0.1241   -1.212    0.226     0.883     0.942 

Divorced     vs Widowed      |    0.0378    0.105    0.916     1.039     1.018 

Widowed      vs Married      |   -0.7935   -2.241    0.025     0.452     0.682 

Widowed      vs Unmarried    |   -0.1619   -0.454    0.650     0.851     0.925 

Widowed      vs Divorced     |   -0.0378   -0.105    0.916     0.963     0.982 

------------------------------------------------------------------------------ 
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In the table above, you can see the differences between all base outcomes, stratified 

by the x-variables included in the model.  

 

Note The coefficients (in the column called b) are relative log odds, not relative risk 

ratios.  

 

It is possible to make the output a bit more compact, for example by specifying the 

pvalue option: 

 

listcoef, pvalue(05) 

 

With the above-specified option, only variables/categories with a p-value below 0.05 

will be displayed in the table. 

 

More information help listcoef 

 

You can get some further assistance in interpreting the coefficients in the table by the 

mlogitplot command. This command requires that you install a user-written package 

first. So, if you have not installed it already, type: 

 

search spost13_ado 

 

Click on the first link in the list, and then choose Click here to install. 

 

Let us go back to the multiple regression analysis that we conducted earlier. The 

quietly option is included in the beginning of the command to suppress the output. 

 

quietly mlogit marstat40 gpa sex ib1.educ if pop_multinom==1, rrr b(1) 
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The mlogitplot command creates an odds ratios plot for mlogit. We should specify the 

amount of change when we order the mlogitplot. In our multiple regression model, 

we have three variables. The first is gpa: this is a continuous variable which can be 

described using unit change (amount option: one). The second is sex, which is a binary 

variable that can be described using binary change (amount option: bin). The third is 

educ, which is included as a factor variable – this automatically plots changes from 0 

to 1.  

 

mlogitplot gpa sex ib1.educ, amount(one bin) 

 

 

 
 

  

The letters denote the different categories of marstat40. On the y-axis, we have the 

variables/categories included in the model. The x-axis shows the odds ratios (as well 

as the relative log odds) in relation to the base outcome (which is Married, or M, in 

this case).  

 

Note Between some of the letters, there are lines. This means that the difference is not 

statistically significant. 

 

More information help mlogitplot 
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15.5 Model diagnostics 

The assumptions behind multinomial regression are similar to the ones for logistic 

regression. Since the y-variable has multiple categories, model diagnostics are 

nonetheless slightly more complicated. 

 

More information help mlogit postestimation 

 

Checklist 

Categorical 

outcome 

The y-variable should be categorical (and non-binary). 

Check whether it is possible to group similar categories (cf. 

the Blue bus/Red bus problem). Although it makes most 

sense to use multinomial regression analysis if the y-variable 

is nominal with more than two categories, it is possible to 

use a binary outcome – however, then you could just as well 

go with a plain logistic regression (unless you want to obtain 

some of the test available for multinomial regression 

analysis). It is also possible to have an ordinal y-variable 

(e.g., if the assumptions for ordinal regression were violated, 

you can try a multinomial regression instead; the latter does 

not assume parallel lines).   

Independence of 

errors 

Data should be independent, i.e. not derived from any 

dependent samples design, e.g. before-after 

measurements/paired samples. 

No 

multicollinearity 

Multicollinearity may occur when two or more x-variables 

that are included simultaneously in the model are strongly 

correlated with each another. Actually, this does not violate 

the assumptions, but is does create greater standard errors 

which makes it harder to reject the null hypothesis.  

 

Types of model diagnostics 

Fit statistics Assess model fit 

Correlation matrix Check for multicollinearity 
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15.5.1 Assess model fit 

With the command fitstat, we can produce various types of model fit statistics. This 

command requires that you install a user-written package first. So, if you have not 

installed it already, type: 

 

ssc install spost13_ado 

 

Click on the first link in the list, and then choose Click here to install. 

 

More information help fitstat 

 

Practical example 

We perform this test for the full model, so let us go back to the example from the 

multiple regression analysis. The quietly option is included in the beginning of the 

command to suppress the output. 

 

quietly mlogit marstat40 gpa sex ib1.educ if pop_multinom==1, rrr b(1) 
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And then we produce the statistics: 

 

fitstat 

 

 
                         |      mlogit  

-------------------------+------------- 

Log-likelihood           |              

                   Model |   -8744.619  

          Intercept-only |   -8894.934  

-------------------------+------------- 

Chi-square               |              

       Deviance(df=8394) |   17489.238  

               LR(df=12) |     300.629  

                 p-value |       0.000  

-------------------------+------------- 

R2                       |              

                McFadden |       0.017  

      McFadden(adjusted) |       0.015  

            Cox-Snell/ML |       0.035  

  Cragg-Uhler/Nagelkerke |       0.040  

                   Count |       0.523  

         Count(adjusted) |       0.002  

-------------------------+------------- 

IC                       |              

                     AIC |   17519.238  

        AIC divided by N |       2.083  

              BIC(df=15) |   17624.794 

 

 

This reports the log-likelihoods of the full (Model) and empty (Intercept-only) 

models, the deviance, the likelihood ratio test, Akaike's Information Criterion (AIC), 

AIC/N, and the Bayesian Information Criterion (BIC). In addition, we obtain different 

types of R2 estimates (which are seldom used). 

 

One very practical thing is that we can use these statistics to compare models. For 

example, we might want to see whether model fit improves if we include or exclude 

one or more x-variables, or if we make any transformations of the included x-

variables. 

 

Let us assume that we want to see here if our multiple regression model has a better 

fit if we exclude the variable gpa. 

 

First, we run the original model. The quietly option is included in the beginning of the 

command to suppress the output. 

 

quietly mlogit marstat40 gpa sex ib1.educ if pop_multinom==1, rrr b(1) 

 

And then save the statistics: 

 

fitstat, save 

 

Then we run the alternative model (output suppressed here as well): 
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quietly mlogit marstat40 sex ib1.educ if pop_multinom==1, rrr b(1) 

 

And then compare the statistics: 

 

fitstat, dif 

 

 
                         |     Current        Saved   Difference  

-------------------------+--------------------------------------- 

Log-likelihood           |                                        

                   Model |   -8754.137    -8744.619       -9.518  

          Intercept-only |   -8894.934    -8894.934        0.000  

-------------------------+--------------------------------------- 

Chi-square               |                                        

       D(df=8397/8394/3) |   17508.274    17489.238       19.036  

          LR(df=9/12/-3) |     281.593      300.629      -19.036  

                 p-value |       0.000        0.000        0.000  

-------------------------+--------------------------------------- 

R2                       |                                        

                McFadden |       0.016        0.017       -0.001  

      McFadden(adjusted) |       0.014        0.015       -0.001  

            Cox-Snell/ML |       0.033        0.035       -0.002  

  Cragg-Uhler/Nagelkerke |       0.037        0.040       -0.002  

                   Count |       0.522        0.523       -0.001  

         Count(adjusted) |       0.000        0.002       -0.002  

-------------------------+--------------------------------------- 

IC                       |                                        

                     AIC |   17532.274    17519.238       13.036  

        AIC divided by N |       2.085        2.083        0.002  

        BIC(df=12/15/-3) |   17616.718    17624.794       -8.075  

 

Note: Likelihood-ratio test assumes current model nested in saved model. 

 

Difference of    8.075 in BIC provides strong support for current model. 

 

 

It seems as both the chi-square (as indicated by the significant LR test), and the AIC 

favours the original (saved) model with gpa, whereas the BIC favours the model 

without gpa. This is not surprising given that BIC tends to be lower for more 

parsimonious (simpler) models. Should we change our model based on these statistics 

by, in this case, excluding gpa? That is a difficult question that needs to be considered 

carefully (by reflecting upon theory, previous research, and other alternatives for 

estimation).   

 

Note When we compare BIC and/or AIC values, we prefer the model with the lowest 

values.  



 

386 

 

15.5.2 Correlation matrix 

As the x-variables become more strongly correlated, it becomes more difficult to 

determine which of the variables are actually producing the statistical effect on the y-

variable. This is the problem with multicollinearity.  

 

One way of assessing multicollinearity is using the estat vce command, with the corr 

(short for correlation) option.  

 

More information help estat vce 

 

Practical example 

The first step is re-run the multiple multinomial regression model. The quietly option 

is included in the beginning of the command to suppress the output. 

 

quietly mlogit marstat40 gpa sex ib1.educ if pop_multinom==1, rrr b(1) 

 

Next, we try the estat vce command. By adding the corr (=correlation) option, we will 

get a correlation matrix instead of a covariance matrix. 

 

estat vce, corr 

 

The table is too extensive to be pasted here. But per usual, we go through the 

coefficients and see if there are any strong correlations between the 

variables/categories (see Chapter 7.2).  
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Content 

This chapter starts with an introduction to Poisson regression and then presents the 

function in Stata. After this, we offer some practical examples of how to perform 

simple and multiple Poisson regression, as well as how to generate and interpret model 

diagnostics.  
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16.1 Introduction 

Poisson regression is used when y is based on count data. 

 

Some examples of count data 

• Number of visits to the hospital in a year 

• Number of days in unemployment in a month 

• Number of text messages sent per day 

• Number of goals scored in a game 

 

With a linear regression, one assumes that the value of y can be predicted based on 

the values of one or more x-variables – as well as their residuals. A requirement is 

that the residuals are normally distributed. A Poisson regression is a type of 

generalised linear model which instead assumes a Poisson distribution. A Poisson 

distribution describes the probability that a number of events will take place within a 

given interval of time (or space), conditioned upon the fact that the events occur with 

a constant speed and that every event is independent from any preceding events. When 

performing a Poisson regression, one uses a link function that allows for a linear 

combination of the x-variables to predict the logarithm of y. 

 

Poisson regression is used to predict the rate that y changes given the values of the 

independent variables. As for any regression analysis, we get a coefficient – here, it 

is called log incidence rate – that shows the effect of x on y. Usually, we focus on 

something called the incidence rate ratio (IRR). We can calculate the incidence-rate 

ratio by taking the exponent of the coefficient. 

 

Overdispersion or zero-inflation? 

Poisson regression assumes that the mean is equivalent to the variance. If the variance 

is greater than the mean, we get something called overdispersion. In this case we can 

apply a so-called negative binomial regression. Another common problem is that we 

have a lot of observations with the value 0. In this case, it might be necessary to apply 

a zero-inflated Poisson regression model. These specifications will be briefly explored 

in this guide as well. 

 

Other names for Poisson regression 

Poisson regression is sometimes called, e.g., log-linear regression.  
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16.1.1 Poisson regression in short 

If you have only one x, it is called simple regression, and if you have more than one 

x, it is called multiple regression. 

 

Regardless of whether you are doing a simple or a multiple regression, x-variables 

can be categorical (nominal/ordinal) and/or continuous (ratio/interval). 

 

Key information from Poisson regression 

Effect  

Incidence rate ratio (IRR) The exponent of log incidence rate 

Log 

incidence 

rate 

The logarithm of incidence rate 

Incidence 

rate 

The rate at which events occur 

Direction   

Negative IRR below 1 

Positive IRR above 1 

Statistical significance  

P-value p<0.05 Statistically significant at the 5% level 

p<0.01 Statistically significant at the 1 % level 

p<0.001 Statistically significant at the 0.1% level 

95% Confidence intervals Interval does not include 1: 

Statistically significant at the 5% level 

Interval includes 1:  

Statistically non-significant at the 5% level 

 

Incidence-rate ratio (IRR) 

In Poisson regression analysis, the effect that x has on y is reflected by an incidence 

rate ratio (IRR): 

 

IRR below 1 For every unit increase in x, the incidence rate of y 

decreases. 

IRR above 1 For every unit increase in x, the incidence rate of y 

increases. 

 

Exactly how one interprets the IRR in plain writing depends on the measurement scale 

of the x-variable. That is why we will present examples later for continuous, binary, 

and categorical (non-binary) x-variables. 

 

Note Unlike linear regression, where the null value (i.e. value that denotes no 

difference) is 0, the null value for Poisson regression is 1.  

 

Note An IRR can never be negative – it can range between 0 and infinity. 
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How to not interpret incidence rate ratios 

 

The incidence rate ratios produced with Poisson regression analysis are not the same 

as risk ratios (see Section 4.7.6). IRRs tend to be inflated when they are above 1 and 

understated when they are below 1. This becomes more problematic the more 

common the outcome is (i.e. the more “non-zeros” we have). However, the rarer the 

outcome is (<10% is usually considered a reasonable cut-off here), the closer 

incidence rate ratios and risks ratios become. 

 

Many would find it compelling to interpret IRRs in terms of percentages. For example, 

an IRR of 1.20 might lead to the interpretation that the incidence rate of the outcome 

increases by 20%. If the IRR is 0.80, some would then suggest that the incidence rate 

decreases by 20%. We would to urge you to carefully reflect upon the latter kind of 

interpretation since incidence rate ratios are not symmetrical: it can take any value 

above 1 but cannot be below 0. Thus, the choice of reference category might lead to 

quite misleading conclusions about effect size. The former kind of interpretation is 

usually considered reasonable when IRRs are below 2. If they are above 2, it is better 

to refer to “times”, i.e. an IRR of 4.07 could be interpreted as “more than four times 

the odds of…”. 

 

Take home message 

It is completely fine to discuss the results more generally in terms of higher or lower 

incidence rates/risks. However, if you want to give exact numbers to exemplify, 

you need to consider the asymmetry of incidence rate ratios as well as the size of 

the IRR. 

 

P-values and confidence intervals 

In Poisson regression analysis you can get information about statistical significance, 

in terms of both p-values and confidence intervals (also see Section 5.2).  

 

Note The p-values and the confidence intervals will give you partly different 

information, but they are not contradictory. If the p-value is below 0.05, the 95% 

confidence interval will not include 1 and, if the p-value is above 0.05, the 95% 

confidence interval will include 1. 

  

When you look at the p-value, you can rather easily distinguish between the 

significance levels (i.e. you can directly say whether you have statistical significance 

at the 5% level, the 1% level, or the 0.1% level).  

 

When it comes to confidence intervals, Stata will by default choose 95% level 

confidence intervals. It is however possible to change the confidence level for the 

intervals. For example, you may instruct Stata to show 99% confidence intervals 

instead. 
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R-Squared 

R-Squared (or R2) does not work very well due to the assumptions behind Poisson 

regression. Stata produces a pseudo R2, but due to inherent bias this is seldom used. 

 

Simple versus multiple regression models 

The difference between simple and multiple regression models, is that in a multiple 

regression each x-variable’s effect on y is estimated while accounting for the other x-

variables’ effects on y. We then say that these other x-variables are “held constant”, 

or “adjusted for”, or “controlled for”. Because of this, multiple regression analysis is 

a way of dealing with the issue of confounding variables, and to some extent also 

mediating variables (see Section 9.3). 

 

It is highly advisable to run a simple regression for each of the x-variables before 

including them in a multiple regression. Otherwise, you will not have anything to 

compare the adjusted coefficients with (i.e. what happened to the coefficients when 

other x-variables were included in the analysis). Including multiple x-variables in the 

same model usually (but not always) means that they become weaker – which would 

of course be expected if the x-variables overlapped in their effect on y.   

 

A note    

Remember that a regression analysis should follow from theory as well as a 

comprehensive set of descriptive statistics and knowledge about the data. In the 

following sections, we will – for the sake of simplicity – not form any elaborate 

analytical strategy where we distinguish between x-variables and z-variables (see 

Section 9.3). However, we will define an analytical sample and use a so-called pop 

variable (see Section 11.5). 
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16.2 Function 

Basic command poisson depvar indepvars 

Useful options poisson depvar indepvars, irr 

Explanations depvar 

indepvars 

 

irr 

Insert the name of the y-variable. 

Insert the name of the x-variable(s) that you 

want to use. 

Produces incidence rate ratios. 

More information help poisson 

 
Note The Poisson command produces log incidence rates, unless otherwise specified. 

 
A walk-through of the output 

When we perform a Poisson regression in Stata, the table looks like this: 

 

 
Poisson regression                              Number of obs     =      8,874 

                                                LR chi2(2)        =     235.80 

                                                Prob > chi2       =     0.0000 

Log likelihood =  -14056.49                     Pseudo R2         =     0.0083 

 

------------------------------------------------------------------------------ 

        yvar |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       xvar1 |   1.048746   .0168106     2.97   0.003      1.01631    1.082217 

       xvar2 |   .9824951   .0011421   -15.19   0.000     .9802593    .9847361 

       _cons |   2.674361   .0824411    31.91   0.000     2.517564    2.840924 

------------------------------------------------------------------------------ 

Note: _cons estimates baseline incidence rate. 

 

 
In this example, yvar is a count variable ranging between 0 and 17, whereas xvar1 is 

a binary (0/1) variable and xvar2 is a continuous variable ranging between 1 and 40. 
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The upper part of the table shows a model summary. This is what the different rows 

mean: 

 

Row Explanation 

Log likelihood This value does not mean anything in itself, but can be 

used if we would like compare nested models. 

Number of obs The number of observations included in the model. 

LR chi2(x) The likelihood ratio (LR) chi-square test. The number 

within the brackets shows the degrees of freedom (one 

per variable). 

Prob >chi2 Shows the probability of obtaining the chi-square statistic 

given that there is no statistical effect of the x-variables 

on y. If the p-value is below 0.05, we can conclude that 

the overall model is statistically significant.    

Pseudo R2 A type of R-squared value. Seldom used. 

 

The lower part of the table presents the parameter estimates from the analysis. 

  

Column Explanation 

 The first column lists the y-variable on top, followed by 

our x-variable(s). The last row represents the constant 

(intercept). 

IRR These are the incidence rate ratios. 

Std. Err. The standard errors associated with the coefficient. 

Z Z-value (coefficient divided by the standard error of the 

coefficient). 

P>|z| P-value. 

[95% Conf. Interval] 95% confidence intervals (lower limit and upper limit). 
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The analytical sample used for the examples 

In the subsequent sections, we will use the following variables: 

 

 

Dataset: StataData1.dta 

 

Name    Label 

children  Number of children (Age 40, Year 2010) 

siblings  Number of siblings (Age 15, Year 1985) 

sex  Sex 

educ   Educational level (Age 40, Year 2010) 

 

 

sum children siblings sex educ 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

    children |      9,053    1.737214    1.552791          0         10 

    siblings |      9,977    1.780395     1.33614          0         10 

         sex |     10,000       .4892    .4999083          0          1 

        educ |      9,183    2.173691    .7263263          1          3 

 

 

We define our analytical sample through the following command: 

 

gen pop_poisson=1 if children!=. & siblings!=. & sex!=. & educ!=. 

 

This means that new the variable pop_poisson gets the value 1 if the four variables do 

not have missing information. In this case, we have 9,014 individuals that are included 

in our analytical sample. 

 

tab pop_poisson 

 

 
pop_poisson |      Freq.     Percent        Cum. 

------------+----------------------------------- 

          1 |      9,014      100.00      100.00 

------------+----------------------------------- 

      Total |      9,014      100.00 
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16.3 Simple Poisson regression 

Quick facts 

Number of variables One dependent (y) 

One independent (x) 

Scale of variable(s) Dependent: count 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 

 

16.3.1 Simple Poisson regression with a continuous x 

 

Theoretical examples 

 

Example 1  

The association between number of children (x) and the number of sick days during 

a year (y) is examined. The number of children ranges between 0 and 10, whereas 

the number of sick days in a year ranges between 0 and 365. The IRR we get is 

1.07, suggesting that the higher the number of children, the higher the rate of sick 

days.    

 

Example 2  

In this example, we use a sample of soccer player to analyse the association between 

body mass index (x) and the number of goals scored during a soccer season (y). 

Body mass index ranges between 15 and 35, whereas the number of goals ranges 

from 0 to 60. We find that the IRR is 0.90. In other words, the higher the body mass 

index, the lower the rate of goals scored in a season.   
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

children  Number of children (Age 40, Year 2010) 

siblings  Number of siblings(Age 15, Year 1995) 

 

 
sum children siblings if pop_poisson==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

    children |      9,014    1.740515    1.552944          0         10 

    siblings |      9,014    1.784114    1.327277          0         10 

 

 

poisson children siblings if pop_poisson==1, irr 

 

 
Poisson regression                              Number of obs     =      9,014 

                                                LR chi2(1)        =       3.26 

                                                Prob > chi2       =     0.0711 

Log likelihood = -16126.481                     Pseudo R2         =     0.0001 

 

------------------------------------------------------------------------------ 

    children |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    siblings |   1.010844   .0060207     1.81   0.070     .9991126    1.022714 

       _cons |   1.707165   .0228468    39.96   0.000     1.662969    1.752537 

------------------------------------------------------------------------------ 

Note: _cons estimates baseline incidence rate. 

 

 

When we look at the results for siblings, we see that the incidence rate ratio (IRR) is 

1.01. Thus, for each additional sibling, the rate of children is 1.01 times higher. That 

is not much.  

 

The association between siblings and children is not statistically significant, as 

reflected in the p-value (0.070) and the 95% confidence intervals (1.00-1.02). 

 

Summary 

There is a positive association between number of siblings and number of children 

at age 40 (IRR=1.01). The association is however not statistically significant (95% 

CI=1.00-1.02).   
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16.3.2 Simple Poisson regression with a binary x 

 

Theoretical examples 

 

Example 1  

We examine the association between gender (x) and the number of online 

healthcare visits per year (y) by means of a simple Poisson regression analysis. 

Gender has the values 0=Man and 1=Woman, whereas the number of online 

healthcare visits ranges between 0 and 25. The IRR we get is 1.72. This would mean 

that women have a higher rate of online healthcare visits per year in comparison to 

men. 

 

Example 2  

In this study, the association between employment status (x) and the number of 

coffee cups consumed per day (y) is examined. Employment status is coded as 

0=Unemployed and 1=Employed. The number of coffee cups consumed per day 

ranges between 0 and 15. We get an IRR of 0.67. In other words, employed 

individuals have a lower rate of coffee cups consumed per days as compared to 

unemployed individuals.   
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

children  Number of children (Age 40, Year 2010) 

sex  Sex 

 

 
sum children sex if pop_poisson==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

    children |      9,014    1.740515    1.552944          0         10 

         sex |      9,014    .4905702    .4999388          0          1 

 

 

poisson children sex if pop_poisson==1, irr 

 

 
Poisson regression                              Number of obs     =      9,014 

                                                LR chi2(1)        =     305.39 

                                                Prob > chi2       =     0.0000 

Log likelihood = -15975.413                     Pseudo R2         =     0.0095 

 

------------------------------------------------------------------------------ 

    children |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         sex |   1.323079   .0212812    17.41   0.000      1.28202    1.365454 

       _cons |   1.502395    .018088    33.81   0.000     1.467359    1.538269 

------------------------------------------------------------------------------ 

Note: _cons estimates baseline incidence rate. 

 

 

When we look at the results for sex, we see that the incidence rate ratio (IRR) is 1.32. 

Thus, one unit increase in sex is associated with a higher rate of children. This means 

that women have a rate of children that is 1.32 times higher compared to that of men. 

 

The association between sex and children is statistically significant, as reflected in the 

p-value (0.000) and the 95% confidence intervals (1.28-1.37). 

 

Summary 

Women have a statistically significantly higher rate of children, compared to men 

(IRR=1.32; 95% CI=1.28-1.37).   

 
 

  



 

399 

 

16.3.3 Simple Poisson regression with a categorical (non-
binary) x 

 

Theoretical examples 

 

Example 1  

We conduct a study among people who subscribe to a fishing magazine, focusing 

on the association between experience of fishing (x) and the number of fishes 

caught during the individual’s last fishing expedition (y). Experience of fishing has 

three categories: 1=Low level, 2=Medium level, and 3=High level. Low level is 

chosen as the reference category. The number of catches ranges between 0 and 30. 

We find that the IRR is 1.50 for Medium level and 2.03 for High level. This means 

that individuals with more experience have a higher rate of catches. 

 

Example 2  

In this example, we examine the association between temperament (x) and the 

number of cigarettes smoked per week (y). Temperament is categorised as: 

1=Sanguine, 2=Choleric, 3=Melancholic, and 4=Phlegmatic. Phlegmatic is chosen 

as the reference category. The number of cigarettes ranges from 0 to 150. We find 

that the IRR is 0.81 for Melancholic, 1.29 for Choleric, and 3.73 for Sanguine. In 

other words, individuals with melancholic temperament have a lower rate of 

cigarette smoking compared to the phlegmatic, whereas the opposite is true for 

individuals whose temperament is characterised as choleric or sanguine. 

 

  



 

400 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

children   Number of children (Age 40, Year 2010) 

educ  Educational level (Age 40, Year 2010) 

 

 
sum children educ if pop_poisson==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

    children |      9,014    1.740515    1.552944          0         10 

        educ |      9,014    2.174728     .725944          1          3 

 

 

The variable educ has three categories: 1=Compulsory, 2=Upper secondary, and 

3=University. Here, we (with ib1) specify that the first category (Compulsory) will be 

the reference category.  

 

poisson children ib1.educ if pop_poisson==1, irr 

 

 
Poisson regression                              Number of obs     =      9,014 

                                                LR chi2(2)        =     147.29 

                                                Prob > chi2       =     0.0000 

Log likelihood = -16054.463                     Pseudo R2         =     0.0046 

 

---------------------------------------------------------------------------------- 

        children |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

            educ | 

Upper secondary  |   1.171898   .0273307     6.80   0.000     1.119537    1.226709 

     University  |   1.318967   .0310659    11.75   0.000     1.259463    1.381283 

                 | 

           _cons |    1.45913   .0290839    18.96   0.000     1.403226    1.517262 

---------------------------------------------------------------------------------- 

Note: _cons estimates baseline incidence rate. 

 

 

When we look at the results for the dummies for educ, we see that the incidence rate 

ratios are 1.17 for Upper secondary and 1.32 for University. Thus, having a higher 

level of educational attainment is associated with a higher rate of children.  

 

Both dummies for educ are significantly different from the reference category, as 

reflected in the p-values and the 95% confidence intervals. 
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Test the overall effect 

 

The output presented and interpreted above, is based on the relative rate ratios for the 

dummy variables of educ. Let us also assess the overall statistical effect of educ on 

children? We can assess it through contrast, which is a postestimation command.  

 

contrast p.educ, noeffects 

 

 
Contrasts of marginal linear predictions 

 

Margins      : asbalanced 

 

------------------------------------------------ 

             |         df        chi2     P>chi2 

-------------+---------------------------------- 

        educ | 

   (linear)  |          1      138.16     0.0000 

(quadratic)  |          1        1.43     0.2317 

      Joint  |          2      144.22     0.0000 

------------------------------------------------ 

 

 

Here, we focus on the row for linear, which shows a p-value (P>chi2) below 0.05. 

This suggests that we have a statistically significant trend in children according to 

educ. 

 

More information help contrast 
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We will also produce a graph of the trend. First, however, we need to apply the post-

estimation command margins. 

 

Note This command can also be used for variables that are continuous or binary, but 

is particularly useful for categorical, non-binary (i.e. ordinal) variables.   

 

margins educ 

 

 
Adjusted predictions                            Number of obs     =      9,014 

Model VCE    : OIM 

 

Expression   : Predicted number of events, predict() 

 

---------------------------------------------------------------------------------- 

                 |            Delta-method 

                 |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

            educ | 

     Compulsory  |    1.45913   .0290839    50.17   0.000     1.402127    1.516134 

Upper secondary  |   1.709952   .0207043    82.59   0.000     1.669373    1.750532 

     University  |   1.924545   .0241494    79.69   0.000     1.877213    1.971877 

---------------------------------------------------------------------------------- 
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marginsplot 

 

 

 
 

 

Note The y-axis shows predicted number of events (i.e. not log incidence rates or 

incidence rate ratios).  

 

This graph quite clearly shows that the higher the level of educational attainment, the 

higher the number of children.  

 

More information help marginsplot 

 

Summary 

At age 40, there is a clear, and statistically significant, trend in the rate of children 

according to educational level: higher levels of education are associated with a 

higher rate of children.  
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16.4 Multiple Poisson regression 

Quick facts 

Number of variables One dependent (y) 

At least two independent (x) 

Scale of variable(s) Dependent: count 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 

 

Theoretical example 

 

Example 

Suppose we are interested to see if having young children (x), residential area (x), 

and income (x) are related to the number of pets owned (y). Having young children 

is measured as either 0=No young children and 1=Young children. Residential area 

has the values 1=Metropolitan, 2=Smaller city, and 3=Rural. We choose 

Metropolitan as our reference category. Income is measured as the yearly 

household income from salary in thousands of SEK (ranges between 100 and 700 

SEK). The number of pets owned ranges between 0 and 50.   

 

We get an IRR for Young children that is 1.23. That means that those who have 

young children are have a higher rate of pets, compared to those who do not have 

young children. This association is adjusted for residential area and income.  

 

With regards to residential area, we get an IRR for Smaller city of 1.30, whereas 

the IRR for Rural is 7.44. This suggests that those who live in a smaller city have a 

higher rate of pets compared to those living in metropolitan areas, and so are those 

living in rural areas. These results are adjusted for having young children and 

income.  

 

Finally, the IRR for income is 0.98. This suggests that for every unit increase in 

income (i.e. for every additional one thousand SEK), the rate of pets decreases. This 

association is adjusted for having young children as well as residential area.      
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

children  Number of children (Age 40, Year 2010) 

siblings  Number of siblings (Age 15, Year 1985) 

sex  Sex 

educ   Educational level (Age 40, Year 2010) 

 

 
sum children siblings sex educ if pop_poisson==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

    children |      9,014    1.740515    1.552944          0         10 

    siblings |      9,014    1.784114    1.327277          0         10 

         sex |      9,014    .4905702    .4999388          0          1 

        educ |      9,014    2.174728     .725944          1          3 

 

 

poisson children siblings sex ib1.educ if pop_poisson==1, irr 

 

 
Poisson regression                              Number of obs     =      9,014 

                                                LR chi2(4)        =     431.93 

                                                Prob > chi2       =     0.0000 

Log likelihood = -15912.144                     Pseudo R2         =     0.0134 

 

---------------------------------------------------------------------------------- 

        children |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

        siblings |   1.016487   .0061187     2.72   0.007     1.004565     1.02855 

             sex |   1.304617   .0210647    16.47   0.000     1.263977    1.346563 

                 | 

            educ | 

Upper secondary  |   1.147301    .026924     5.86   0.000     1.095726    1.201303 

     University  |   1.291208   .0307602    10.73   0.000     1.232305    1.352926 

                 | 

           _cons |   1.253923   .0311061     9.12   0.000     1.194415    1.316397 

---------------------------------------------------------------------------------- 

Note: _cons estimates baseline incidence rate. 

 

 

In this model, we have three x-variables: siblings, sex, and educ. When we put them 

together, their statistical effect on educ is mutually adjusted. 

 

When it comes to the incidence rate ratios, they have changed in comparison to the 

simple regression models. For example, the odds ratio for siblings has increased 

marginally 1.01 to 1.02. The incidence rate ratio for sex has become slightly closer to 

1 (from 1.32 to 1.30). This is also the case for the dummies of educ: the incidence risk 

ratio for Upper secondary has changed from 1.17 to 1.15 and the one for University 
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has changed from 1.32 to 1.29.  

 

The association between the siblings and children has become statistically significant 

(p<0.05) after mutual adjustment. However, it was very close to being significant also 

in the simple model (p=0.07). The associations between sex and children on the one 

hand, and between educ and children on the other hand, are still statistically 

significant. 

 

Note A specific incidence risk ratio from a simple Poisson regression model can 

increase when other x-variables are included. Usually, it is just “noise”, i.e. not any 

large increases, and therefore not much to be concerned about. But it can also reflect 

that there is something going on that we need to explore further. There are many 

possible explanations for increases in multiple regression models: a) We actually 

adjust for a confounder and then “reveal” the “true” statistical effect. b) There are 

interactions among the x-variables in their effect on the y-variable. c) There is 

something called collider bias (which we will not address in this guide) which 

basically mean that both the x-variable and the y-variable causes another x-variable 

in the model. d) The simple regression models and the multiple regression model are 

based on different samples. e) It can be due to rescaling bias (see Chapter 18). 

 

Summary 

In the fully adjusted model, it can be observed that the association between the 

number of siblings and the number of children at age 40 now reaches a statistically 

significant level (IRR=1.02; 95% CI=1.00-1.03). The associations between sex and 

number of children as well as between educational level and number of children 

have become somewhat attenuated, but remain statistically significant.  
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Estimates table and coefficients plot 

 

If we have multiple models, we can facilitate comparisons between the regression 

models by asking Stata to construct estimates tables and coefficients plots. What we 

do is to run the regression models one-by-one, save the estimates after each, and than 

use the commands estimates table and coefplot.  

 

The coefplot option is not part of the standard Stata program, so unless you already 

have added this package, you need to install it: 

 

ssc install coefplot 

 

As an example, we can include the three simple regression models as well as the 

multiple regression model. The quietly option is included in the beginning of the 

regression commands to suppress the output. 

 

Run and save the first simple regression model: 

 

quietly poisson children siblings if pop_poisson==1, irr 

 

estimates store model1 

 

Run and save the second simple regression model: 

 

quietly poisson children sex if pop_poisson==1, irr 

 

estimates store model2 

 

Run and save the third simple regression model: 

 

quietly poisson children ib1.educ if pop_poisson==1, irr 

 

estimates store model3 

 

Run and save the multiple regression model: 

 

quietly poisson children siblings sex ib1.educ if pop_poisson==1, irr 

 

estimates store model4 
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Produce the estimates table (include the option eform to show the incidence rate 

ratios): 

 

estimates table model1 model2 model3 model4, eform 

 

 
------------------------------------------------------------------ 

    Variable |   model1       model2       model3       model4     

-------------+---------------------------------------------------- 

    siblings |  1.0108444                              1.0164867   

         sex |               1.3230793                 1.3046169   

             | 

        educ | 

Upper sec..  |                            1.1718982    1.1473006   

 University  |                            1.3189674    1.2912078   

             | 

       _cons |  1.7071654    1.5023955    1.4591304    1.2539235   

------------------------------------------------------------------ 

 

 

Produce the coefficients plot (include the option eform to show the incidence rate 

ratios): 

 

coefplot model1 model2 model3 model4, eform 

 

 

 
 

 

Note You can improve the graph by using the Graph Editor to delete “_cons” as well 

as to adjust the category and label names. 
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16.5 Model diagnostics 

The assumptions behind Poisson regression are similar to the ones we have for other 

types of generalised linear models. In addition, we also assume that there is no 

overdispersion or zero inflation.  

 

More information help poisson postestimation 

 

Checklist 

Count outcome The y-variable has to be a count. 

Independence of 

errors 

Data should be independent, i.e. not derived from any 

dependent samples design, e.g. before-after 

measurements/paired samples. 

Correct model 

specification 

Your model should be correctly specified. This means that 

the x-variables that are included should be meaningful and 

contribute to the model. No important (confounding) 

variables should be omitted (often referred to as omitted 

variable bias). 

No 

multicollinearity 

Multicollinearity may occur when two or more x-variables 

that are included simultaneously in the model are strongly 

correlated with each another. Actually, this does not violate 

the assumptions, but is does create greater standard errors 

which makes it harder to reject the null hypothesis.  

No overdispersion  The mean should be equivalent to the variance.  

No zero inflation The difference between observed zeros and predicted zeros 

is small. 

 

Types of model diagnostics 

Link test Assess model specification 

Correlation matrix Check for multicollinearity 

Deviance goodness-of-fit 

test and Pearson 

goodness-of-fit test 

Assess model fit (no overdispersion or zero 

inflation) 
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16.5.1 Link test 

With the command linktest, we can assess whether our model is correctly specified. 

This test uses the linear predicted value (called _hat) and the linear predicted value 

squared (_hatsq) to rebuild the model. We expect _hat to be statistically significant, 

and _hatsq to be statistically non-significant. If one or both of these expectations are 

not met, the model is mis-specified. 

 

However, do not rely too much on this test – remember that you should also use theory 

and common sense to guide your decisions. It is very seldom relevant to focus on this 

test if our ambition is to investigate associations (and not to make the best possible 

prediction of the outcome). 

 

More information help linktest 

 

Practical example 

We perform this test for the full model, so let us go back to the example from the 

multiple regression analysis. The quietly option is included in the beginning of the 

command to suppress the output. 

 

quietly poisson children siblings sex ib1.educ if pop_poisson==1, irr 

 

And then we run the test: 

 

linktest 

 

 
Poisson regression                              Number of obs     =      9,014 

                                                LR chi2(2)        =     438.94 

                                                Prob > chi2       =     0.0000 

Log likelihood =  -15908.64                     Pseudo R2         =     0.0136 

 

------------------------------------------------------------------------------ 

    children |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        _hat |   1.893997   .3425963     5.53   0.000     1.222521    2.565474 

      _hatsq |  -.8193392   .3105512    -2.64   0.008    -1.428008   -.2106701 

       _cons |  -.2214068   .0889658    -2.49   0.013    -.3957765   -.0470371 

------------------------------------------------------------------------------ 

 

 

Although the p-value for the variable _hat is below 0.05, the p-value for _hatsq is also 

below 0.05, which means that our model is mis-specified.  

 

  



 

411 

 

We could try to amend this by transforming any of the included variables (e.g. through 

categorisation, or log transformation), excluding any of the included variables, or 

adding more variables to the model (other x-variables or e.g. interactions between the 

included variables).  

 

Of course, this should be explored before we continue to assess model fit – but for the 

sake of simplicity, we will ignore this problem in the following sections. 
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16.5.2 Correlation matrix 

As the x-variables become more strongly correlated, it becomes more difficult to 

determine which of the variables are actually producing the statistical effect on the y-

variable. This is the problem with multicollinearity.  

 

One way of assessing multicollinearity is using the estat vce command, with the corr 

(short for correlation) option.  

 

More information help estat vce 

 

Practical example 

The first step is re-run the multiple Poisson regression model. The quietly option is 

included in the beginning of the command to suppress the output. 

 

quietly poisson children siblings sex ib1.educ if pop_poisson==1, irr 

 

Next, we try the estat vce command. By adding the corr (=correlation) option, we will 

get a correlation matrix instead of a covariance matrix. 

 

estat vce, corr 

 

 
Correlation matrix of coefficients of poisson model 

 

             | children                                          

             |                            2.        3.           

        e(V) | siblings       sex      educ      educ     _cons  

-------------+-------------------------------------------------- 

children     |                                                   

    siblings |   1.0000                                          

         sex |  -0.0399    1.0000                                

      2.educ |   0.0878   -0.0717    1.0000                      

      3.educ |   0.1304   -0.0794    0.7272    1.0000            

       _cons |  -0.5098   -0.2868   -0.7062   -0.7159    1.0000 

 

 

The table shows the correlations between the different variables/categories. In line 

with the earlier sections on correlation analysis (see Chapter 7.2), we can conclude 

that the coefficients suggest (very) weak correlations here. The only exceptions are 

two of the dummies for educ, which is not a huge problem since they reflect the same 

underlying variable. 
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16.5.3 Deviance goodness-of-fit test and Pearson goodness-
of-fit test 

There are two critical assumptions that we have to test. First, that there is no problem 

with overdispersion (or underdispersion, for that matter), which means that the 

assumption of mean=variance is violated. Second, that there is no problem with zero 

inflation (i.e. excess zeros).  

 

To test model fit we can use the estat gof command, which relies on postestimation.  

 

More information help estat gof 

 

Practical example 

The first step is re-run the multiple Poisson regression model. The quietly option is 

included in the beginning of the command to suppress the output. 

 

quietly poisson children siblings sex ib1.educ if pop_poisson==1, irr 

 

Then we use the estat gof command, which produces quite some output: 

 

estat gof 

 

 
         Deviance goodness-of-fit =  14908.76 

         Prob > chi2(9009)        =    0.0000 

 

         Pearson goodness-of-fit  =  12364.43 

         Prob > chi2(9009)        =    0.0000 

 

 

The fact that the p-values are below 0.05 means that the Poisson model does not fit 

our data, and we should explore other alternatives, such as negative binomial 

regression or zero-inflated Poisson regression. These will be presented in the 

following section.  
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16.6 Alternatives to Poisson regression 

We will explore two alternatives to Poisson regression:  

 

• Negative binomial regression (nbreg command). 

• Zero-inflated Poisson regression (zip command).  

 

These will subsequently be compared using the countfit command. 
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16.6.1 Negative binomial regression model 

The negative binomial regression model (nbreg command) is similar to a Poisson 

regression, only that the variance is allowed to be greater than what is assumed in a 

Poisson model. This extra variance is the overdispersion. If not accounted for, 

overdispersion leads to deflated standard errors which in turn may lead to errenous 

inference.  

 

More information help nbreg 

 

Practical example 

Let us first do a simple check to see what the situation looks like regarding 

overdispersion for our outcome children. Of course, this will not take any x-variable 

into consideration. 

 

sum children, detail 

 

 
           Number of children (Age 40, Year 2010) 

------------------------------------------------------------- 

      Percentiles      Smallest 

 1%            0              0 

 5%            0              0 

10%            0              0       Obs               9,053 

25%            0              0       Sum of Wgt.       9,053 

 

50%            2                      Mean           1.737214 

                        Largest       Std. Dev.      1.552791 

75%            3              9 

90%            4              9       Variance       2.411161 

95%            4              9       Skewness       .5696771 

99%            6             10       Kurtosis       2.742044 

 

 

The variance is considerably higher than the mean, which suggests that overdispersion 

might be an issue. Accordingly, it is a good idea to try out a negative binomial 

regression model. 
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Thus, we will re-run the multiple regression model that we specified for Poisson 

regression earlier, but now with the nbreg command: 

 

nbreg children siblings sex ib1.educ if pop_poisson==1, irr 

 

 
Negative binomial regression                    Number of obs     =      9,014 

                                                LR chi2(4)        =     287.03 

Dispersion     = mean                           Prob > chi2       =     0.0000 

Log likelihood = -15641.938                     Pseudo R2         =     0.0091 

 

---------------------------------------------------------------------------------- 

        children |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

        siblings |   1.017336   .0075522     2.32   0.021     1.002641    1.032247 

             sex |   1.306172    .025613    13.62   0.000     1.256924    1.357349 

                 | 

            educ | 

Upper secondary  |   1.150272   .0322482     4.99   0.000     1.088772    1.215246 

     University  |   1.294558   .0370545     9.02   0.000     1.223932    1.369259 

                 | 

           _cons |   1.248594    .037102     7.47   0.000     1.177953    1.323472 

-----------------+---------------------------------------------------------------- 

        /lnalpha |  -1.284739   .0564131                     -1.395307   -1.174171 

-----------------+---------------------------------------------------------------- 

           alpha |   .2767228   .0156108                       .247757     .309075 

---------------------------------------------------------------------------------- 

Note: Estimates are transformed only in the first equation. 

Note: _cons estimates baseline incidence rate. 

LR test of alpha=0: chibar2(01) = 540.41               Prob >= chibar2 = 0.000 

 

 

The output is very similar to the one we got for the Poisson regression. Additionally, 

we are presented with the results from the log-transformed overdispersion parameter 

(/lnalpha), as well as the untransformed estimate (alpha). 

 

Note that we also get a LR test presented below the table, which compares this model 

to a Poisson model. The fact that the p-value (Prob >= chibar2) is below 0.05 (0.000) 

suggests that this model fits the data better than the traditional Poisson.  
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16.6.2 Zero-inflated Poisson regression 

The zero-inflated Poisson regression models the data in two steps. The first step 

assumes that the excess zero counts come from a logit model (this is default), whereas 

the remaining counts come from a Poisson model. 

 

More information help zip 

 

Practical example 

As the first step, we need to generate a variable that specifies whether the outcome is 

a zero (value 1) or not (value 0), despite that it might seem a bit backwards. 

 

gen nochildren=children 

 

recode nochildren (0=1) (1/10=0) 
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Then we will re-run the multiple regression model that we specified for Poisson 

regression earlier, but now with the zip command. Here, we must also specify the 

inflate option, where we include the variable – nochildren – that we just generated. 

 

zip children siblings sex ib1.educ if pop_poisson==1, irr inflate(nochildren) 

 

 
Zero-inflated Poisson regression                Number of obs     =      9,014 

                                                Nonzero obs       =      6,215 

                                                Zero obs          =      2,799 

 

Inflation model = logit                         LR chi2(4)        =      31.48 

Log likelihood  = -10278.99                     Prob > chi2       =     0.0000 

 

---------------------------------------------------------------------------------- 

        children |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

children         | 

        siblings |   1.004593    .006135     0.75   0.453     .9926401    1.016689 

             sex |   1.034321   .0166694     2.09   0.036      1.00216    1.067514 

                 | 

            educ | 

Upper secondary  |   1.068627   .0250581     2.83   0.005     1.020625    1.118886 

     University  |   1.124861   .0267493     4.95   0.000     1.073636     1.17853 

                 | 

           _cons |   2.278097   .0570867    32.86   0.000     2.168913    2.392778 

-----------------+---------------------------------------------------------------- 

inflate          | 

      nochildren |   52.99146   17928.82     0.00   0.998    -35086.85    35192.83 

           _cons |  -25.62297    4647.69    -0.01   0.996    -9134.928    9083.682 

---------------------------------------------------------------------------------- 

Note: Estimates are transformed only in the first equation. 

Note: _cons estimates baseline incidence rate. 

 

 

The output is very similar to the one we got for the Poisson regression. There is a part 

of the table called “inflate”; this refers to the estimate for the variable predicting the 

excess zeros. The estimate of 52.99 suggests that for each unit increase in nochildren 

(i.e. being a zero vs not being a zero), there is a large increase in IRR.  
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16.6.3 Compare fit of alternative count models 

The command countfit will be used to compare the fit of the Poisson regression, 

negative binomial regression, and zero-inflated Poisson regression. This produces a 

number of different estimates and tests, as well as a graph. 

 

More information help countfit 

 

Practical example 

We will adapt the multiple regression model that we have worked with earlier: 

 

countfit children siblings sex ib1.educ if pop_poisson==1, prm nbreg zip 

 

Note prm=Poisson, nbreg=negative binomial, and zip=zero-inflated. 

 

  



 

420 

 

This will produce a serious amount of output. We will include one portion at a time 

here. 

 

 
-------------------------------------------------------------------- 

                      Variable |    PRM        NBRM         ZIP      

-------------------------------+------------------------------------ 

children                       | 

Number of siblings (Age 15, ~r |     1.016       1.017       1.005   

                               |      2.72        2.32        0.73   

                           Sex |     1.305       1.306       1.047   

                               |     16.47       13.62        2.43   

                               |                                     

Educational level (Age 40, Y~  |                                     

              Upper secondary  |     1.147       1.150       1.091   

                               |      5.86        4.99        3.15   

                   University  |     1.291       1.295       1.168   

                               |     10.73        9.02        5.59   

                      Constant |     1.254       1.249       1.975   

                               |      9.12        7.47       22.90   

-------------------------------+------------------------------------ 

lnalpha                        | 

                      Constant |                 0.277               

                               |                -22.77               

-------------------------------+------------------------------------ 

inflate                        | 

Number of siblings (Age 15, ~r |                             0.949   

                               |                             -1.90   

                           Sex |                             0.360   

                               |                            -13.77   

                               |                                     

Educational level (Age 40, Y~  |                                     

              Upper secondary  |                             0.821   

                               |                             -2.24   

                   University  |                             0.644   

                               |                             -4.74   

                      Constant |                             0.636   

                               |                             -4.92   

-------------------------------+------------------------------------ 

Statistics                     |                                     

                         alpha |                 0.277               

                             N |      9014        9014        9014   

                            ll | -1.59e+04   -1.56e+04   -1.51e+04   

                           bic | 31869.821   31338.515   30275.166   

                           aic | 31834.288   31295.876   30204.101   

-------------------------------------------------------------------- 

                                                         legend: b/t 

 

 

The most interesting here is Statistics part, where we get the values for the Bayesian 

Information Criterion (BIC) and the Akaike Information Criterion (AIC). These can 

be seen as relative measure of model fit: the lower the values, the better. We note that 

the BIC and AIC values are lowest for the zero-inflated Poisson model, indicating that 

this model has the best fit. 
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Tests and Fit Statistics 

 

PRM            BIC= 31869.821  AIC= 31834.288  Prefer  Over  Evidence 

------------------------------------------------------------------------- 

  vs NBRM      BIC= 31338.515  dif=   531.305  NBRM    PRM   Very strong 

               AIC= 31295.876  dif=   538.412  NBRM    PRM 

               LRX2=  540.412  prob=    0.000  NBRM    PRM   p=0.000     

------------------------------------------------------------------------- 

  vs ZIP       BIC= 30275.166  dif=  1594.655  ZIP     PRM   Very strong 

               AIC= 30204.101  dif=  1630.187  ZIP     PRM 

               Vuong=       .  prob=        .  ZIP     PRM   p=.         

------------------------------------------------------------------------- 

NBRM           BIC= 31338.515  AIC= 31295.876  Prefer  Over  Evidence 

------------------------------------------------------------------------- 

  vs ZIP       BIC= 30275.166  dif=  1063.349  ZIP     NBRM  Very strong 

               AIC= 30204.101  dif=  1091.776  ZIP     NBRM 

------------------------------------------------------------------------- 

ZIP            BIC= 30275.166  AIC= 30204.101  Prefer  Over  Evidence 

 

Vuong test is not appropriate for testing zero-inflation. To force the 

the computation of the test, use option -forcevuong-. 

 

 

This part of the output ties back to the BIC and AIC statistics. The results here support 

what we already concluded: the zero-inflated Poisson model is preferable over the 

Poisson model and negative binomial model.  
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Comparison of Mean Observed and Predicted Count 

 

            Maximum       At      Mean 

Model     Difference    Value    |Diff| 

--------------------------------------------- 

PRM        -0.144         1      0.040 

NBRM       -0.123         1      0.030 

ZIP         0.036         3      0.008 

 

PRM: Predicted and actual probabilities 

 

Count   Actual    Predicted    |Diff|   Pearson 

------------------------------------------------ 

0        0.311       0.183      0.128   805.387 

1        0.159       0.303      0.144   616.498 

2        0.205       0.259      0.054   100.694 

3        0.189       0.151      0.038    87.188 

4        0.092       0.068      0.024    75.072 

5        0.032       0.025      0.007    16.819 

6        0.009       0.008      0.001     1.099 

7        0.002       0.002      0.000     0.010 

8        0.000       0.001      0.000     0.670 

9        0.000       0.000      0.000     3.555 

------------------------------------------------ 

Sum      1.000       1.000      0.396  1706.993 

 

NBRM: Predicted and actual probabilities 

 

Count   Actual    Predicted    |Diff|   Pearson 

------------------------------------------------ 

0        0.311       0.247      0.063   144.851 

1        0.159       0.283      0.123   484.864 

2        0.205       0.209      0.004     0.593 

3        0.189       0.127      0.063   280.898 

4        0.092       0.069      0.023    69.911 

5        0.032       0.035      0.003     2.095 

6        0.009       0.017      0.008    33.611 

7        0.002       0.008      0.006    36.249 

8        0.000       0.004      0.003    26.398 

9        0.000       0.002      0.001     8.972 

------------------------------------------------ 

Sum      1.000       0.999      0.297  1088.441 

 

ZIP: Predicted and actual probabilities 

 

Count   Actual    Predicted    |Diff|   Pearson 

------------------------------------------------ 

0        0.311       0.310      0.000     0.000 

1        0.159       0.182      0.023    25.899 

2        0.205       0.205      0.000     0.003 

3        0.189       0.154      0.036    73.775 

4        0.092       0.087      0.005     2.286 

5        0.032       0.040      0.008    13.320 

6        0.009       0.015      0.006    22.800 

7        0.002       0.005      0.003    13.326 

8        0.000       0.001      0.001     7.409 

9        0.000       0.000      0.000     0.019 

------------------------------------------------ 

Sum      1.000       1.000      0.081   158.836 

    

 

The first part shows a comparison between the mean observed and predicted counts, 

followed by the predicted and actual probabilities for each value of children, separate 

for the three models. The maximum difference is smallest for the zero-inflated Poisson 

model, which supports this as the preferable model. It is also interesting to note the 

difference between the actual and predicted probabilities specifically for the value 0, 

for the three models. Again, the difference is smallest for the ZIP model.  
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This graph plots the observed (actual) minus predicted probabilities seen in the table. 

Positive deviations reflect underprediction and negative deviations reflect 

overprediction. The negative binomial (NBRM) and Poisson (PRM) models tend to 

underpredict the value 0 and overpredict the value 1, while the zero-inflated Poisson 

model does a better job across the whole scale.  
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16.7 Hurdle regression 

Finally, we would like to make you aware that a viable alternative to zero-inflated 

Poisson regression is hurdle regression. Like zero-inflated Poisson regression, hurdle 

regression will model the outcome in two steps. But where the first step in the zero-

inflated Poisson regression predicts whether the outcome is 0, the first step in the 

hurdle regression predicts whether the outcome is 1.  

 

Assume that we are interested in predicting the number of months an individual has 

received means-tested social assistance. Means-tested social assistance is a relatively 

rare outcome (at least at population level), so the vast majority of individuals have not 

received any social assistance. Since data include both recipients and non-recipients, 

the first model (typically a logistic regression model) determines whether one has 

received social assistance, and the second model (typically a model for count data) 

determines the number of months in receipt of social assistance given that one has 

received benefits (i.e. when the ‘hurdle’ has been crossed). Such an approach thus 

allows for testing hypotheses about whether there are different processes governing 

the occurrence and the continuation of the outcome. 

 

Hurdle regression comes in many versions, of which Poisson-logit and negative 

binomial-logit are two examples. With the commands hplogit and hnblogit, we can 

produce the Poisson-logit and negative binomial-logit versions of the hurdle model. 

These commands require separate installations. We will not go through these here, but 

if you are interested, we suggest that you install hplogit and hnblogit and then review 

the help files. 
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Content 

This chapter starts with an introduction to Cox regression and then presents the 

function in Stata. After this, we offer some practical examples of how to perform 

simple and multiple Cox regression, as well as how to generate and interpret model 

diagnostics.  
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17.1 Introduction 

Cox regression is used when the outcome is time-to-event. Accordingly, the outcome 

can be said to consist of two components of information: whether an event has 

occurred or not, and the time at risk (i.e. the time up until the event has occurred). The 

event itself can be of any sort, such as death, hospitalization, job loss, or childbirth. 

 

Some examples 

• Time from birth to death. 

• Time from marriage to divorce. 

• Time from cancer diagnosis to death from cancer. 

• Time from admission to hospital to discharge from hospital. 

• Time from start of the game to the first goal. 

 

Cox regression analysis is a type of survival analysis. This term makes it sound like it 

is all about life and death – but survival analysis can actually be applied to any type 

of time-to-event data. It should also be mentioned that survival analysis goes by 

different names depending on discipline and research field (life table analysis, hazard 

analysis, duration analysis, transition analysis, event history analysis, etc). We 

personally prefer the term time-to-event analysis.  
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17.1.1 Observational time and censoring 

A key ingredient in survival analysis is observational time (or time at risk), i.e. the 

period during which an individual (or any other type of observation) is actually 

observed. The observational period (also called follow-up period) starts when the 

individual enters the study and ends at: a) the occurrence of the event, b) by the end 

of follow-up, c) at loss to follow-up/dropout, or d) in the case of death. In relation to 

these points, we need to discuss the concept of censoring.  

 

Censoring 

Left-censoring The term left-censoring applies to situations when we know 

that the event occurred prior to the start of the observation 

period, but we cannot be sure about the exact time the event 

occurred. 

Right-censoring In cases b-d, as specified above this table, the term right-

censoring would apply. It means that we are only able to 

know anything about the development of the individual up 

until that specific point (we do not know if or when the event 

will happen afterwards). Put differently, right-censoring 

refers to a situation where an individual can no longer be 

observed and the event has not occurred during the 

observational/follow-up period. 

Interval-censoring Interval-censoring refers to instances when we know an 

event occurred between two time points, but we cannot be 

sure when the event occurred within that interval.   
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Below is an illustration of what (right-)censoring might look like. Lines that end with 

a circle denote that the event has taken place (individuals A, G, and I), whereas the 

lines that end with a diamond denote that the individual has been censored. In the case 

of individuals C, D, E, H, and J, they are censored at the end of follow-up. Individuals 

B and F have been censored earlier than that, perhaps because of death or emigration.    

 

 

 

Individual A 

 

Individual B 

 

Individual C 

 

Individual D 

 

Individual E 

 

Individual F 

 

Individual G 

 

Individual H 

 

Individual I 

 

Individual J 

 

 

 

 

 

 

 

One assumption that we need to make is that the censoring is non-informative. In other 

words, we assume that those that are censored are not being censored because they 

have a lower or higher risk of the event itself. Such violations are difficult to formally 

test but are probably quite common. For example, it is likely that individuals that are 

censored because of death would be more likely to have experienced the event at some 

point if they had not died (at least if the event is related to health in some way).  

 

To summarise, it is necessary to have precise information about when the follow-up 

starts, when it ends, and when the event occurred. There must also be an unambiguous 

definition of the time scale. Moreover, we need to consider censoring (most survival 

analyses have right-censoring), since our results might be biased otherwise.  

 

0        1        2       3       4        5       6       7       8        9        10 

Observational time/ 

Time at risk (years) 

Start of 

follow-up 

(entry) 

End of 
follow-up 

(exit) 



 

429 

 

Note There is also a second concept in survival analysis, often confused with 

censoring, called truncation. Truncation refers to situations when the observation 

period for certain individuals is smaller or larger than your study’s observation period. 

As you cannot observe these individuals (and researchers are therefore not aware of 

their existence) they are not included. This may also introduce bias into your results. 

Left and right truncation is quite common in health sciences, and special methods are 

required to deal with it, but these will not be covered in this guide. 

 

17.1.2 Survival function 

In survival analysis, the survival function plays a central role. This can be defined as 

the probability that an individual survives beyond time t. While t can range from 0 to 

infinity (∞), the survival function is restricted to vary between 0 and 1. Moreover, the 

probability of survival at t=0 is 1, whereas the probability of survival goes to 0 when 

t=∞. In theory, the survival function is smooth, but we usually observe events on a 

discrete time scale (e.g. years, months, days). 

 

17.1.3 Hazard function 

We also have something called the hazard function (or failure function): the 

instantaneous rate of failure at time t, conditional upon the fact that the event has not 

yet occurred. A related concept is the cumulative hazard, which describes the 

accumulated risk up until time t. Neither the hazard function nor the cumulative hazard 

function is a measure of probability but can be thought of as a measure of risk: the 

greater the value, the greater the risk of failure.  

 

17.1.4 Tied failure times 

Tied failure times, or “ties,” refers to instances when two (or more) individuals 

experience the health event, or are censored, at the same time. The number of ties in 

your data may depend on, e.g., how detailed your time variables are (exact times have 

a lower likelihood of ties) and what process you are modelling (relative to others, 

some events may have a higher likelihood of ties). Since the outcome is often 

measured on a continuous scale when using Cox regression, we assume that ties are 

relatively rare. Tied failure times will be discussed in more detail in Section 17.2. 

Survival models also have different approaches for dealing with ties; these methods 

are outlined in Section 17.8.6.  
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17.1.5 Non-parametric, parametric, and semi-parametric 
models 

It is easy to estimate and graph the survival function and hazard function: we can use 

non-parametric methods such as the Kaplan-Meier product-limit estimator (see 

Section 17.4.1).  

 

Alternatively, we can estimate the survival distribution based on parametric regression 

models – in this context often referred to accelerated failure time models (or location-

scale models). Within this framework, there are many different types which all assume 

different shapes of the distribution (e.g. exponential, Weibull, log-normal, log-

logistic, Gompertz, and generalised gamma). While these will not be covered in this 

guide, you can explore them in Stata if you want to: 

 

More information help stintreg 

 

Then we have the proportional hazards model – or simply Cox regression – which is 

a semi-parametric type of model. Unlike non-parametric methods, proportional 

hazards models can account for more of the detail of the data. Additionally, they are 

more flexible compared to parametric models since there are fewer assumptions. 

 

Note For many (if not most) variables that capture events (i.e. case vs non-case), 

observational time/time at risk is relevant to consider. Yet, this information is not 

always available. Even when it is available, many researchers do not make any use of 

it and instead perform analyses suitable for binary outcomes, e.g. logistic regression. 

 

Note Although time-to-event is a continuous variable, it is seldom a feasible 

alternative to apply a linear regression. This is primarily due to the incapability of 

linear regression models to account for censoring, but also because time-to-event 

variables often have a skewed distribution. 

 

Note In some instances, Poisson regression is a viable alternative to Cox regression. 

This is for example the case when data are grouped (i.e. aggregated).   
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17.2 The Cox regression model 

The Cox regression model is used to measure the effects of one or more risk factors 

(or exposures; x-variables) on the hazard rate. The hazard rate is the effect measure in 

Cox models: the risk of the occurrence of a health event, given the individual’s 

survival until that timepoint. The basic Cox model notation states that the hazard at 

time t is equal to the baseline hazard at time t multiplied by the exponentiated product 

of the vector of regression coefficients and the vector of covariates. Let’s dig in! 

 

As we mentioned in Section 17.1.5, health events modelled using parametric models 

(e.g., exponential, Weibull, Gompertz, and Poisson) are each assumed to have a 

distinct distribution that is described by one or several parameters. In other words, the 

baseline hazard for each of these models has a distinct shape and varies in a specific 

way. Using parametric survival models require that you understand the assumption(s) 

underlying the shape of the respective distribution and have an idea that the baseline 

hazard in your data approximately follows this shape.  

 

Cox regression is a semi-parametric approach; the model does contain a parametric 

component, but also a non-parametric component. In Cox models, the baseline hazard 

function is non-parametric: it can wander freely with no parameters. This means that 

the Cox model does not make any assumptions about the shape of the baseline hazard 

or the distribution of survival times. In fact, estimating the baseline hazard is not 

needed to make inferences about the relative hazard rates. Unlike parametric models 

where we need to be very careful about which model we specify, we do not need to 

specify a distribution for the Cox model. Importantly though, the baseline hazard, no 

matter the shape, is assumed to be the same for every unit of observation. Summary 

so far: the baseline hazard at time t is the value of the hazard when all covariates are 

equal to zero, the baseline hazard does not have a specific shape but is the same for 

all units of observation, and it is not assumed that survival times follow a specific 

distribution. 

 

In Cox models, the covariate vector (or covariate function; group of one or more 

covariates, x-variables) is modelled parametrically. Covariates influence the baseline 

hazard in a specific way. The hazard function is multiplied by the covariate vector to 

obtain the effect of the covariates. The covariate vector induces a multiplicative and 

proportional shift in the baseline hazard, but does not change the shape of the baseline 

hazard. Furthermore, the multiplicative effect of the covariates is not time dependent; 

it is the same at any time t during the follow-up period. Please note that this is true for 

fixed covariates, or covariates that do not depend on time. Cox regression can also be 

used to model time-dependent covariates, which may vary over time, but we will not 

discuss time-dependent covariates in this guide. The effect of the covariates underlies 

a very important assumption in Cox regression: the proportional hazards assumption. 
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Proportional hazards 

Now we know that the effect of any (group of) covariate(s) is the same at any point in 

time during follow-up. Therefore, the relationship between the covariates and the 

event (outcome; dependent variable; y-variable) is constant. This means that, for any 

two units of observation (for example, any two individuals), the ratio of the hazard 

functions is constant and dependent on the covariate values. In other words, the hazard 

functions are proportional to one another, at any point in time. The estimated hazard 

ratio (which compares the hazard functions of one individual to another) does not vary 

over time, even if the size of the hazard changes (e.g., increases, decreases, increases 

then decreases, etc.) or remains constant. Therefore, if the proportional hazards 

assumption holds, the hazard curves for any two individuals should be proportional to 

one another over time. When graphed, these curves should be parallel to each other, 

and definitely should not cross. Since this is a very important assumption when using 

Cox regression, you should always formally test that the proportional hazards 

assumption is valid – but more on this later. 

 

Below is a simplified illustration of what we mean by proportional hazards. We want 

to estimate the risk of dying among indoor versus outdoor cats diagnosed with feline 

leukemia virus over a five-year period. If the risk of dying (the hazard) among outdoor 

cats is 1.4 times higher than the risk of dying among indoor cats at the beginning of 

the observation period, the proportional hazards assumption implies that the risk of 

dying among outdoor cats remains 1.4 times higher at all later time points. In other 

words, the difference between the two hazards should remain 1.4 across the five-year 

period, no matter the shape of the distribution.  
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Tied failure times 

As noted, tied failure times (ties) occur when two (or more) individuals have the same 

time to event, or they experience the event at the same time. For example, in the 

Olympic games, a tie for first place can be problematic: instead of one person each 

being ranked first, second, and third, suddenly two people are ranked first, no one is 

ranked second, and one person is ranked third. What does this have to do with Cox 

models? Cox regression is based on the partial likelihood function: the product of the 

conditional probabilities. Stay with us.  

 

Imagine that we have a group of individuals who are at risk of the event (failure) at 

time t. For each event (failure time), we can calculate what is called the conditional 

probability of the event occurring (failure). To calculate the likelihood function, the 

numerator should contain only the individual who experiences the event at time t; the 

denominator contains all the other individuals in the group (risk set) for whom the 

event has not yet occurred. As such, calculating the likelihood function depends on 

the order of the failure times, not when the failures occur. Therefore, in theory, only 

one individual can fail at each failure time. If more than one individual fails at a single 

failure time, this is a tie, or a tied failure. Suddenly we have more than one individual 

in the numerator, the ordering of the failures is unclear, and we have no idea who won 

the gold medal. In conclusion, we want to minimize the number of tied failures. 

 

Other names for Cox regression 

Cox regression is sometimes called, e.g., proportional hazards regression.  
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17.2.1 Cox regression in short 

If you have only one x, it is called simple regression, and if you have more than one 

x, it is called multiple regression. Regardless of whether you are doing a simple or a 

multiple regression, the x-variables can be categorical (nominal/ordinal) and/or 

continuous (ratio/interval). 

 

Key information from Cox regression 

Effect  

Hazard ratio (HR) The exponent of hazard rate 

 Hazard rate The probability that if the event has 

not yet occurred, it will occur in the 

next time interval, divided by the 

length of that interval. 

Direction   

Negative HR below 1 

Positive HR above 1 

Statistical significance  

P-value p<0.05 Statistically significant at the 5% level 

p<0.01 Statistically significant at the 1% level 

p<0.001 Statistically significant at the 0.1% level 

95% Confidence intervals Interval does not include 1: 

Statistically significant at the 5% level 

Interval includes 1:  

Statistically non-significant at the 5% level 

 

Hazard ratio (HR) 

In Cox regression analysis, the effect that x has on y is reflected by a hazard ratio 

(HR): 

 

HR below 1 For every unit increase in x, the hazard rate of y 

decreases. 

HR above 1 For every unit increase in x, the hazard rate of y increases. 

 

Exactly how one interprets the HR in plain writing depends on the measurement scale 

of the x-variable. That is why we will present examples later for continuous, binary, 

and categorical (non-binary) x-variables. 

 

Note Unlike linear regression, where the null value (i.e. value that denotes no 

difference) is 0, the null value for Cox regression is 1.  

 

Note A HR can never be negative – it can range between 0 and infinity. 
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How to not interpret hazard ratios 

 

The hazard ratios produced with Cox regression analysis are not the same as risk ratios 

(see Section 4.7.6). HRs tend to be inflated when they are above 1 and understated 

when they are below 1. This becomes more problematic the more common the 

outcome is (i.e. the more “cases” we have). However, the rarer the outcome is (<10% 

is usually considered a reasonable cut-off here), the closer hazard ratios and risks 

ratios become. 

 

Many would find it compelling to interpret HRs in terms of percentages. For example, 

an HR of 1.20 might lead to the interpretation that the hazard rate of the outcome 

increases by 20%. If the HR is 0.80, some would then suggest that the hazard rate 

decreases by 20%. We would to urge you to carefully reflect upon the latter kind of 

interpretation since hazard ratios are not symmetrical: it can take any value above 1 

but cannot be below 0. Thus, the choice of reference category might lead to quite 

misleading conclusions about effect size. The former kind of interpretation is usually 

considered reasonable when HRs are below 2. If they are above 2, it is better to refer 

to “times”, i.e. an HR of 4.07 could be interpreted as “more than four times the hazard 

rate of…”. 

 

Take home messages 

Do not interpret incidence hazard ratios as risk ratios, unless the outcome is very 

rare (<10%, but even then, be careful). 

It is completely fine to discuss the results more generally in terms of higher or lower 

hazard rates/risks. However, if you want to give exact numbers to exemplify, you 

need to consider the asymmetry of hazard ratios as well as the size of the HR. 

 
P-values and confidence intervals 

In Cox regression analysis you can get information about statistical significance, in 

terms of both p-values and confidence intervals (also see Section 5.2).  

 

Note The p-values and the confidence intervals will give you partly different 

information, but they are not contradictory. If the p-value is below 0.05, the 95% 

confidence interval will not include 1 and, if the p-value is above 0.05, the 95% 

confidence interval will include 1. 

  

When you look at the p-value, you can rather easily distinguish between the 

significance levels (i.e. you can directly say whether you have statistical significance 

at the 5% level, the 1% level, or the 0.1% level).  

 

When it comes to confidence intervals, Stata will by default choose 95% level 

confidence intervals. It is however possible to change the confidence level for the 

intervals. For example, you may instruct Stata to show 99% confidence intervals 

instead. 
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R-Squared 

R-Squared (or R2) does not work very well due to the assumptions behind Cox 

regression. Stata produces a pseudo R2, but due to inherent bias this is seldom used. 

 

Simple versus multiple regression models 

The difference between simple and multiple regression models, is that in a multiple 

regression each x-variable’s effect on y is estimated while accounting for the other x-

variables’ effects on y. We then say that these other x-variables are “held constant”, 

or “adjusted for”, or “controlled for”. Because of this, multiple regression analysis is 

a way of dealing with the issue of confounding variables, and to some extent also 

mediating variables (see Section 9.3). 

 

It is highly advisable to run a simple regression for each of the x-variables before 

including them in a multiple regression. Otherwise, you will not have anything to 

compare the adjusted coefficients with (i.e. what happened to the coefficients when 

other x-variables were included in the analysis). Including multiple x-variables in the 

same model usually (but not always) means that they become weaker – which would 

of course be expected if the x-variables overlapped in their effect on y.   

 

A note    

Remember that a regression analysis should follow from theory as well as a 

comprehensive set of descriptive statistics and knowledge about the data. In the 

following sections, we will – for the sake of simplicity – not form any elaborate 

analytical strategy where we distinguish between x-variables and z-variables (see 

Section 9.3). However, we will define an analytical sample and use a so-called pop 

variable (see Section 11.5). 
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17.3 Declare that the data are time-to-event 
data 

Before we can analyse time-to-event data (a.k.a. survival-time data), we need to 

declare this for Stata. This is a bit complicated, but take a deep breath! 

 

Of course, we need one key variable, namely the variable that reflects the event. 

Moreover, we need to create some time variables. They should be in date format. It is 

also good practice to include an identification variable. 

 

Key variables 

failure Indicates whether the individual has experienced the event 

or not. For example: event is coded as 1 and no event as 0. 

event The date that the individual experiences the event. 

origin The date that defines when the time is zero.  

 

This is optional (but we think it makes sense to give the same 

date here as enter). However, if we want to attain age as the 

timescale, origin is specified as the date of birth. 

enter The date that the individual becomes at risk, i.e. enters the 

observational period. 

 

For example, if you have a follow-up period, enter is 

specified as the start date of that period. 

exit The date that the individual exits the study, i.e. the latest time 

that the individual is at risk. 

 

This is optional (the default is that the individual is removed 

after the event has occurred). However, it is useful if you 

want to specify the end date of the follow-up period. 

id Identification (id) number. 

 

Note We do not actually need to name the variables failure, event, origin, enter, exit, 

or id. This is our choice. 

 

The next step is to use stset to declare that the data is time-to-event data. 

 

We will take our point-of-departure in the following command structure: 

 

stset event, failure(failure==1) enter(time enter) exit(time exit) origin (time origin) 

scale(365.25) id(id) 

 

Note The scale option transforms the observational time from days (default) to years. 

 

More information help stset 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

cvd   Out-patient care due to CVD (Ages 41-50,  

  Years 2011-2020) 

cvd_year_str  Year of out-patient care due to CVD (Ages 41-50,  

  Years 2011-2020) 

cvd_month_str   Month of out-patient care due to CVD (Ages 41-50,  

  Years 2011-2020) 

cvd_day_str   Day of out-patient care due to CVD (Ages 41-50,  

  Years 2011-2020) 

 

 

Failure 

 

In this example, we will focus on the variable cvd, which measures the occurrence of 

out-patient care due to cardiovascular disease (CVD). It looks like this: 

 

tab cvd 

 

 
Out-patient | 

care due to | 

  CVD (Ages | 

     41-50, | 

      Years | 

 2011-2020) |      Freq.     Percent        Cum. 

------------+----------------------------------- 

         No |      9,482       94.82       94.82 

        Yes |        518        5.18      100.00 

------------+----------------------------------- 

      Total |     10,000      100.00 

  

 

Event 

 

Connected to this variable, we have a variable (cvd_date_str) reflecting year, month, 

and day of the individual’s first out-patient care event due to CVD. This variable is 

currently a string variable which we need to transform into a time variable through a 

series of steps, earlier described in this guide. We will just quickly repeat these steps 

here (see Sections 2.4.6-2.4.7 for more details).  

 

Note If your dataset already contains this time variable (i.e. if you are using a saved 

dataset where you already performed the practical exercises in Sections 2.4.6-2.4.7), 

you should not perform these commands again. 
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gen cvd_year_str= substr(cvd_date_str,1,4) 

 

gen cvd_month_str= substr(cvd_date_str,5,2) 

 

gen cvd_day_str= substr(cvd_date_str,7,2) 

 

gen cvd_year=real(cvd_year_str) 

 

gen cvd_month=real(cvd_month_str) 

 

gen cvd_day=real(cvd_day_str) 

 
gen cvd_date=mdy(cvd_month,cvd_day,cvd_year) 

 
format %d cvd_date 

 

This is what the cvd_date variable looks like in the 100 first individuals (sorted by id). 

 

tab cvd_date in 1/100  

 

 
   cvd_date |      Freq.     Percent        Cum. 

------------+----------------------------------- 

  03dec2011 |          1        7.14        7.14 

  17jul2012 |          1        7.14       14.29 

  05dec2012 |          1        7.14       21.43 

  27mar2013 |          1        7.14       28.57 

  02apr2013 |          1        7.14       35.71 

  27may2013 |          1        7.14       42.86 

  17dec2013 |          1        7.14       50.00 

  26jan2014 |          1        7.14       57.14 

  17apr2016 |          1        7.14       64.29 

  15sep2016 |          1        7.14       71.43 

  13sep2017 |          1        7.14       78.57 

  24jan2018 |          1        7.14       85.71 

  08sep2018 |          1        7.14       92.86 

  11mar2019 |          1        7.14      100.00 

------------+----------------------------------- 

      Total |         14      100.00 

 

 

But we need to do one more step (should be performed even if you carried out the 

previous steps in Sections 2.4.6-2.4.7): impose the censoring date for the individuals 

that do not have an event. As will be explained later, we will censor the individuals at 

the end of follow-up (December 31, 2020). We will create a new variable for this 

purpose. This is actually the one that we will use in the analysis. 

 

gen cvd_faildate=cvd_date  

 

replace cvd_faildate=mdy(12,31,2020) if cvd_faildate==. 

 

format %d cvd_faildate 
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Origin 

 

In this dataset, the individuals are born in 1970. We do not have any detailed 

information about birth date, so we will specify the date as being in the middle of the 

year (June 30, 1970). After this, we format cvd_origin to be a date variable. 

 

gen cvd_origin=mdy(6,30,1970) 

 

format %d cvd_origin 

 

Enter 

 

The follow-up of out-patient care due to CVD starts on January 1, 2011: 

 

gen cvd_enter=mdy(1,1,2011) 

 

format %d cvd_enter 

 

Exit 

 

The follow-up period ends on December 31, 2020. This will be the exit date for the 

individuals that do not experience the event. 

 

gen cvd_exit=mdy(12,31,2020) 

 

format %d cvd_exit 

 

For the individuals that do experience the event, the exit date will be replace with the 

failure date (i.e. the date that they experience the event): 

 

replace cvd_exit=cvd_faildate if cvd==1 

 

Note In the current example, we will keep it simple and just assume that all individuals 

stayed alive and did not drop out during the follow-up period. 
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Stset 

 

Now, we have what we need to stset the data: 

 

stset cvd_faildate, failure(cvd==1) enter(time cvd_enter) exit(time cvd_exit) origin 

(time cvd_origin) scale(365.25) id(id) 

 

There are four variables that are created when we use stset.     

 

Variables created by stset 

_t0 Analysis time when observational period starts 

_t Analysis time when observational period ends 

_d Indicator of event (=1 if event has occurred) 

_st Indicator of whether the individual is included in the stset 

 

Let us have a look at the variables we used for stset, including the new ones created. 

We will display this only for the 10 first individuals in the dataset. 

 

list cvd_faildate cvd_origin cvd_enter cvd_exit _st _d _t _t0 in 1/10 

 

 
     +----------------------------------------------------------------------------------+ 

     | cvd_fai~e   cvd_ori~n   cvd_enter    cvd_exit   _st   _d          _t         _t0 | 

     |----------------------------------------------------------------------------------| 

  1. | 31dec2020   30jun1970   01jan2011   31dec2020     1    0   50.505133   40.506502 | 

  2. | 31dec2020   30jun1970   01jan2011   31dec2020     1    0   50.505133   40.506502 | 

  3. | 31dec2020   30jun1970   01jan2011   31dec2020     1    0   50.505133   40.506502 | 

  4. | 31dec2020   30jun1970   01jan2011   31dec2020     1    0   50.505133   40.506502 | 

  5. | 11mar2019   30jun1970   01jan2011   11mar2019     1    1   48.695414   40.506502 | 

     |----------------------------------------------------------------------------------| 

  6. | 31dec2020   30jun1970   01jan2011   31dec2020     1    0   50.505133   40.506502 | 

  7. | 17jul2012   30jun1970   01jan2011   17jul2012     1    1   42.047912   40.506502 | 

  8. | 31dec2020   30jun1970   01jan2011   31dec2020     1    0   50.505133   40.506502 | 

  9. | 31dec2020   30jun1970   01jan2011   31dec2020     1    0   50.505133   40.506502 | 

 10. | 31dec2020   30jun1970   01jan2011   31dec2020     1    0   50.505133   40.506502 | 

     +----------------------------------------------------------------------------------+ 

 

 

All individuals enter on the same date (cvd_enter=01jan2011) and they have the same 

origin date (cvd_origin=30jun1970). This means that the age at the beginning of the 

follow-up period is the same of everyone (_t0=40.506502).  

 

We can see that the 5th and 7th individual has the value 1 for the variable _d. In other 

words, they have experienced the event (out-patient care due to CVD). The 

corresponding date is shown in cvd_failure (11mar2019 and 17jul2012, respectively), 

and the corresponding age at the event is shown in _t (48.695414 and 42.047912, 

respectively). For the remaining individuals, cvd_failure is set to 31dec2020 and _t is 

estimated to 50.505133.    
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This is the output we got when we executed the stset command: 

 

 
                id:  id 

     failure event:  cvd == 1 

obs. time interval:  (cvd_faildate[_n-1], cvd_faildate] 

 enter on or after:  time cvd_enter 

 exit on or before:  time cvd_exit 

    t for analysis:  (time-origin)/365.25 

            origin:  time cvd_origin 

 

------------------------------------------------------------------------------ 

     10,000  total observations 

          0  exclusions 

------------------------------------------------------------------------------ 

     10,000  observations remaining, representing 

     10,000  subjects 

        518  failures in single-failure-per-subject data 

 97,394.305  total analysis time at risk and under observation 

                                                at risk from t =         0 

                                     earliest observed entry t =   40.5065 

                                          last observed exit t =  50.50513 

 

 

Here, we can see that we have 10,000 individuals, of which 518 have experienced the 

event (out-patient care due to CVD). We also have a total of 97,394 years at risk and 

under observation. The “earliest observed entry t” is 40.5, reflecting age at enter. The 

“last observed exit t” is 50.5, which reflects age at exit.  

 

Want to unset the data? 

To remove the st markers from the dataset, just type: 

 

stset, clear 

 

Want to do a different stset? 

It is not uncommon that we apply a number of Cox regressions with different 

outcomes, using the same dataset. In that case, you should create a set of time variables 

for each outcome (some variables can often be reused, e.g. origin and enter). Just make 

sure that you have the right stset active before you carry out the analysis. To check 

the current status, you can write: 

 

st  

 

Note You do not have to unset the data before doing another stset.  
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17.4 Descriptive analysis 

Before we move on to Cox regression analysis, let us explore the time-to-event data 

properly first.  

 

We can start with a simple description of how the data are arranged: 

 

stdescribe, noshow 

 

 
                                   |-------------- per subject --------------| 

Category                   total        mean         min     median        max 

------------------------------------------------------------------------------ 

no. of subjects            10000    

no. of records             10000           1           1          1          1 

 

(first) entry time                   40.5065     40.5065    40.5065    40.5065 

(final) exit time                   50.24593    40.53388   50.50513   50.50513 

 

subjects with gap              0    

time on gap if gap             0           .           .          .          . 

time at risk           97394.305    9.739431    .0273785   9.998631   9.998631 

 

failures                     518       .0518           0          0          1 

------------------------------------------------------------------------------ 

 

 

This shows, among other things, that we have 10,000 individuals in the analytical 

sample, of which 518 (5.18%) have experienced the outcome (cvd).  

 

We also get some descriptive statistics for entry time, exit time, and time at risk. Since 

we have specified cvd_origin as date of birth, the values for mean/min/median/max 

entry time and exit time reflect age.  

 

In the output above, mean age at entry is 40.51. This is actually the same for all 

individuals since they have the same date for cvd_origin and the same date for 

cvd_enter, which also explains why the same value is presented for min, median, and 

max.  

 

The mean age at exit is 50.25 (min: 40.53, median: 50.50, max: 50.50). The reason 

why the same value is given for median and max is because a great majority of the 

individuals in the sample have not experienced the event are thus are censored at the 

end of follow-up (which equals age 50.50). 

 

Time at risk is here presented as years. We can see that the mean is 9.74 (min=0.03, 

median=10.00, max=10.00). Again, the median and max values are the same since 

most individuals are censored at the end of follow-up (i.e. after 10 years).  

 

More information help stdescribe 
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Restricted mean survival time 

Another way of obtaining the mean time at risk is through stci, which produces the 

restricted mean survival time (same as mean time at risk) along with information on 

standard errors and confidence intervals.   

 

Estimating the restricted mean (or average) survival time is determined by calculating 

the area under the survival curve, restricting the estimation to the longest follow-up 

time. Below, we also include the noshow option. 

 

stci, rmean noshow 

 

 
             |    no. of  restricted 

             |  subjects        mean      Std. Err.    [95% Conf. Interval] 

-------------+------------------------------------------------------------- 

       total |     10000    9.739431(*)    .012822       9.7143    9.76456 

 

(*) largest observed analysis time is censored, mean is underestimated 

 

 

The restricted mean survival time in this example is 9.74 (years). Because of the way 

that our model is specified, the restricted mean survival time is the same as the mean 

time at risk. 

 

However, the estimate has been flagged by Stata since the observation with the longest 

follow-up time is censored, which leads to the survivor function not reaching zero. As 

a consequence, the mean is underestimated. 
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Extended mean survival time 

An alternative to the restricted mean survival time is to look at the extended mean 

survival time instead. This extends the survivor function from the last observed time 

to zero by using an exponential function.  

 

stci, emean noshow 

 

 
             |    no. of    extended 

             |  subjects        mean 

-------------+---------------------- 

       total |     10000    910.0801 

 

 

The extended mean survival time is 910 (years), which of course is a completely 

absurd estimate. This shows that the extended mean survival time should be used very 

cautiously.  

 

We can produce a graph to have a closer look at the issue:  

 

 stci, emean graph 
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The curve shows the survival probability (i.e. the probability of not experiencing out-

patient care due to CVD) across analysis time (years). The area under the curve is the 

proportion of individuals not experiencing the event. In sum, it takes more than 4,500 

years for the survival function to reach 0 – although life expectancy is indeed 

increasing globally, we can probably conclude that estimating the extended mean 

survival time is not a reasonable alternative in the context of this example. This is 

perhaps not completely surprising since we do not expect that the entire sample at 

some point will be experiencing out-patient care due to CVD. 

 

More information help stci 

 

Summary statistics 

It is also possible to produce some summary statistics: 

 

stsum, noshow 

 

 
         |               incidence       no. of    |------ Survival time -----| 

         | time at risk     rate        subjects        25%       50%       75% 

---------+--------------------------------------------------------------------- 

   total |  97394.30527   .0053186         10000          .         .         . 

 

 

This shows time at risk, the incidence rate, and number of subjects, as well as survival 

time at the 25th, 50th, and 75th percentile. 

 

Note Survival time at the 50th percentile is the same as median survival time.  

 

More information help stsum 

 
  



 

447 

 

Median survival time 

Another way of obtaining the median survival time through the following command: 

 

stci, median noshow 

 

In the current example, we do not get any values for survival time at the 25th, 50th, or 

75th percentile since the percentage of failure (i.e. proportion of cases with cvd) is very 

low (less than 5%). It would nevertheless be possible to estimate survival time at the 

1st to 4th percentile. Let us try out the first and last of these:  

 

stci, p(1) noshow 

 

stci, p(4) noshow 

 
 

             |    no. of  

             |  subjects         1%     Std. Err.     [95% Conf. Interval] 

-------------+------------------------------------------------------------- 

       total |     10000    42.63929             .      42.2122    42.8501 

 

 

             |    no. of  

             |  subjects         4%     Std. Err.     [95% Conf. Interval] 

-------------+------------------------------------------------------------- 

       total |     10000    48.18891             .       47.551    48.7064 

 

 

Since we specified origin as date of birth (well, not the exact date) when we applied 

stset to the data, we actually get the median survival age for the two percentiles. For 

the 1st percentile, median survival age is 42.64 (95% CI: 42.21-42.85), whereas it is 

48.19 (95% CI: 47.55-48.71) for the 4th percentile. 

 

More information help stci 
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17.4.1 Kaplan-Meier curves 

A Kaplan-Meier curve is a descriptive (non-parametric) method that visualizes the 

survival function (or hazard function). The visual representation is based on the 

Kaplan-Meier estimator (also called product-limit estimator). On the y-axis, we get 

conditional probabilities, whereas time bands (time intervals) are displayed on the x-

axis. The time bands can be based on any time unit, such as, hours, days, months, or 

years. 

 

Note Kaplan-Meier estimation is very similar to life-table methods. Primary 

differences lie in the methods for choosing time bands and handling ties. Similar to 

Cox regression, Kaplan-Meier estimation assumes that ties are rare, since time-to-

event is measured on a continuous scale. 
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Kaplan-Meier survivor function 

We can generate a graph showing the Kaplan-Meier survivor function. This shows the 

probability of survival at each time band, calculated as the number of individuals 

surviving divided by the number of individuals at risk.  

  

In the graph, we will include confidence intervals (ci option) and use the noorigin 

option to exclude the time before follow-up from the graph.  

 

sts graph, survival ci noorigin 
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The scale is a bit too wide – we do not really see the line properly. This can be fixed 

by specifying the y-axis (with the ylabel option). While we are at it, we can adjust the 

x-axis (with the xlabel option) as well.  

 

sts graph, survival ci noorigin ylabel(.90(0.01)1) xlabel(40(1)51) 

  

 

 
 

 

Above, we have specified that the y-axis should range from 0.90 to 1, with one tick 

per 0.01 unit. And the x-axis ranges from 40 to 51, with one tick per 1 unit. 

 

More information help sts graph 
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Kaplan-Meier failure function 

We could also produce the opposite, namely a graph of the failure function: 

 

sts graph, failure 
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Again, we can change the specification to adapt the scale: 

 

sts graph, failure ci noorigin ylabel(.10(0.01)0) xlabel(40(1)51) 

 

 

 
 

 

More information help sts graph 
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17.4.2 Nelson-Aalen cumulative hazard function 

An alternative to the Kaplan-Meier curves is to graph the Nelson-Aalen estimate of 

cumulative hazard function. We add the ci option and the noorigin option, as well as 

change the specification of the scales: 

 

sts graph, cumhaz ci noorigin ylabel(.10(0.01)0) xlabel(40(1)51) 

 

 

 
 

 

More information help sts graph 
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17.5 Function 

Note It is crucial to remember that before stcox can be performed, we need to stset 

our data. See Section 17.3 for more information and to stset the dataset so it is ready 

for the upcoming example. 

 

Basic command stcox indepvars 

Useful options stcox indepvars, noshow 

Explanations indepvars 

 

irr 

Insert the name of the x-variable(s) that you 

want to use. 

Produces incidence rate ratios. 

More information help stcox 

 
Note The dependent variable (y-variable) is already specified through stset. 

 
A walk-through of the output 

When we perform a Cox regression in Stata, the table looks like this: 

 

 
Cox regression -- Breslow method for ties 

 

No. of subjects =        8,126                  Number of obs    =       8,126 

No. of failures =          147 

Time at risk    =   55903.7399 

                                                LR chi2(2)       =       46.84 

Log likelihood  =   -1292.4291                  Prob > chi2      =      0.0000 

 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       xvar1 |   .4281216   .0766169    -4.74   0.000     .3014641    .6079932 

       xvar2 |   .9450562   .0112373    -4.75   0.000     .9232861    .9673396 

------------------------------------------------------------------------------ 

 

 
In this example, xvar1 is a binary (0/1) variable and xvar2 is a continuous variable 

ranging between 1 and 40. 

 

  



 

455 

 

The upper part of the table shows a model summary. This is what the different rows 

mean: 

 

Row Explanation 

No. of subjects Number of subjects included in the model. 

No. of failures Number of cases (i.e. subjects that have experienced the 

event). 

Time at risk Total observational time, according to the specified unit 

(e.g. year). 

Log likelihood This value does not mean anything in itself, but can be 

used if we would like compare nested models. 

Number of obs The number of observations included in the model. 

LR chi2(x) The likelihood ratio (LR) chi-square test. The number 

within the brackets shows the degrees of freedom (one 

per variable). 

Prob >chi2 Shows the probability of obtaining the chi-square statistic 

given that there is no statistical effect of the x-variables 

on y. If the p-value is below 0.05, we can conclude that 

the overall model is statistically significant.    

 

The lower part of the table presents the parameter estimates from the analysis. 

  

Column Explanation 

 The first column lists the predicted value of the y-variable 

on top (_t), followed by our x-variable(s). 

Haz. Ratio These are the hazard ratios. 

Std. Err. The standard errors associated with the coefficient. 

Z Z-value (coefficient divided by the standard error of the 

coefficient). 

P>|z| P-value. 

[95% Conf. Interval] 95% confidence intervals (lower limit and upper limit). 
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The analytical sample used for the examples 

In the subsequent sections, we will use the following variables: 

 

 

Dataset: StataData1.dta 

 

Name    Label 

cvd   Out-patient care due to CVD (Ages 41-50,  

  Years 2011-2020) 

gpa  Grade point average (Age 15, Year 1985) 

sex  Sex 

marstat40   Marital status (Age 40, Year 2010) 

 

 

sum cvd gpa sex marstat40 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         cvd |     10,000       .0518    .2216341          0          1 

         gpa |      9,380    3.178614    .6996298          1          5 

         sex |     10,000       .4892    .4999083          0          1 

   marstat40 |      8,950     1.69933    .8147083          1          4 

 

 

We define our analytical sample through the following command: 

 

gen pop_cox=1 if cvd!=. & gpa!=. & sex!=. & marstat40!=. 

 

This means that new the variable pop_cox gets the value 1 if the four variables do not 

have missing information. In this case, we have 8,464 individuals that are included in 

our analytical sample. 

 

tab pop_cox 

 

 
    pop_cox |      Freq.     Percent        Cum. 

------------+----------------------------------- 

          1 |      8,464      100.00      100.00 

------------+----------------------------------- 

      Total |      8,464      100.00 
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17.6 Simple Cox regression 

Quick facts 

Number of variables One dependent (y) 

One independent (x) 

Scale of variable(s) Dependent: time-to-event 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 

 

17.6.1 Simple Cox regression with a continuous x 

 

Theoretical examples 

 

Example 1  

We want to estimate the effect of age (x) on all-cause mortality (y) among a group 

of individuals ages 65 and older within a ten-year follow-up period. The failure 

event is death (0=No event, 1=Event). Age is measured in years, with values 

ranging from 65 to 100. The HR for age in years is 1.13, which suggests that the 

expected hazard is 1.13 times higher for an individual who is one year older than 

another individual. 

 

Example 2  

In this example, we estimate the association between weight (x) and hospitalization 

attributable to cardiovascular disease (y) on a population of 50-year-old women, 

who are followed for five years. The failure event is hospitalization for 

cardiovascular disease (0=No event, 1=Event). Weight at age fifty is measured in 

kilograms, ranging from 48 to 114. We find that the HR is 1.03. This suggests that 

a one-kilogram increase in weight is associated with a 3% increase in the expected 

hazard for hospitalization. 

  



 

458 

 

Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

cvd   Out-patient care due to CVD (Ages 41-50,  

  Years 2011-2020) 

gpa  Grade point average (Age 15, Year 1985) 

 

 
sum cvd gpa if pop_cox==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         cvd |      8,464     .048913     .215699          0          1 

         gpa |      8,464    3.184664    .6935797          1          5 

 

 

stcox gpa if pop_cox==1, noshow 

 

 
Cox regression -- Breslow method for ties 

 

No. of subjects =        8,464                  Number of obs    =       8,464 

No. of failures =          414 

Time at risk    =  82729.84805 

                                                LR chi2(1)       =      101.33 

Log likelihood  =   -3683.1099                  Prob > chi2      =      0.0000 

 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         gpa |   .4834111    .035387    -9.93   0.000     .4187998    .5579905 

------------------------------------------------------------------------------ 

 

 

When we look at the results for gpa, we see that the hazard ratio (HR) is 0.48. Thus, 

for each unit increase in grade point average, the hazard of out-patient care due to 

CVD decreases. 

 

The association is statistically significant, as reflected in the p-value (0.000) and the 

95% confidence intervals (0.42-0.56). 

 

Summary 

The higher the grade point average at age 15, the lower the risk of having 

experienced out-patient care due to CVD in ages 41-50 (HR=0.48). The association 

is statistically significant (95% CI=0.42-0.56).   
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17.6.2 Simple Cox regression with a binary x 

 

Theoretical examples 

 

Example 1  

Suppose we are interested in the estimated effect of smoking (x) on mortality due 

to lung cancer (y) within a ten-year follow-up period. The failure event is death due 

to lung cancer (0=No event, 1=Event). Smoking status is coded as 0=Never smoked 

and 1=Ever smoked. The HR for ever-smokers is 2.73. This result suggests that, 

compared to never-smokers (the reference category), ever-smokers have a 2.73 

times higher risk of dying. 

 

Example 2  

We want to estimate the effect of sex (x) on all-cause mortality risk (y) among 

important characters during the first seven seasons of HBO’s popular television 

series, Game of Thrones. The failure event is death (0=No event, 1=Event). Sex is 

coded as 0=Male and 1=Female. The HR for females is 0.80, which indicates that, 

compared to males, important female characters have a 20% lower risk of dying 

during the first seven seasons. 

 

Note This example is based on a published article. The curious reader can read more 

here: Lystad, R. P., & Brown, B. T. (2018). “Death is certain, the time is not”: 

mortality and survival in Game of Thrones. Injury Epidemiology, 5:44. 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

cvd   Out-patient care due to CVD (Ages 41-50,  

  Years 2011-2020) 

sex  Sex 

 

 
sum cvd sex if pop_cox==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         cvd |      8,464     .048913     .215699          0          1 

         sex |      8,464    .4956285    .5000104          0          1 

 

 

stcox sex if pop_cox==1, noshow 

 

 
Cox regression -- Breslow method for ties 

 

No. of subjects =        8,464                  Number of obs    =       8,464 

No. of failures =          414 

Time at risk    =  82729.84805 

                                                LR chi2(1)       =       41.13 

Log likelihood  =   -3713.2076                  Prob > chi2      =      0.0000 

 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         sex |   .5236135   .0542108    -6.25   0.000     .4274487    .6414127 

------------------------------------------------------------------------------ 

 

 

When we look at the results for sex, we see that the hazard ratio (HR) is 0.52. Thus, 

one unit increase in sex is associated with a lower hazard of out-patient care due to 

CVD. This means that women have a lower risk of experiencing the outcome 

compared to men. 

 

The association is statistically significant, as reflected in the p-value (0.000) and the 

95% confidence intervals (0.43-0.64). 
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Kaplan-Meier curves 

 

It is possible to illustrate survival curves (or failure curves) separately for men and 

women, by means of the Kaplan-Meier estimator.  

 

sts graph if pop_cox==1, survival ci noorigin ylabel(.90(0.01)1) xlabel(40(1)51) 

by(sex) 

 

 

 
 

 

More information help sts graph 
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Although we already know this from the Cox regression analysis, it is possible to use 

a log-rank test to assess whether the differences between the curves of men and 

women are statistically significant. One can think of this as the censored data 

equivalent to a non-parametric ANOVA. This tests the hypothesis that there is no 

difference between the groups. If the test is statistically significant (p<0.05), we reject 

this hypothesis.  

 

sts test sex if pop_cox==1, noshow 

 

 
Log-rank test for equality of survivor functions 

 

      |   Events         Events 

sex   |  observed       expected 

------+------------------------- 

Man   |       272         207.31 

Woman |       142         206.69 

------+------------------------- 

Total |       414         414.00 

 

            chi2(1) =      40.44 

            Pr>chi2 =     0.0000 

 

 

In this case, the p-value (Pr>chi2) is below 0.05 (0.000), suggesting that there is a 

statistically significant difference between men and women in the probability of out-

patient care due to CVD.   

 

More information help sts test 

 

Summary 

Women have a lower risk of out-patient care due to CVD in ages 41-50, compared 

to men (HR=0.52; 95% CI=0.43-0.64).   
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17.6.3 Simple Cox regression with a categorical (non-
binary) x 

 

Theoretical examples 

 

Example 1  

In this example, we estimate the association between age (x) and hospitalization for 

attempted suicide (y) among individuals ages 18 to 45 over a five-year period. The 

failure event is hospitalization for attempted suicide (0=No event, 1=Event). Age 

is coded into three categories: 1=Ages 18-25, 2=Ages 26-35, and 3=Ages 36-45. 

Ages 36-45 is selected as the reference category (HR=1.00). For Ages 18-25, 

HR=3.77; for Ages 26-35, HR=1.08. This means that, compared to individuals ages 

36-45, individuals ages 18-25 have a 3.77 times higher risk for hospitalization for 

attempted suicide, whereas individuals ages 26-35 have a 1.08 times higher risk for 

hospitalization compared to the reference category.  

 

Example 2  

We are interested in the relationship between marital status (x) and death 

attributable to Covid-19 over a six-month period. The failure event is death due to 

Covid-19 (y) (0=No event, 1=Event). Marital status is coded in four categories: 

1=Married (reference category), 2=Divorced, 3=Widowed, and 4=Never married. 

The HRs for divorced, widowed, and never married individuals are 1.56, 1.98, and 

2.47, respectively. Relative to those who are married, divorced, widowed, and 

never-married individuals have a higher hazard of mortality from Covid-19. 

 

Note This example is largely based on the following publication: Drefahl, S., et al. 

(2020). Socio-demographic risk factors of COVID-19 deaths in Sweden: A 

nationwide register study. Stockholm Research Reports in Demography. 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

cvd   Out-patient care due to CVD (Ages 41-50,  

  Years 2011-2020) 

marstat40   Marital status (Age 40, Year 2010) 

 

 
sum cvd marstat40 if pop_cox==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         cvd |      8,464     .048913     .215699          0          1 

   marstat40 |      8,464    1.694353    .8147792          1          4 

 

 

The variable marstat40 has four categories: 1=Married, 2=Unmarried, 3=Divorced, 

and 4=Widowed. Here, we (with ib1) specify that the first category (Married) will be 

the reference category.  

 

stcox ib1.marstat40 if pop_cox==1, noshow 

 

 
Cox regression -- Breslow method for ties 

 

No. of subjects =        8,464                  Number of obs    =       8,464 

No. of failures =          414 

Time at risk    =  82729.84805 

                                                LR chi2(3)       =      110.55 

Log likelihood  =      -3678.5                  Prob > chi2      =      0.0000 

 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   marstat40 | 

  Unmarried  |   2.864836    .348911     8.64   0.000     2.256478     3.63721 

   Divorced  |   3.113382   .3994967     8.85   0.000     2.421083    4.003641 

    Widowed  |   2.456653   1.122484     1.97   0.049     1.003266    6.015496 

------------------------------------------------------------------------------ 

 

 

When we look at the results for the dummies for marstat40, we see that the hazard 

ratio is 2.87 for Unmarried, 3.11 for Divorced, and 2.46 for Widowed. Thus, all three 

groups have much higher hazards of out-patient care due to CVD compared to those 

who are married. 

 

All three dummies for marstat40 are significantly different from the reference 

category, as reflected in the p-values and the 95% confidence intervals. 



 

465 

 

Kaplan-Meier curves 

 

It is possible to illustrate survival curves (or failure curves) separately for the 

categories of marstat40, by means of the Kaplan-Meier estimator. Due to the few cases 

occurring in the category Widowed, however, the confidence intervals go bananas. 

Therefore, we will not include the ci option below. 

 

sts graph if pop_cox==1, survival noorigin ylabel(.90(0.02)1) xlabel(40(1)51) 

by(marstat40) 

 

 

 
 

 

More information help sts graph 
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While we already know this from the Cox regression analysis, it is possible to use a 

log-rank test to assess whether the differences between the curves of married, 

unmarried, divorced, and widowed individuals are statistically significant. This tests 

the hypothesis that there is no difference between the groups. If the test is statistically 

significant (p<0.05), we reject this hypothesis.  

 

sts test marstat40 if pop_cox==1, noshow 

 

 
Log-rank test for equality of survivor functions 

 

          |   Events         Events 

marstat40 |  observed       expected 

----------+------------------------- 

Married   |       114         219.12 

Unmarried |       165         110.71 

Divorced  |       130          80.26 

Widowed   |         5           3.91 

----------+------------------------- 

Total     |       414         414.00 

 

                chi2(3) =     108.18 

                Pr>chi2 =     0.0000 

 

 

In this case, the p-value (Pr>chi2) is below 0.05 (0.000), suggesting that there is a 

statistically significant difference between the categories of marital status in the 

probability of out-patient care due to CVD.   

 

More information help sts test 

 

Note Since marstat40 is not an ordinal variable, there is no point of using marginsplot 

to plot any trend.  

 

Summary 

At age 40, being unmarried, divorced, or widowed is associated with significantly 

higher risks of out-patient care due to CVD, as compared to being married.    
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17.7 Multiple Cox regression 

Quick facts 

Number of variables One dependent (y) 

At least two independent (x) 

Scale of variable(s) Dependent: time-to-event 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 

 

Theoretical example 

 

Example 

In a post-apocalyptic universe, we would like to study the effects of sex, marital 

status, and urbanicity on cause-specific mortality during a year-long, localized 

epidemic. In this example, the failure event is death due to an engineered zombie 

virus (0=No event, 1=Event). Sex is coded as 0=Male and 1=Female, whereas 

marital status is coded in four categories: 1=Married, 2=Divorced, 3=Widowed, 

and 4=Never married. Urbanicity is coded into three categories: 0=Rural, 

1=Suburban, and 2=Urban. Our reference categories are male, married, and rural, 

respectively. 

 

The HR for females is 0.92. Relative to males, and holding marital status and 

urbanicity constant, females have an estimated 8% lower mortality attributable to 

zombie virus.  

 

Estimating the effects of marital status on survival, we get an HR of 1.34 for 

divorced individuals, an HR of 0.96 for widowed individuals, and an HR of 2.28 

for never-married individuals. Holding the other covariates constant, divorced and 

never-married individuals have a higher estimated hazard for mortality compared 

to married individuals. Conversely, these results indicate that widowed individuals 

have an estimated 4% lower risk of mortality relative to those who are married. 

 

For our measure of urbancity, the HR is 1.45 for suburban areas and 12.78 for urban 

areas. After controlling for sex and marital status, we estimate that individuals 

living in the suburbs have a 1.45 times higher risk of death relative to individuals 

living in rural areas. Individuals living in urban areas have a 12.78 times higher risk 

of mortality due to the zombie virus, relative to individuals in rural areas and 

holding the other covariates constant. Yikes. 
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Practical example 

 

 

Dataset: StataData1.dta 

 

Name    Label 

cvd   Out-patient care due to CVD (Ages 41-50,  

  Years 2011-2020) 

gpa  Grade point average (Age 15, Year 1985) 

sex  Sex 

marstat40   Marital status (Age 40, Year 2010) 

 

 
sum cvd gpa sex marstat40 if pop_cox==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         cvd |      8,464     .048913     .215699          0          1 

         gpa |      8,464    3.184664    .6935797          1          5 

         sex |      8,464    .4956285    .5000104          0          1 

   marstat40 |      8,464    1.694353    .8147792          1          4 

 

 

stcox gpa sex ib1.marstat40 if pop_cox==1, noshow 

 

 
Cox regression -- Breslow method for ties 

 

No. of subjects =        8,464                  Number of obs    =       8,464 

No. of failures =          414 

Time at risk    =  82729.84805 

                                                LR chi2(5)       =      218.62 

Log likelihood  =   -3624.4625                  Prob > chi2      =      0.0000 

 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         gpa |   .5486937   .0408619    -8.06   0.000     .4741764    .6349214 

         sex |   .5900992   .0623588    -4.99   0.000      .479705    .7258985 

             | 

   marstat40 | 

  Unmarried  |   2.519405   .3085353     7.55   0.000     1.981786    3.202868 

   Divorced  |    2.95507   .3807907     8.41   0.000     2.295524    3.804116 

    Widowed  |   2.967418    1.35938     2.37   0.018     1.209042    7.283094 

------------------------------------------------------------------------------ 

 

 

In this model, we have three x-variables: gpa, sex, and marstat40. When we put them 

together, their statistical effect on cvd is mutually adjusted. 

 

When it comes to the hazard ratios, they have changed in comparison to the simple 

regression models. For example, the hazard ratios have become closer to 1 for both 

gpa and sex: they changed from 0.48 to 0.55 for gpa, and from 0.52 to 0.59 for sex. 
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This is largely also the case for the dummies of marstat40: the hazard ratio for 

Unmarried has changed from 2.86 to 2.52 and the one for Divorced has changed from 

3.11 to 2.96. The hazard ratio for Widowed has nevertheless increased: from 2.46 to 

2.97.  

 

All x-variables still demonstrate statistically significant associations with cvd.  

 

Note A specific hazard ratio from a simple Cox regression model can increase when 

other x-variables are included. Usually, it is just “noise”, i.e. not any large increases, 

and therefore not much to be concerned about. But it can also reflect that there is 

something going on that we need to explore further. There are many possible 

explanations for increases in multiple regression models: a) We actually adjust for a 

confounder and then “reveal” the “true” statistical effect. b) There are interactions 

among the x-variables in their effect on the y-variable. c) There is something called 

collider bias (which we will not address in this guide) which basically mean that both 

the x-variable and the y-variable causes another x-variable in the model. d) The simple 

regression models and the multiple regression model are based on different samples. 

e) It can be due to rescaling bias (see Chapter 18). 

 

Summary 

In the fully adjusted model, it can be observed that while most associations are 

slightly attenuated in strength, they remain largely the same as in the simple models. 
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Estimates table and coefficients plot 

 

If we have multiple models, we can facilitate comparisons between the regression 

models by asking Stata to construct estimates tables and coefficients plots. What we 

do is to run the regression models one-by-one, save the estimates after each, and than 

use the commands estimates table and coefplot.  

 

The coefplot option is not part of the standard Stata program, so unless you already 

have added this package, you need to install it: 

 

ssc install coefplot 

 

As an example, we can include the three simple regression models as well as the 

multiple regression model. The quietly option is included in the beginning of the 

regression commands to suppress the output. 

 

Run and save the first simple regression model: 

 

quietly stcox gpa if pop_cox==1, noshow 

 

estimates store model1 

 

Run and save the second simple regression model: 

 

quietly stcox sex if pop_cox==1, noshow 

 

estimates store model2 

 

Run and save the third simple regression model: 

 

quietly stcox ib1.marstat40 if pop_cox==1, noshow 

 

estimates store model3 

 

Run and save the multiple regression model: 

 

quietly stcox gpa sex ib1.marstat40 if pop_cox==1, noshow 

 

estimates store model4 
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Produce the estimates table (include the option eform to show hazard ratios): 

 

estimates table model1 model2 model3 model4, eform 

 

 
------------------------------------------------------------------ 

    Variable |   model1       model2       model3       model4     

-------------+---------------------------------------------------- 

         gpa |  .48341112                              .54869369   

         sex |               .52361346                 .59009923   

             | 

   marstat40 | 

  Unmarried  |                            2.8648356    2.5194046   

   Divorced  |                            3.1133821      2.95507   

    Widowed  |                            2.4566531    2.9674176   

------------------------------------------------------------------ 

 

 

Produce the coefficients plot (include the option eform to show hazard ratios): 

 

coefplot model1 model2 model3 model4, eform 

 

 

 
 

 

Note You can improve the graph by using the Graph Editor to adjust the category and 

label names. 
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17.8 Model diagnostics 

The assumptions behind Cox regression are similar to other types of generalized linear 

models. Nevertheless, there are some additional assumptions that need to be tested, 

such as the hazards being proportional and the failure times not being tied. 

 

More information help stcox postestimation 

 

Checklist 

Time-to-event 

outcome 

The y-variable has to reflect time-to-event. 

Independence of 

errors 

Data should be independent, i.e. not derived from any 

dependent samples design, e.g. before-after 

measurements/paired samples. 

Correct model 

specification 

Your model should be correctly specified. This means that 

the x-variables that are included should be meaningful and 

contribute to the model. No important (confounding) 

variables should be omitted (often referred to as omitted 

variable bias). 

No 

multicollinearity 

Multicollinearity may occur when two or more x-variables 

that are included simultaneously in the model are strongly 

correlated with each another. Actually, this does not violate 

the assumptions, but is does create greater standard errors 

which makes it harder to reject the null hypothesis.  

Proportional 

hazards 

The ratio of the hazards is constant over time. 

Failure times not 

tied 

The number of ties in your data is minimal. 

 

Types of model diagnostics 

Link test Assess model specification 

Correlation matrix Check for multicollinearity 

Log-log plot of survival Check proportional hazards assumption 

Kaplan-Meier and 

predicted survival plot 

Check proportional hazards assumption 

Schoenfeld residuals Check proportional hazards assumption 

Tied failure times Use one of four approaches 
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17.8.1 Link test 

With the command linktest, we can assess whether our model is correctly specified. 

This test uses the linear predicted value (called _hat) and the linear predicted value 

squared (_hatsq) to rebuild the model. We expect _hat to be statistically significant, 

and _hatsq to be statistically non-significant. If one or both of these expectations are 

not met, the model is mis-specified. 

 

However, do not rely too much on this test – remember that you should also use theory 

and common sense to guide your decisions. It is very seldom relevant to focus on this 

test if our ambition is to investigate associations (and not to make the best possible 

prediction of the outcome). 

 

More information help linktest 

 

Practical example 

We perform this test for the full model, so let us go back to the example from the 

multiple regression analysis. The quietly option is included in the beginning of the 

command to suppress the output. 

 

quietly stcox gpa sex ib1.marstat40 if pop_cox==1, noshow 

 

And then we run the test: 

 

linktest 

 

 
Cox regression -- Breslow method for ties 

 

No. of subjects =        8,464                  Number of obs    =       8,464 

No. of failures =          414 

Time at risk    =  82729.84805 

                                                LR chi2(2)       =      219.26 

Log likelihood  =   -3624.1461                  Prob > chi2      =      0.0000 

 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        _hat |   1.172454   .2256356     5.20   0.000      .730216    1.614692 

      _hatsq |   .0648255   .0805195     0.81   0.421    -.0929899    .2226408 

------------------------------------------------------------------------------ 

 

 

Since the p-value for the variable _hat is below 0.05 and the p-value for _hatsq is 

above 0.05, it means that our model correctly specified.  

 

  



 

474 

 

17.8.2 Correlation matrix 

As the x-variables become more strongly correlated, it becomes more difficult to 

determine which of the variables are actually producing the statistical effect on the y-

variable. This is the problem with multicollinearity.  

 

One way of assessing multicollinearity is using the estat vce command, with the corr 

(short for correlation) option.  

 

More information help estat vce 

 

Practical example 

The first step is re-run the multiple Cox regression model. The quietly option is 

included in the beginning of the command to suppress the output. 

 

quietly stcox gpa sex ib1.marstat40 if pop_cox==1, noshow 

 

Next, we try the estat vce command. By adding the corr (=correlation) option, we will 

get a correlation matrix instead of a covariance matrix. 

 

estat vce, corr 

 

 
Correlation matrix of coefficients of cox model 

 

             |                            2.        3.        4. 

        e(V) |      gpa       sex  marst~40  marst~40  marst~40  

-------------+-------------------------------------------------- 

         gpa |   1.0000                                          

         sex |  -0.1506    1.0000                                

 2.marstat40 |   0.0855    0.0466    1.0000                      

 3.marstat40 |   0.0807   -0.0550    0.5602    1.0000            

 4.marstat40 |   0.0054   -0.0717    0.1525    0.1521    1.0000 

 

 

The table shows the correlations between the different variables/categories. In line 

with the earlier sections on correlation analysis (see Chapter 7.2), we can conclude 

that the coefficients suggest (very) weak correlations here. The only exceptions are 

two of the dummies for marstat40, which is not a huge problem since they reflect the 

same underlying variable. 
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17.8.3 Log-log plot of survival 

The log-log plot of survival plots the curve for each category of any categorical x-

variable versus ln(analysis time). If the curves are parallel, the proportional hazards 

assumption is not violated. 

 

Note It is possible to adjust for additional x-variables. However, for the sake of 

simplicity, we will just run simple regression models for our categorical variables. 

 

More information help stphplot 

 

Practical example 

The first step is re-run a Cox regression model. We will start with the simple one that 

we did for sex. The quietly option is included in the beginning of the command to 

suppress the output. After this, we use the stphplot command. 

 

quietly stcox sex if pop_cox==1, noshow 

 

stphplot, by(sex) 

 

 

 
 

 

Apart from the very beginning of the curves, they look quite parallel. 
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We can produce the curves also for our variable marstat40. The quietly option is 

included in the beginning of the command to suppress the output. 

 

quietly stcox ib1.marstat40 if pop_cox==1, noshow 

 

Then we use the stphplot command. 

 

stphplot, by(marstat40) 

 

 

 
 

 

These curves look quite messy. Apart from the very beginning of the curves, the ones 

for married and unmarried look parallel, as do the ones for married and divorced. The 

widowed look worse – most likely due to the small size of the group (with few cases). 
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17.8.4 Kaplan-Meier and predicted survival plot 

Here, we will plot the Kaplan-Meier observed survival curves and compare them to 

the Cox predicted curves for the same x-variable. If the observed values are close to 

the predicted values, it is less likely that there is a violation of the proportional hazards 

assumption. 

 

Note Again, this command does not work very well for continuous x-variables, so we 

will stick to the categorical ones. 

 

More information help stcoxkm 

 

Practical example 

The first step is re-run a Cox regression model. We will start with the simple one that 

we did for sex. The quietly option is included in the beginning of the command to 

suppress the output. After this, we use the stcoxkm command. 

 

quietly stcox sex if pop_cox==1, noshow 

 

stcoxkm, by(sex) 

 

 

 
 

 

These curves overlap rather nicely in terms of the observed and predicted values.  
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We can produce the curves also for our variable marstat40. The quietly option is 

included in the beginning of the command to suppress the output. 

 

quietly stcox ib1.marstat40 if pop_cox==1, noshow 

 

Then we use the stcoxkm command. 

 

stcoxkm, by(marstat40) 

 

 

 
 

 

Overall, the observed and predicted values overlap rather OK. There are some 

exceptions, especially when it comes to the widowed.  
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17.8.5 Schoenfeld residuals 

Schoenfeld residuals can be used to test the proportionality of the model as a whole. 

There is also an option to test the proportionality of each x-variable. 

 

More information help estat phtest 

 

Practical example 

The first step is re-run the multiple Cox regression model. The quietly option is 

included in the beginning of the command to suppress the output. 

 

quietly stcox gpa sex ib1.marstat40 if pop_cox==1, noshow 
 

Next, we try the estat phtest command.  

 

estat phtest, detail 

 

 
      Test of proportional-hazards assumption 

 

      Time:  Time 

      ---------------------------------------------------------------- 

                  |       rho            chi2       df       Prob>chi2 

      ------------+--------------------------------------------------- 

      gpa         |      0.06514         1.71        1         0.1911 

      sex         |     -0.05301         1.16        1         0.2811 

      1b.marstat40|            .            .        1             . 

      2.marstat40 |     -0.17683        12.93        1         0.0003 

      3.marstat40 |     -0.11754         5.72        1         0.0168 

      4.marstat40 |     -0.06899         1.97        1         0.1609 

      ------------+--------------------------------------------------- 

      global test |                     17.10        5         0.0043 

      ---------------------------------------------------------------- 

 

 

If the p-value (Prob>chi2) is below 0.05, it means that we should reject the 

proportionality assumption. The global test suggests this model violates the 

proportionality assumption. As indicated by the p-values for the x-variables, our 

problem seems to be marstat40. We will not explore this further, but a solution might 

be to transform marstat40 into a binary variable instead (e.g. Married vs. not Married). 
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17.8.6 Tied failure times 

Though the Cox model assumes that the hazard function is continuous, and therefore 

are no tied failure times, ties nonetheless occur. Stata provides four options for dealing 

with tied failures in your data when calculating the partial likelihood. A brief 

explanation for these methods given a hypothetical tie between two individuals is 

outlined below. 

 

Method Explanation 

Exact 

marginal 

calculation 

In this method, we assume that time is continuous, the two 

individuals did not really fail at the same time, but our 

measurements are imprecise. So, we do not know the order in 

which they failed. The likelihood calculation is based on the 

probability that the two individuals fail in any order, which is the 

sum of the probability that individual 1 fails first + the 

probability that individual 2 fails first.  

Exact  

partial 

calculation 

In this method, we assume that time is discrete and that the two 

individuals really did fail at the same time. So, we treat it as a 

multinomial problem where the conditional probability is 

derived from a set of possibilities. This method can take a long 

time to calculate and may produce questionable results if the risk 

sets are large and with many ties. 

Breslow 

approximation 

Approximates the exact marginal calculation by using a common 

denominator for all failure events. In other words, the risk sets 

for the second – nth failure events are not adjusted for previous 

failures. This is the fastest method, and works better if the 

number of failures is small relative to the size of the risk set. 

Efron 

approximation 

Also approximates the exact marginal calculation, but the risk set 

for the second – nth failure events are adjusted using probability 

weights. The Efron approximation is more accurate than the 

Breslow approximation but is relatively slower to calculate.  

 

In Stata, the Breslow method is the default method, and does not need to be specified. 

You may remember seeing “Cox regression -- Breslow method for ties” in the output 

from your practical examples earlier in this section. If one of the other three methods 

is more suitable, you can specify the method after the comma per the below examples: 

 

stcox var1…varx, efron 

 

stcox var1…varx, exactm 

 

stcox var1…varx, exactp 

 

Note If there are no ties in your data, you will obtain identical results, no matter which 

method you select. Having a few ties in your data will also not yield wildly different 

results. 
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You can also check the number of ties in your data in Stata.  

 

First save your data! Then, after your data have been stset, keep only the failures: 

  

keep if _d 

 

Sort by time: 

 

sort _t 

 

Generate a count of the instances of time: 

 

by _t : gen number = _n 

 

Keep one observation representing time: 

 

by _t : keep if _n==1 

 

Check the average number of failures per time: 

 

summarize number 

 

Check the frequency of the number of failures: 

 

tab number 

 

Note You can use the preserve command before dropping observations, and the 

restore command at the end to return your data to its original state. 
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17.9 Laplace regression 

Finally, we would like to make you aware that a viable alternative (or complement) 

to Cox regression is Laplace regression. Laplace regression can be used to estimate 

the effect of exposures (or treatments) on survival percentiles and thereby it allows 

for direct interpretation of the exposure–outcome association in terms of time gained 

or lost. 

 

We will not go through Laplace regression in this version of the guide, but if you are 

interested, we suggest that you install the laplace regression package and then review 

the help file.  
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18. MEDIATION ANALYSIS 

Outline 
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18.2.2 Practical example with ordinal regression ............................................. 488 

 

Content 

In this chapter, we do practical exercises with mediation analysis, using the KHB 

method. 
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18.1 Introduction 

 

 

 

 

A mediator is a variable that is influenced by the x-variable and influences the y-

variable. In other words, some (it could be a little or a lot) of the effect of x on y is 

mediated through z. 

 

Some examples 

We want to examine the association between occupational class (x) and liver 

cirrhosis (y). We think that the association may be mediated by alcohol 

consumption (z). 

 

We are interested in the association between poverty (x) and all-cause mortality (y). 

It is reasonable that this association might to some extent be mediated by stress (z). 

 

18.1.1 Type of regression analysis 

In order to carry out a mediation analysis, we first we need to decide on which type 

of regression analysis that fits our outcome (y) – it could be any type (e.g. linear, 

logistic, ordinal, multinomial, or some other type). As we have described in this guide, 

the choice depends largely on the measurement scale of y. Performing mediating 

analysis in the traditional way (i.e. including covariates in a stepwise fashion and 

comparing the estimates across models) only works satisfactorily if we perform linear 

regression. If we do a non-linear regression (e.g. logistic, ordinal, multinomial, 

Poisson, or Cox), then we should consider a different approach.  

 

18.1.2 Rescaling bias 

Why should we avoid the traditional approach with non-linear models? Well, first of 

all, there are plenty of articles being published that still do mediation analysis in this 

way. A problem is nonetheless that the non-linear models are not directly comparable 

(due to rescaling between the models).  

 

There are different types of mediation analysis that one can employ to overcome 

rescaling bias – one of them is the KHB method (KHB stands for Karlson-Holm-

Breen). Just remember that mediation analysis is only as good as your analytical 

x y 

z 
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model! Mediation assumes causality, and while using proper mediation analysis is one 

step in the right direction, causal inference (see Section 9.4) is still an issue if your 

study is based on observational data. 

 

18.2 Function 

KHB can be used for several different types of non-linear regression models. This 

include logistic (logit), ordinal (ologit), and multinominal (mlogit) – but not Poisson 

or Cox). What it does is that it compares the effect of x on y in a model without any 

covariates (“reduced model”) with a model with on or more covariates (“full model”).    

 

The method is not part of standard Stata, so unless you already have done so, install 

the KHB package: 

 

ssc install khb 

 

Basic command khb modeltype yvar xvar || zvar(s) 

Useful options khb modeltype yvar xvar || zvar(s), disentangle 

khb modeltype yvar xvar || zvar(s), summary 

khb modeltype yvar xvar || zvar(s), or 

Explanations yvar 

 

xvar 

 

zvar(s) 

 

modeltype 

 

disentangle 

 

summary 

or 

Insert the name of the y-variable that you 

want to use. 

Insert the name of the x-variable that you 

want to use. 

Insert the name of the mediator as well as any 

confounder(s) that you want to include. 

Specify what kind of regression model you 

want to perform (e.g. logit, ologit, or mlogit). 

Disentangle the contribution of each z-

variable. 

Summary of decomposition. 

Display odds ratios. 

More information help khb 
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18.2.1 Practical example with logistic regression 

Here, we want to examine the extent to which the number of best friends (z) mediates 

the association between parental mental illness (x) and a poor grade point average (y). 

We also include sex as a confounder (z). 

 

Poor grade point average does not exist as a variable in the dataset, so first we will 

have to create it based on the variable gpa: 

 

gen gpa_dic=gpa 

 

recode gpa_dic (1.0/2.0=1) (2.1/5.0=0) 

 

 

Dataset: StataData1.dta 

 

Name    Label 

bestfriends   Number of best friends (Age 15, Year 1985) 

gpa_dic   Poor grade point average (Age 15, Year 1985) 

parmental   Parental mental illness (Age 15, Year 1985) 

sex   Sex 

 

 

Define the analytical sample 

We start by defining the analytical sample: 

 

gen pop_mediate1=1 if bestfriends!=. & gpa_dic!=. & parmental!=. & sex!=. 

 

Let us have a quick look at the variables: 

 

sum bestfriends gpa_dic parmental sex if pop_mediate1==1 

 
 

    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

 bestfriends |      8,604    2.858903    1.111829          1          5 

     gpa_dic |      8,604    .0528824    .2238117          0          1 

   parmental |      8,604    .0774059    .2672499          0          1 

         sex |      8,604    .5256857    .4993688          0          1 
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Regression models 

Now, we can run the regression model with the khb command.  

 

khb logit gpa_dic parmental || bestfriends sex if pop_mediate1==1, summary 

disentangle or  

 

 
Decomposition using the KHB-Method 

 

Model-Type:  logit                                 Number of obs     =    8604 

Variables of Interest: parmental                   Pseudo R2         =    0.09 

Z-variable(s): bestfriends sex 

------------------------------------------------------------------------------ 

     gpa_dic |         or   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

parmental    | 

     Reduced |   2.093289   .3080201     5.02   0.000     1.568837    2.793061 

        Full |   1.817201   .2678855     4.05   0.000     1.361199    2.425963 

        Diff |    1.15193   .0413875     3.94   0.000     1.073603    1.235973 

------------------------------------------------------------------------------ 

 

Summary of confounding 

 

        Variable | Conf_ratio    Conf_Pct   Resc_Fact   

    -------------+------------------------------------- 

       parmental |  1.2367986       19.15   1.0889539   

    --------------------------------------------------- 

 

Components of Difference 

 

      Z-Variable |      Coef    Std_Err     P_Diff  P_Reduced   

    -------------+--------------------------------------------- 

    parmental    |                                              

     bestfriends |  .1885663   .0341404     133.32      25.53   

             sex | -.0471272   .0161484     -33.32      -6.38   

    ----------------------------------------------------------- 

 

 

The model without any z-variables (the “reduced” model) shows that there is a 

positive (OR=2.09) and statistically significant association (95 % CI=1.57 to 2.79) 

between parmental and gpa_dic. In other words, individuals whose parents suffered 

from mental illness have higher odds of obtaining a poor grade point average. In the 

model where the z-variables bestfriends and sex are included (the “full” model), the 

association is weakened but remains stastistically significant (OR=1.82, 95% CI=1.36 

to 2.43).  

 

In the table called Summary of confounding, we can see that the amount of the 

association explained by the z-variables (in this case, bestfriends and sex), is 19%. 

This amount is specified further in the table called Components of Difference. Here, 

we can see that the inclusion of bestfriends reduces the association by 26%. There is 

nonetheless a negative contribution of sex (-6%), meaning that the inclusion of this 

variable strengthens the association between parental mental illness and poor grade 

point average. This could (but does not have to) be an indication of an interaction 

effect by sex (which could be further examined with interaction analysis). 

  



 

488 

 

18.2.2 Practical example with ordinal regression 

For this example, we want to see if grade point average (z) mediates the association 

between exposure to bullying (x) and educational level (y). 

 

 

Dataset: StataData1.dta 

 

Name    Label 

educ   Educational level (Age 40, Year 2010) 

gpa   Grade point average (Age 15, Year 1985) 

bullied   Exposure to bullying (Age 15, Year 1985) 

 

 

Define the analytical sample 

We start by defining the analytical sample: 

 

gen pop_mediate2=1 if educ!=. & gpa!=. & bullied!=. 

 

Let us have a quick look at the variables: 

 

sum educ gpa bullied if pop_mediate1==1 

 
 

    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

        educ |      7,991    2.203103    .7143586          1          3 

         gpa |      7,991    3.214178    .6855603        1.1          5 

     bullied |      7,991    .1032411    .3042926          0          1 
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Regression models 

Now, we can run the regression model with the khb command.  

  

khb ologit educ bullied || gpa if pop_mediate2==1, summary disentangle or  

 

 
Decomposition using the KHB-Method 

 

Model-Type:  ologit                                Number of obs     =    7991 

Variables of Interest: bullied                     Pseudo R2         =    0.12 

Z-variable(s): gpa 

------------------------------------------------------------------------------ 

        educ |         or   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

bullied      | 

     Reduced |   .6710792   .0484461    -5.53   0.000     .5825382    .7730776 

        Full |     .95188   .0689296    -0.68   0.496     .8259298    1.097037 

        Diff |    .705004   .0277197    -8.89   0.000      .652715    .7614819 

------------------------------------------------------------------------------ 

 

Summary of confounding 

 

        Variable | Conf_ratio    Conf_Pct   Resc_Fact   

    -------------+------------------------------------- 

         bullied |  8.0879499       87.64   1.1856254   

    --------------------------------------------------- 

 

Components of Difference 

 

      Z-Variable |      Coef    Std_Err     P_Diff  P_Reduced   

    -------------+--------------------------------------------- 

    bullied      |                                              

             gpa | -.3495518   .0393185     100.00      87.64   

    -------------------------------------------------------------------------- 

 

 

The model without any z-variables (the “reduced” model) shows that there is a 

negative (OR=0.67) and statistically significant association (95 % CI=0.58 to 0.77) 

between bullied and educ. This means that individuals who were exposed to bullying 

at age 15 have lower odds of attaining a high level of education as adults, in 

comparison to those who were not exposed to bullying. In the model where the z-

variable gpa is included (the “full” model), the association is still negative but very 

weak and stastistically non-significant (OR=0.95, 95% CI=0.83 to 1.10).  

 

In the table called Summary of confounding, we can see that the amount of the 

association explained by the z-variables (in this case, we only included gpa), is 88%. 

This is also shown specified further in the table called Components of Difference. 
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Content 

In this chapter, we go through two approaches to performing interaction analysis in 

Stata. 
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19.1 Introduction 

 

 

 

 

A moderator (or effect modifier) is a variable that influences the very association 

between the x-variable and the y-variable. Put differently, the association between x 

and y looks different depending on the value of z. 

 

Some examples 

We want to examine the association between social support (x) and mental health 

(y). We think that the association may be moderated by gender (z). For example, 

we may expect social support to be more important for mental health among women 

than among men.  

 

We are interested in the association between mother’s educational attainment (x) 

and babies’ birth weight (y). It is reasonable that mother’s smoking (z) affects that 

association: there may be an association between x and y if the mother smokes, but 

no association between x and y if the mother does not smoke.  

 

19.1.1 Type of regression analysis 

In order to carry out an interaction analysis, we first we need to decide on which type 

of regression analysis that fits our outcome (y) – it could be any type (e.g. linear, 

logistic, ordinal, multinomial, or some other type). As we have described in this guide, 

the choice depends largely on the measurement scale of y. Generally, interaction 

analysis works the same way irrespective of the type of regression analysis that we 

choose. 

 

  

x y 

z 
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19.1.2 Primary approaches to interaction analysis 

We will put forward two primary approaches to interaction analysis. They require the 

following independent variables to be included in the analysis: 

 

 Approach A: 

Interaction effect term 

Approach B: 

Comparison of model fit 

 

 

 

 

Independent 

variables included 

in the model 

x 

(main effect term) 

x 

(main effect term) 

z  

(main effect term) 

z  

(main effect term) 

x*z  

The product of x and z 

(interaction effect term) 

x*z  

The product of x and z 

(interaction effect term) 

or 

All possible combinations 

of x and z 

includes as dummies 

 

Note This chapter focuses solely on two-way interactions (i.e. interactions between 

two variables). While it is possible analyse interactions between more than two 

variables, the interpretation is usually not very straight-forward.  

 

Approach A: Interaction effect term  

By including the two main effects (x and z) as well as the interaction effect term in 

the same model, we can see if the interaction has any effect that goes beyond the main 

effects. In other words, is the interaction term statistically significant (p<0.05)? We 

also get information about in which direction the interaction effect goes, i.e. what it 

means, although this effect is not always easy to interpret. 

 

Approach B: Comparison of model fit  

This approach is more flexible than the previous one since it is based on comparison 

of model fit: does a model that includes the main effects as well as a) the interaction 

effect term or b) all possible combinations of x and y included as dummies, fit the 

data significantly better than a model that just includes the main effects? This can be 

formally tested by a likelihood ratio test. If the test produces a p-value that is below 

0.05, it suggests that the model with the interaction fits the data better. Alternatively, 

or as a complement, one can compare the Akaike's Information Criterion (AIC), and 

the Bayesian Information Criterion (BIC) between the models. The model with the 

lowest values has the better fit.  
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19.1.3 Measurement scales 

The measurement scales of our independent variables (i.e. x and z) are important since 

it affects what kind of approach that is possible to take.  

 

Measurement scale: x Measurement scale: z Possible approach 

Binary  

or  

Continuous 

Binary 

or  

Continuous 

 

A, B 

Ordinal  

or  

Nominal (non-binary) 

Ordinal  

or  

Nominal (non-binary) 

 

B 

Binary  

or  

Continuous 

Ordinal  

or  

Nominal (non-binary) 

 

B 

Ordinal  

or  

Nominal (non-binary) 

Binary  

or  

Continuous 

 

B 

  

In other words: having binary and/or continuous variables is the ideal situation since 

you can use both approaches. As soon as you include ordinal and/or nominal (non-

binary) variables, everything becomes more difficult.  

 

19.1.4 Two ways of generating the interaction term 

Regardless of whether you choose Approach A or B, here are two ways that you can 

generate the product term or combination variable. Doing it manually – what we here 

call Approach 1, requires that you use gen, and sometimes recode and/or if. Approach 

2 does it automatically. While we like to do it manually since we feel more in control 

of what is happening, doing it automatically is of course easier and faster.  

 

Note The manual approach creates interaction terms in the dataset, whereas the 

automatic approach treats interaction terms as virtual (they do not actually exist in the 

dataset). 

 

Approach 1: Manual 

To illustrate what we mean by a manual approach, we will present two examples. For 

the first, we create a simple product term whereas, for the second, we create a 

combination variable. 

 

Product term 

 

Let us assume that we want to see the interaction effect between blood pressure and 

sex on some outcome. Blood pressure (bp) is a continuous variable whereas sex (sex) 

is a binary variable (0=Man, 1=Woman). We can simply multiply these terms: x*z 
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gen bp_sex=bp*sex    

 

In our model, we would thus include the following independent variables: bp, sex, and 

bp_sex. This is what it would look like if we did a very basic logistic regression 

analysis: 

 

logistic yvarname bp sex bp_sex 

 

Combination variable 

 

If one of our independent variables are ordinal or nominal (non-binary), we cannot 

multiply them. Instead, we have to create combinations of the variables. Let us now 

assume that we want to see the interaction effect between stress level and sex on some 

outcome. Stress level (stress) is an ordinal variable with three categories (1=Low, 

2=Medium, 3=High), whereas sex (sex) is a binary variable (0=Man, 1=Woman). In 

other words, there are six possible combinations. There are many ways that we can 

use gen, recode, and if to create the combination variable, and this is one of them: 

 

gen stress_sex=. 

 

recode stress_sex (.=1) if stress==1 & sex==0 

 

recode stress_sex (.=2) if stress==2 & sex==0  

 

recode stress_sex (.=3) if stress==3 & sex==0  

 

recode stress_sex (.=4) if stress==1 & sex==1  

 

recode stress_sex (.=5) if stress==2 & sex==1 

 

recode stress_sex (.=6) if stress==3 & sex==1  

 

We would then include the following independent variables in the model: ib1.stress, 

sex, and ib1.stress_sex (the choice of reference categories is up to you). This is what 

it would look like if we did a very basic logistic regression analysis: 

 

logistic yvarname ib1.stress sex ib1.stress_sex 

  

Approach 2: Automatic 

To illustrate what we mean by automatic, we first have to further discuss what factor 

variables are in Stata. 

 

We have already showed earlier in this guide how factor variables can be used as a 

way of specifying the reference category of categorical (non-binary) variables that we 

include in regression analysis (also see Section 11.2.2). 
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However, this is just one application. We can also use factor variables to denote 

interactions. There are five factor-variable operators (i.e. prefix) that are possible to 

use: 

 

Operator Explanation 

i. Specify an indicator variable.  

c. Specify a continuous variable. 

o. Specify omitted levels (categories) of a variable.    

# Binary operator to specify an interaction. 

## Binary operator to specify factorial interactions. 

  

Product term and combination variable 

 

Let us assume that we want to see the interaction effect between blood pressure and 

sex on some outcome. Blood pressure (bp) is a continuous variable whereas sex (sex) 

is a binary variable (0=Man, 1=Woman). If we would specify the interaction with a 

binary operator, it would look like this:  

 

c.bp#i.sex  

 

In our model, we would include the following: bp, sex, and c.bp#i.sex. This is what it 

would look like if we did a very basic logistic regression analysis: 

 

logistic yvarname bp sex c.bp#i.sex 

 

Alternatively, we could have made use of Stata’s factorial interactions: 

 

logistic yvarname c.bp##i.sex 

 

This would produce exactly the same output. 

 

As you probably figured out already, we do the same if one of our independent 

variables are ordinal or nominal (non-binary). Let us assume that we want to see the 

interaction effect between stress level and sex on some outcome. Stress level (stress) 

is an ordinal variable with three categories (1=Low, 2=Medium, 3=High), whereas 

sex (sex) is a binary variable (0=Man, 1=Woman). In other words, there are six 

possible combinations. If we would specify the interaction with a binary operator, it 

would like this: 

 

i.stress#i.sex 

 

In our model, we would include the following: ib1.stress, sex, and i.stress#i.sex. This 

is what it would look like if we did a very basic logistic regression analysis: 

 

logistic yvarname ib1.stress sex i.stress#i.sex 
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And, of course, we could have made use of Stata’s factorial interactions instead: 

 

logistic yvarname i.stress##i.sex 

 

This would produce exactly the same output. 

 

Note It is possible also to specify the reference category (base level) of interaction 

terms. For example: c.bp#ib1.sex or ib2.stress##ib0.sex 

 

19.1.5 Interpretation 

The most complicated part about interaction analysis is the interpretation. It is 

important that you keep track how your variables are coded, if you want to say 

something about what the interaction means. The example below is based on 

Approach A.  

 

Example 

We want to examine the association between social support (x) and happiness (y). 

We think that the association may be moderated by gender (z). The following 

hypotheses are formulated: 1) Those with higher levels of social support are more 

likely to be happy, 2) Women are more likely to be happy, and 3) Social support is 

more strongly associated with happiness among women than among men.  

 

Since the outcome is binary (0=Not happy and 1=Happy), we choose logistic 

regression analysis. Social support ranges between 0 and 10, where higher values 

reflect higher levels of social support. Gender has the values 0=Man and 1=Women. 

 

To begin with, we examine the association between x and y: the odds ratio for social 

support is 1.20, which confirmed our first hypothesis. Next, we examine the 

association between z and y: the odds ratio for gender is 1.17, which confirms the 

second hypothesis. Finally, we include x and z as well as the interaction in the 

model. The interaction term is statistically significant (p<0.05) and the odds ratio 

is 1.45, which means that the combination of having higher levels of social support 

and being a woman is associated with increasing chances of being happy.  
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If the interpretation of the interaction analysis is difficult, you may improve your 

understanding by doing a separate regression analysis for each category of the z-

variable (this is of course only possible if you have a rather large dataset – and thus 

enough power – and not too many categories in your z-variable). This is sometimes 

referred to as stratified analyses. However, stratification can also mean many other 

things in statistics. To make things clear, we will refer to it these kind of separate 

regression analyses as “specific” – e.g. sex-specific regression analysis.  

 

We can go back to the example to illustrate what specific regression analyses can look 

like: 

 

Example 

We want to examine the association between social support (x) and happiness (y). 

We think that the association may be moderated by gender (z). The following 

hypotheses are formulated: 1) Those with higher levels of social support are more 

likely to be happy, 2) Women are more likely to be happy, and 3) Social support is 

more strongly associated with happiness among women than among men.  

 

Since the outcome is binary (0=Not happy and 1=Happy), we choose logistic 

regression analysis. Social support ranges between 0 and 10, where higher values 

reflect higher levels of social support. Gender has the values 0=Man and 1=Women. 

 

To begin with, we examine the association between x and y among men only: the 

odds ratio for social support is 1.04. Next, we examine the association between x 

and y among women only: the odds ratio for social support is 1.76. Thus, we now 

see that we have a stronger effect of social support on happiness among women 

than among men (just like the interaction analysis said). 

 

Remember, however: these kinds of specific or separate analyses are perhaps easier 

to understand, but if you want to say that any differences between groups (i.e. 

categories of the z-variable) are statistically significant, you should do a proper 

interaction analysis.  
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19.2 Approach A 

In the following sections, we will explore how to perform interaction analysis with 

product terms. 

 

Note We could also have used Approach B in these examples (Approach B can be 

applied to any type of interaction analysis, whereas the Approach A can only be 

applied to analyses where we include product terms). 

 

19.2.1 Practical example with linear regression 

For this example, we will use Approach A to conduct an interaction analysis based on 

linear regression. We want to see if sex (z) moderates the association between grade 

point average (x) and income (y). 

 

 

Dataset: StataData1.dta 

 

Name    Label 

income   Annual salary income (Age 40, Year 2010) 

gpa   Grade point average (Age 15, Year 1985) 

sex   Sex 

 

 

Define the analytical sample 

We start by defining the analytical sample: 

 

gen pop_interact1=1 if income!=. & gpa!=. & sex!=. 

 

Let us have a quick look at the variables: 

 

sum income gpa sex if pop_interact1==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

      income |      7,704    200228.5      114478      10000     790000 

         gpa |      7,704    3.210228    .6869562          1          5 

         sex |      7,704     .498053    .5000287          0          1 
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Simple regression models  

First, we will run the simple models, one for gpa and income, and one for sex and 

income. 

 

reg income gpa if pop_interact1==1 

 

 
 

      Source |       SS           df       MS      Number of obs   =     7,704 

-------------+----------------------------------   F(1, 7702)      =    405.78 

       Model |  5.0524e+12         1  5.0524e+12   Prob > F        =    0.0000 

    Residual |  9.5897e+13     7,702  1.2451e+10   R-squared       =    0.0500 

-------------+----------------------------------   Adj R-squared   =    0.0499 

       Total |  1.0095e+14     7,703  1.3105e+10   Root MSE        =    1.1e+05 

 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         gpa |   37281.09   1850.725    20.14   0.000     33653.16    40909.01 

       _cons |   80547.65   6075.739    13.26   0.000     68637.55    92457.75 

------------------------------------------------------------------------------ 

 

 

reg income sex if pop_interact1==1 

 

 
      Source |       SS           df       MS      Number of obs   =     7,704 

-------------+----------------------------------   F(1, 7702)      =    967.44 

       Model |  1.1265e+13         1  1.1265e+13   Prob > F        =    0.0000 

    Residual |  8.9684e+13     7,702  1.1644e+10   R-squared       =    0.1116 

-------------+----------------------------------   Adj R-squared   =    0.1115 

       Total |  1.0095e+14     7,703  1.3105e+10   Root MSE        =    1.1e+05 

 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         sex |  -76479.13   2458.847   -31.10   0.000    -81299.14   -71659.12 

       _cons |   238319.1   1735.279   137.34   0.000     234917.5    241720.7 

------------------------------------------------------------------------------ 

 

 

There are statistically significant associations in both simple models. More 

specifically, the B coefficient for gpa is 37281 (95 % CI: 33653 to 40909) and the B 

coefficient for sex is -76479 (95% CI: -81299 to -71659). 
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Multiple regression model 

Next, we run a model with both independent variables included: 

 

reg income gpa sex if pop_interact1==1 

 

 
      Source |       SS           df       MS      Number of obs   =     7,704 

-------------+----------------------------------   F(2, 7701)      =    883.01 

       Model |  1.8831e+13         2  9.4157e+12   Prob > F        =    0.0000 

    Residual |  8.2118e+13     7,701  1.0663e+10   R-squared       =    0.1865 

-------------+----------------------------------   Adj R-squared   =    0.1863 

       Total |  1.0095e+14     7,703  1.3105e+10   Root MSE        =    1.0e+05 

 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         gpa |   46087.42   1730.152    26.64   0.000     42695.85    49478.99 

         sex |  -85444.38   2376.941   -35.95   0.000    -90103.83   -80784.93 

       _cons |   94833.13    5636.71    16.82   0.000     83783.64    105882.6 

------------------------------------------------------------------------------- 

 

 

We can note that the B coefficients increase quite a lot (i.e. become further from 0).   
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Multiple regression model with interaction effect 

In this step, we will include the interaction term using Approach 2 (two hashtags mean 

that we specify the main effects and the interaction effect at the same time):  

 

reg income c.gpa##i.sex if pop_interact1==1 

 

 
 

      Source |       SS           df       MS      Number of obs   =     7,704 

-------------+----------------------------------   F(3, 7700)      =    634.80 

       Model |  2.0017e+13         3  6.6722e+12   Prob > F        =    0.0000 

    Residual |  8.0933e+13     7,700  1.0511e+10   R-squared       =    0.1983 

-------------+----------------------------------   Adj R-squared   =    0.1980 

       Total |  1.0095e+14     7,703  1.3105e+10   Root MSE        =    1.0e+05 

 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         gpa |   64007.13   2407.963    26.58   0.000     59286.86    68727.39 

             | 

         sex | 

      Woman  |   31764.21   11287.05     2.81   0.005     9638.512     53889.9 

             | 

   sex#c.gpa | 

      Woman  |  -36487.05   3436.005   -10.62   0.000    -43222.56   -29751.55 

             | 

       _cons |   39042.93   7675.958     5.09   0.000     23995.96    54089.89 

------------------------------------------------------------------------------ 

 

 

In the table above, we can see that the estimate for the interaction term has a p-value 

below 0.05 (0.000). This suggests that there is a statistically significant interaction 

effect between grade point average and sex on income. 
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Interpretation 

 

How can we understand this interaction effect that we found? Since our x-variable – 

sex – is binary, the easiest strategy for gaining more insight would be to do sex-

specific analyses of the association between gpa and income.   

 

We start with a model for men, and then continue with the same for women.  

 

reg income gpa if pop_interact1==1 & sex==0 

 

 
 

      Source |       SS           df       MS      Number of obs   =     3,867 

-------------+----------------------------------   F(1, 3865)      =    514.26 

       Model |  7.4266e+12         1  7.4266e+12   Prob > F        =    0.0000 

    Residual |  5.5816e+13     3,865  1.4441e+10   R-squared       =    0.1174 

-------------+----------------------------------   Adj R-squared   =    0.1172 

       Total |  6.3242e+13     3,866  1.6359e+10   Root MSE        =    1.2e+05 

 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         gpa |   64007.13   2822.522    22.68   0.000     58473.35     69540.9 

       _cons |   39042.93   8997.463     4.34   0.000      21402.7    56683.15 

------------------------------------------------------------------------------ 

 

 

reg income gpa if pop_interact1==1 & sex==1 

 

 
      Source |       SS           df       MS      Number of obs   =     3,837 

-------------+----------------------------------   F(1, 3835)      =    202.31 

       Model |  1.3250e+12         1  1.3250e+12   Prob > F        =    0.0000 

    Residual |  2.5117e+13     3,835  6.5494e+09   R-squared       =    0.0501 

-------------+----------------------------------   Adj R-squared   =    0.0499 

       Total |  2.6442e+13     3,836  6.8931e+09   Root MSE        =     80928 

 

------------------------------------------------------------------------------ 

      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         gpa |   27520.07   1934.828    14.22   0.000     23726.68    31313.46 

       _cons |   70807.13   6532.148    10.84   0.000     58000.31    83613.95 

------------------------------------------------------------------------------ 

 

 

The sex-specific models show that the slope in income according to grade point 

average is steeper among men compared to among women.  
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Illustration 

 

In order to illustrate the interaction, we can use the margins command. The first step 

is re-run the model. The quietly option is included in the beginning of the command 

to suppress the output. 

 

quietly reg income c.gpa##i.sex if pop_interact1==1 

 

Then we can produce the margins (the quietly option is included here as well): 

 

quietly margins sex, at(gpa=(1 5)) 

 

Note We specify 1 and 5 here since they represent the lowest and highest values for 

the variable gpa. 

 

And then, finally, it is time to produce the marginsplot: 

 

marginsplot 

 

 

 
 

 

Summary 

There is a positive, statistically significant association between grade point average 

at age 15 and income at age 40. While this association exists among men and 

women alike, the slope is steeper among men.  
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19.2.2 Practical example with logistic regression 

For this example, we will use Approach A to conduct an interaction analysis based on 

logistic regression. We want to see if sex (z) moderates the association between out-

patient care due to cardiovascular disease (x) and early retirement (y). 

 

 

Dataset: StataData1.dta 

 

Name    Label 

earlyret   Early retirement (Age 50, Year 2020) 

cvd   Out-patient care due to CVD (Ages 41-50,  

  Years 2011-2020) 

sex   Sex 

 

 

Define the analytical sample 

We start by defining the analytical sample: 

 

gen pop_interact2=1 if earlyret!=. & cvd!=. & sex!=. 

 

Let us have a quick look at the variables:  

 

sum earlyret cvd sex if pop_interact2==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

    earlyret |      8,773    .1371253    .3439992          0          1 

         cvd |      8,773    .0457084    .2088639          0          1 

         sex |      8,773    .4934458    .4999855          0          1 
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Simple regression models  

First, we will run the simple models, one for cvd and earlyret, and one for sex and 

earlyret. 

 

logistic earlyret cvd if pop_interact2==1 

 

 
Logistic regression                             Number of obs     =      8,773 

                                                LR chi2(1)        =     231.09 

                                                Prob > chi2       =     0.0000 

Log likelihood = -3391.1166                     Pseudo R2         =     0.0329 

 

------------------------------------------------------------------------------ 

    earlyret | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         cvd |   5.594374   .5930068    16.24   0.000     4.544893    6.886196 

       _cons |    .139823   .0046581   -59.05   0.000     .1309849    .1492574 

------------------------------------------------------------------------------ 

Note: _cons estimates baseline odds. 

 

 

logistic earlyret sex if pop_interact2==1 

 

 
Logistic regression                             Number of obs     =      8,773 

                                                LR chi2(1)        =      43.76 

                                                Prob > chi2       =     0.0000 

Log likelihood = -3484.7796                     Pseudo R2         =     0.0062 

 

------------------------------------------------------------------------------ 

    earlyret | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         sex |   1.511296   .0949347     6.57   0.000     1.336226    1.709304 

       _cons |   .1276326   .0060431   -43.48   0.000     .1163212    .1400439 

------------------------------------------------------------------------------ 

Note: _cons estimates baseline odds. 

 

 

Therese are statistically significant associations in both simple models. More 

specifically, the OR for cvd is 5.59 (95% CI: 4.54-6.89) and the OR for sex is 1.51 

(95% CI: 1.34-1.71). 
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Multiple regression model 

Next, we run a model with both independent variables included: 

 

logistic earlyret cvd sex if pop_interact2==1 

 

 
Logistic regression                             Number of obs     =      8,773 

                                                LR chi2(2)        =     295.99 

                                                Prob > chi2       =     0.0000 

Log likelihood = -3358.6649                     Pseudo R2         =     0.0422 

 

------------------------------------------------------------------------------ 

    earlyret | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         cvd |   6.228446   .6726551    16.94   0.000     5.040252    7.696745 

         sex |   1.678049   .1089692     7.97   0.000     1.477506    1.905811 

       _cons |   .1052034   .0053898   -43.95   0.000     .0951527    .1163158 

------------------------------------------------------------------------------ 

Note: _cons estimates baseline odds. 

 

 

Actually, both ORs increase a bit in this model.  
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Multiple regression model with interaction effect 

In this step, we will include the interaction term using Approach 2 (two hashtags mean 

that we specify the main effects and the interaction effect at the same time): 

 

logistic earlyret i.cvd##i.sex if pop_interact2==1 

 

 
Logistic regression                             Number of obs     =      8,773 

                                                LR chi2(3)        =     296.14 

                                                Prob > chi2       =     0.0000 

Log likelihood = -3358.5926                     Pseudo R2         =     0.0422 

 

------------------------------------------------------------------------------ 

    earlyret | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         cvd | 

        Yes  |   6.427069   .8723966    13.71   0.000     4.925754    8.385969 

             | 

         sex | 

      Woman  |   1.691375   .1153998     7.70   0.000     1.479666    1.933374 

             | 

     cvd#sex | 

  Yes#Woman  |   .9184989    .205248    -0.38   0.704     .5927464    1.423273 

             | 

       _cons |   .1047065   .0055303   -42.72   0.000     .0944095    .1161266 

------------------------------------------------------------------------------ 

Note: _cons estimates baseline odds. 

 

 

In the table above, we can see that the estimate for the interaction term has a p-value 

above 0.05 (0.704). This suggests that there is no statistically significant interaction 

effect between out-patient care due to CVD and sex on early retirement. 

 

Note The reference category for the interaction term is by default combination with 

the smallest value, in this case No#Man. The reason that some combinations are 

omitted is because they correlate perfectly with the main effect terms. 

 

Summary 

Sex does not seem to moderate the association between out-patient care due to CVD 

and early retirement. 
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19.3 Approach B 

In the following sections, we will explore how to perform interaction analysis based 

on comparison of model fit. 

 

19.3.1 Practical example with logistic regression 

For this example, we will use Approach B to conduct an interaction analysis based on 

logistic regression. We want to see if educational level (z) moderates the association 

between marital status (x) and early retirement (y). 

 

 

Dataset: StataData1.dta 

 

Name    Label 

earlyret   Early retirement (Age 50, Year 2020) 

marstat40   Marital status (Age 40, Year 2010) 

educ   Educational level (Age 40, Year 2010)  

 

 

Define the analytical sample 

We start by defining the analytical sample: 

 

gen pop_interact3=1 if earlyret!=. & marstat40!=. & educ!=. 

 

Let us have a quick look at the variables: 

 

sum earlyret marstat40 educ if pop_interact3==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

    earlyret |      8,668    .1363636    .3431941          0          1 

   marstat40 |      8,668    1.693932    .8151531          1          4 

        educ |      8,668    2.185971    .7223392          1          3 
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Simple regression models  

First, we will run the simple models, one for marstat40 and earlyret, and one for educ 

and earlyret. 

 

logistic earlyret i.marstat40 if pop_interact3==1 

 

 
Logistic regression                             Number of obs     =      8,668 

                                                LR chi2(3)        =     207.50 

                                                Prob > chi2       =     0.0000 

Log likelihood = -3348.7775                     Pseudo R2         =     0.0301 

 

------------------------------------------------------------------------------ 

    earlyret | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   marstat40 | 

  Unmarried  |   2.541609   .1887313    12.56   0.000     2.197361    2.939788 

   Divorced  |   2.341314   .1921366    10.37   0.000     1.993458    2.749871 

    Widowed  |   4.220408   1.043441     5.82   0.000     2.599596    6.851773 

             | 

       _cons |   .0947776   .0050087   -44.59   0.000      .085452    .1051209 

------------------------------------------------------------------------------ 

Note: _cons estimates baseline odds. 

 

 

logistic earlyret i.educ if pop_interact3==1 

 

 
Logistic regression                             Number of obs     =      8,668 

                                                LR chi2(2)        =     203.20 

                                                Prob > chi2       =     0.0000 

Log likelihood = -3350.9277                     Pseudo R2         =     0.0294 

 

---------------------------------------------------------------------------------- 

        earlyret | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

            educ | 

Upper secondary  |   .6288499   .0472754    -6.17   0.000     .5426949    .7286824 

     University  |   .2938966   .0263025   -13.68   0.000     .2466128    .3502463 

                 | 

           _cons |   .2829736   .0170354   -20.97   0.000     .2514794    .3184121 

---------------------------------------------------------------------------------- 

Note: _cons estimates baseline odds. 

 

 

We see from the output in the tables above that there are quite clear (and statistically 

significant) associations between marital status and early retirement on the one hand, 

and educational level and early retirement on the other hand.  

 

 

 

 

 

 

 

 



 

510 

 

Multiple regression model 

Next, we run a model with both independent variables included: 

 

logistic earlyret i.marstat40 i.educ if pop_interact3==1 

 

 
Logistic regression                             Number of obs     =      8,668 

                                                LR chi2(5)        =     363.28 

                                                Prob > chi2       =     0.0000 

Log likelihood = -3270.8877                     Pseudo R2         =     0.0526 

 

---------------------------------------------------------------------------------- 

        earlyret | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-----------------+---------------------------------------------------------------- 

       marstat40 | 

      Unmarried  |   2.302619   .1732414    11.09   0.000     1.986921    2.668478 

       Divorced  |   2.101947   .1747253     8.94   0.000     1.785933    2.473878 

        Widowed  |   3.994096   1.003722     5.51   0.000     2.440678    6.536219 

                 | 

            educ | 

Upper secondary  |   .6614076   .0503735    -5.43   0.000     .5696928    .7678875 

     University  |   .3349882   .0304173   -12.04   0.000      .280375    .4002392 

                 | 

           _cons |   .1687758   .0129286   -23.23   0.000     .1452467    .1961164 

---------------------------------------------------------------------------------- 

Note: _cons estimates baseline odds. 

 

 

The ORs for marstat40 have decreased a bit, whereas the ORs for educ are actually 

slightly larger.  

 

Now, we need to save the estimates from this model: 

 

estimates store model1 
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Multiple regression model with interaction effect 

In this step, we will include the interaction term using Approach 2 (two hashtags mean 

that we specify the main effects and the interaction effect at the same time): 

 

logistic earlyret i.marstat40##i.educ if pop_interact3==1 

 

 
Logistic regression                             Number of obs     =      8,668 

                                                LR chi2(11)       =     366.78 

                                                Prob > chi2       =     0.0000 

Log likelihood =  -3269.136                     Pseudo R2         =     0.0531 

 

----------------------------------------------------------------------------------------- 

                  earlyret | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------------------+------------------------------------------------------------- 

                 marstat40 | 

                Unmarried  |   2.469909   .3572869     6.25   0.000     1.860157    3.279535 

                 Divorced  |   1.828658   .2992402     3.69   0.000     1.326913    2.520127 

                  Widowed  |   4.717526   2.296895     3.19   0.001     1.816672    12.25045 

                           | 

                      educ | 

          Upper secondary  |   .6494543   .0870426    -3.22   0.001     .4994212    .8445596 

               University  |   .3397788   .0503307    -7.29   0.000     .2541615    .4542373 

                           | 

            marstat40#educ | 

Unmarried#Upper secondary  |   .9062763   .1638395    -0.54   0.586     .6358837    1.291646 

     Unmarried#University  |    .901407   .1899455    -0.49   0.622     .5964235    1.362345 

 Divorced#Upper secondary  |   1.246885   .2497817     1.10   0.271     .8419957    1.846473 

      Divorced#University  |   1.140599   .2742129     0.55   0.584     .7120237    1.827138 

  Widowed#Upper secondary  |   .9238524   .5591375    -0.13   0.896     .2821209    3.025311 

       Widowed#University  |   .5886182   .4313178    -0.72   0.470     .1399924     2.47493 

                           | 

                     _cons |   .1695804   .0186211   -16.16   0.000     .1367439     .210302 

----------------------------------------------------------------------------------------- 

Note: _cons estimates baseline odds. 

 

 

Similar to the previous model, we have to save the estimates from this one: 

 

estimates store model2 
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Next, we compare the fit of the two models: 

 

lrtest model1 model2, stats 

 

 
Likelihood-ratio test                                 LR chi2(6)  =      3.50 

(Assumption: model1 nested in model2)                 Prob > chi2 =    0.7435 

 

Akaike's information criterion and Bayesian information criterion 

 

----------------------------------------------------------------------------- 

       Model |          N   ll(null)  ll(model)      df        AIC        BIC 

-------------+--------------------------------------------------------------- 

      model1 |      8,668  -3452.526  -3270.888       6   6553.775    6596.18 

      model2 |      8,668  -3452.526  -3269.136      12   6562.272   6647.081 

----------------------------------------------------------------------------- 

Note: BIC uses N = number of observations. See [R] BIC note. 

 

 

Note We called our saved models “model1” and “model2”, but you can choose any 

name you like. 

 

In the table above, we can see that the p-value for the likelihood ratio test is above 

0.05 (0.7435), which suggests that model that contains that interaction term (model2) 

does not fit the data better than the model without the interaction term (model1). This 

is also confirmed by the values for AIC and BIC, which are lower for model1. We can 

thereby conclude that there is no statistically significant interaction between marital 

status and educational level in the effect on early retirement.  

 

Summary 

Educational attainment does not seem to moderate the association between marital 

status and early retirement. 
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19.3.2 Practical example with Cox regression 

For this example, we will use Approach B to conduct an interaction analysis based on 

Cox regression. We want to see if sex (z) moderates the association between body 

mass index (x) and out-patient care due to CVD (y). 

 

Note Here, we use the same stset as in Chapter 17. 

 

 

Dataset: StataData1.dta 

 

Name    Label 

cvd   Out-patient care due to CVD (Ages 41-50,  

  Years 2011-2020) 

bmi   Body mass index (Age 20, Year 1900) 

sex   Sex 

 

 

Define the analytical sample 

We start by defining the analytical sample: 

 

gen pop_interact4=1 if cvd!=. & bmi!=. & sex!=. 

 

Let us have a quick look at the variables: 

 

sum cvd bmi sex if pop_interact4==1 

 

 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

         cvd |      8,385     .047585    .2128992          0          1 

         bmi |      8,385    22.64526     3.50581   10.97624   39.25653 

         sex |      8,385    .5177102     .499716          0          1 
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Simple regression models  

First, we will run the simple models, one for bmi and cvd, and one for sex and cvd. 

  

stcox bmi if pop_interact4==1 

 

 
Cox regression -- Breslow method for ties 

 

No. of subjects =        8,385                  Number of obs    =       8,385 

No. of failures =          399 

Time at risk    =  81871.70157 

                                                LR chi2(1)       =        0.05 

Log likelihood  =   -3594.9981                  Prob > chi2      =      0.8162 

 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         bmi |   1.003322   .0143091     0.23   0.816     .9756654    1.031763 

------------------------------------------------------------------------------ 

 

 

stcox sex if pop_interact4==1 

 

 
Cox regression -- Breslow method for ties 

 

No. of subjects =        8,385                  Number of obs    =       8,385 

No. of failures =          399 

Time at risk    =  81871.70157 

                                                LR chi2(1)       =       45.59 

Log likelihood  =    -3572.231                  Prob > chi2      =      0.0000 

 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         sex |   .5015805   .0525306    -6.59   0.000      .408502    .6158672 

------------------------------------------------------------------------------ 

 

 

The tables above show that there is no association between bmi and cvd, whereas there 

is a clear and statistically significant association between sex and cvd.  
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Multiple regression model 

Next, we run a model with both independent variables included: 

 

stcox bmi sex if pop_interact4==1 

 

 
Cox regression -- Breslow method for ties 

 

No. of subjects =        8,385                  Number of obs    =       8,385 

No. of failures =          399 

Time at risk    =  81871.70157 

                                                LR chi2(2)       =       46.60 

Log likelihood  =   -3571.7276                  Prob > chi2      =      0.0000 

 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         bmi |   .9851039   .0147709    -1.00   0.317     .9565748    1.014484 

         sex |   .4920975   .0524188    -6.66   0.000     .3993743    .6063482 

------------------------------------------------------------------------------ 

 

 

The HRs for bmi and sex have decreased a tiny bit (in this case, become further from 

1).   

 

Now, we need to save the estimates from this model: 

 

estimates store model1 
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Multiple regression model with interaction effect 

In this step, we will include the interaction term using Approach 2 (two hashtags mean 

that we specify the main effects and the interaction effect at the same time): 

 

stcox c.bmi##i.sex if pop_interact4==1 

 

 
Cox regression -- Breslow method for ties 

 

No. of subjects =        8,385                  Number of obs    =       8,385 

No. of failures =          399 

Time at risk    =  81871.70157 

                                                LR chi2(3)       =       51.80 

Log likelihood  =   -3569.1249                  Prob > chi2      =      0.0000 

 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         bmi |   .9562677   .0191093    -2.24   0.025     .9195381    .9944644 

             | 

         sex | 

      Woman  |   .1044956   .0719111    -3.28   0.001     .0271221    .4025988 

             | 

   sex#c.bmi | 

      Woman  |   1.071326   .0322614     2.29   0.022     1.009925    1.136461 

------------------------------------------------------------------------------ 

 

 

Similar to the previous model, we have to save the estimates from this one: 

 

estimates store model2 

 
Note Since bmi is continuous and sex is binary, we actually do not need to compare 

the model fit using Approach B – it would be sufficient with Approach A (we can 

already see in the table that the interaction term is statistically significant). But since 

Approach B is what the example is about, we will do it for the sake of practice.   
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Next, we compare the fit of the two models: 

 

lrtest model1 model2, stats 

 

 
Likelihood-ratio test                                 LR chi2(1)  =      5.21 

(Assumption: model1 nested in model2)                 Prob > chi2 =    0.0225 

 

Akaike's information criterion and Bayesian information criterion 

 

----------------------------------------------------------------------------- 

       Model |          N   ll(null)  ll(model)      df        AIC        BIC 

-------------+--------------------------------------------------------------- 

      model1 |      8,385  -3595.025  -3571.728       2   7147.455   7161.524 

      model2 |      8,385  -3595.025  -3569.125       3    7144.25   7165.352 

----------------------------------------------------------------------------- 

Note: BIC uses N = number of observations. See [R] BIC note. 

 

 

Note We called our saved models “model1” and “model2”, but you can choose any 

name you like. 

 

In the table above, we can see that the p-value for the likelihood ratio test is below 

0.05 (0.0225), which suggests that model that contains that interaction term (model2) 

fits the data better than the model without the interaction term (model1). This is also 

confirmed by the values for AIC, which are lower for model2. The BIC value is not 

lower for model2 than model1, but it should be noted that BIC tend to penalise 

complex models more than AIC does.   

 

We can thereby conclude that there is a statistically significant interaction between 

body mass index and sex in the effect on out-patient care due to CVD.  
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Interpretation 

 

How can we understand this interaction effect that we found? Since our x-variable – 

sex – is binary, the easiest strategy for gaining more insight would be to do sex-

specific analyses of the association between bmi and cvd.   

 

We start with a model for men, and then continue with the same for women.  

 

stcox bmi if pop_interact4==1 & sex==0 

 

 
Cox regression -- Breslow method for ties 

 

No. of subjects =        4,044                  Number of obs    =       4,044 

No. of failures =          258 

Time at risk    =  39187.84668 

                                                LR chi2(1)       =        5.08 

Log likelihood  =   -2131.7739                  Prob > chi2      =      0.0243 

 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         bmi |   .9562525   .0191098    -2.24   0.025      .919522    .9944501 

------------------------------------------------------------------------------ 

 

 

stcox bmi if pop_interact4==1 & sex==1 

 

 
No. of subjects =        4,341                  Number of obs    =       4,341 

No. of failures =          141 

Time at risk    =  42683.85489 

                                                LR chi2(1)       =        1.14 

Log likelihood  =   -1178.1281                  Prob > chi2      =      0.2857 

 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         bmi |   1.024468   .0230777     1.07   0.283     .9802202    1.070713 

------------------------------------------------------------------------------ 

 

 

The sex-specific models show that the association between body mass index and out-

patient care due to CVD is actually negative (and statistically significant) for men and 

positive (and statistically non-significant) for women. This explains why we did not 

find any association at all in our first simple model.  
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Illustration 

 

We would also like to show how the interaction effect can be illustrated. 

Unfortunately, it not very straight-forward to graph interactions for non-linear 

outcomes. A solution here might be is to categorise bmi. For example, we could 

categorise it into underweight, normal weight, overweight, and obese in according to 

WHO standards.  

 

gen bmi_cat=bmi 

 

recode bmi_cat (0/18.4999=1) (18.5000/24.999=2) (25.000/29.999=3) (30.000/40=4) 

 

Let us also create and apply some value labels: 

 

label define bmi_cat 1 "Underweight" 2 "Normal weight" 3 "Overweight" 4 "Obese"  

 

label values bmi_cat bmi_cat  

 

We choose Normal weight (value 2) as out reference category for bmi, and Women 

(value 1) as our reference category for sex.  

 

Note Even though we usually do not have to specify a reference category for binary 

variables (such as sex), margins will not work without it. 

 

First, we run a Cox regression model with these two variables. We use the quietly 

option to supress the output. 

 

quietly stcox ib2.bmi_cat##ib1.sex if pop_interact4==1 

 

Then we type the margins command, with suppressed output here as well: 

 

quietly margins ib2.bmi_cat#ib1.sex 

 

Note We do not use double hashtags here to specify the main effects and the 

interaction effect, since it produces an additional line in the marginsplot. 
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And run the marginsplot: 

 

marginsplot  

 

 

 
 

 

Note The reference combination (predicted HR=1) includes women who are normal 

weight. All other estimates are compared to this combination. If we were to choose 

another reference combination, the graph would look quite different. 

 

This graph illustrates the negative association for men and the positive association for 

women. Another way of looking at it is that the difference between men and women 

when it comes to the association between bmi_cat and cvd is largest among the 

underweight but becomes smaller as body mass index increases. Generally, the results 

might not be what we would expect (but remember that this dataset is fictional).  

 

Summary 

Gender moderates the association between body mass index and out-patient care 

due to CVD. More specifically, a higher body mass index is associated with a lower 

risk of experiencing out-patient care due to CVD among men. Among women, the 

opposite association was observed.  
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