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The main results in the Ruhnau et al. (2012) study were as follows (see their Figure 3): 

For frontal-central electrodes, the mean amplitudes in the MMN-relevant interval (between 

140 and 190 ms) were 0.30 µV to the control tone in the cascade condition, 0.17 µV to the 

control tone in the no-repetition condition, and −0.68 µV to the deviant in the oddball 

condition. The difference score between deviant and the control tone (i.e., corrected MMN) 

was numerically more negative for the cascade (−0.68 minus 0.30 = −0.98) than for the no-

repetition condition (−0.68 minus 0.17 = −0.85). However, this difference (0.13 µV) between 

cascade and no-repetition condition was reported as not significant.  

The mean N1 amplitudes (between 90 and 120 ms) were 0 µV in the cascade condition 

and −0.71 µV in the no-repetition condition. The N1 was significantly smaller (i.e., 

amplitudes were less negative) in the cascade than in the no-repetition condition; cascade 

minus random = 0.71 µV. 

In their study, Ruhnau et al. (2012) relied on null hypothesis significance testing. 

Although null hypothesis testing may provide evidence against the null (with a small p), a 

large p cannot provide evidence for the null hypothesis because non-significance could simply 

result from low statistical power. Furthermore, the p value does not provide a relative measure 

of how much support there is for the alternative hypothesis versus the null hypothesis (Dienes, 

2008, 2016). Accordingly, the non-significant difference of the mean amplitudes in the 

MMN-relevant interval between the cascade and no-repetition conditions is uninformative 

about whether the results suggest a difference between conditions, no difference between 

conditions, or that the results are inconclusive.  

In contrast, computing the Bayes Factor (BF) provides exactly that information (Dienes, 

2016; Wagenmakers, Marsman, et al., 2017; Wiens & Nilsson, 2017). It expresses the 



likelihood of the data given the alternative hypothesis (i.e., theoretical predictions) relative to 

the likelihood of the data given the null hypothesis (Dienes, 2016; Wagenmakers, Marsman, 

et al., 2017; Wiens & Nilsson, 2017). Simply put, it captures how much better the data are 

explained by the alternative hypothesis versus the null hypothesis. The better the data are 

explained by one rather than the other hypothesis, the more evidence there is in support of this 

hypothesis. For example, a BF10 = 3 means that there is three times more evidence for the 

alternative than the null hypothesis, whereas a BF01 = 3 means that there is three times more 

evidence for the null than the alternative hypothesis. Note that if one knows either BF10 or 

BF01, then the other can be derived with BF01 = 1 / BF10. 

Because Ruhnau and his colleagues provided us with their preprocessed data (i.e., mean 

amplitudes for each condition and subject), we could conduct secondary analyses to perform 

Bayesian hypothesis testing. The BF was calculated with Aladins Bayes Factor in R (Wiens, 

2017). These scripts compute and plot the BF for mean differences in raw units if the 

alternative hypothesis is modelled as a normal, t, or uniform distribution, and the likelihood is 

modelled as a normal or t distribution (Dienes & Mclatchie, 2017). 

As described below, results provided strong evidence (BF10 > 40) that the cascade 

condition reduces the N1 relative to the no-repetition condition but provided only anecdotal 

evidence for no differences between conditions (1 < BF01 < 3) in the MMN-relevant interval. 

N1 

To compute the BF for the N1, mean amplitudes were extracted to the deviant in the 

oddball condition (0.12 µV) and the control tones in the cascade condition (0 µV) and the no-

repetition condition (−0.71 µV). The null hypothesis was that the amplitude difference of 

cascade minus no-repetition condition would be zero. In contrast, a positive difference score 

would support the hypothesis that the N1 was smaller (i.e., less negative) in the cascade than 

no-repetition condition. The actual mean difference was 0.71 µV (0 minus −0.71). Further, the 



N1 should be smaller to the deviant than to the control tones. Because in the oddball 

condition, deviant and standard tones are tonotopically close, the N1 to the deviant should be 

decreased because of neural adaptation. In contrast, because in the cascade and no-repetition 

conditions, the tones within each condition are tonotopically further away from each other, the 

N1 should be less decreased because of neural adaptation. As a consequence, the N1 

difference between cascade and no-repetition should not be larger than the difference between 

deviant and no-repetition. Because a small N1 to the deviant minus a large N1 to the no-

repetition control should give a large positive value, the alternative hypothesis was modeled 

as a uniform distribution with the lower limit defined as zero and the upper limit defined as 

the N1 difference of deviant minus no-repetition control (0.12 minus −0.71 = 0.83 µV). As 

shown in Figure 2, the BF10 = 40.26 indicated that the N1 difference between cascade and 

random conditions is 40 times more likely under the alternative hypothesis than under the null 

hypothesis. According to a classification scheme (Wagenmakers, Love, et al., 2017), the BF is 

very strong evidence that the N1 is smaller in the cascade than random condition. 

 

Figure 2. Plot of the Bayes Factor (BF) for N1. 



Because in principle, the BF compares two models with each other, we conducted 

additional analyses with other alternative hypotheses to assess the robustness of the findings. 

First, although the deviant should elicit a small N1 due to neural adaptation, it may be biased 

towards a larger N1 by an early effect from a true MMN. If so, the N1 to the deviant would be 

larger (i.e., more negative) than it should be. Although the size of this bias on the deviant 

cannot be estimated easily, the standard is completely unbiased by a true MMN. Therefore, 

we defined the upper limit as the N1 difference of standard minus no-repetition control (0.71 

minus −0.71 = 1.42 µV). The BF10 = 33.00 provides very strong evidence for a difference in 

N1. Second, the frequency steps between consecutive tones are more variable in the no-

repetition than cascade condition. Because effects of this frequency variability on the N1 are 

unclear, we performed a two-tailed analysis in which the upper limit was defined as standard 

minus no-repetition control (1.42 µV) and the lower limit as its inverse (−1.42 µV). The BF10 

= 16.55 provides strong evidence for N1 differences between cascade and no-repetition 

conditions. 

MMN 

To compute the BF for the MMN, the MMN-relevant amplitudes were extracted to the 

deviant (mean = −0.68 µV) and standard (0.32 µV) in the oddball condition, and to the control 

tones in the cascade (0.30 µV) and no-repetition (0.17 µV) conditions (see Figure 3 in Ruhnau 

et al., 2012). The null hypothesis was that the cascade-corrected MMN (deviant minus 

cascade) would be same as the no-repetition-corrected MMN (deviant minus no-repetition). 

However, if the cascade condition improves the measurement of the corrected MMN (deviant 

minus control) and thus, the cascade-corrected MMN is larger (i.e., more negative) than the 

no-repetition-corrected MMN, computing the difference of no-repetition-corrected MMN 

minus cascade-corrected MMN should result in a positive score. That is, the less negative 

value for the no-repetition-corrected MMN minus the more negative value for the cascade-



corrected MMN should result in a positive score. This can be expressed as follows: (deviant 

minus no-repetition) minus (deviant minus cascade). However, this computation can be 

simplified to cascade minus no-repetition. In terms of actual numbers, (−0.68 minus 0.17) 

minus (−0.68 minus 0.30) = −0.85 minus −0.98 = 0.13; or simply 0.30 minus 0.17 = 0.13. 

Accordingly, the more positive the difference score, the more it supports the idea that the 

cascade-corrected MMN is larger (i.e., more negative) than the no-repetition-corrected MMN. 

However, this difference between conditions should be no larger than the oddball MMN 

(deviant minus standard, i.e., −0.68 minus 0.32 = −1.00). Therefore, the alternative hypothesis 

was modeled as a uniform distribution with the lower limit defined as zero and the upper limit 

defined as the absolute size (i.e., +1.00 µV) of the oddball MMN (to obtain a positive upper 

limit).  

Figure 1 shows a plot of the BF for MMN. It illustrates the prior (i.e., the alternative 

hypothesis), likelihood, and posterior. A positive theta (in µV) reflects a larger corrected 

MMN in the cascade than no-repetition conditions. The BF01 = 2.17 provides only anecdotal 

evidence for no differences between the conditions. This is also shown in the pie chart, as the 

size of the white area is only slightly larger than that of the red area. 

 



Figure 1. Plot of the Bayes Factor (BF) for MMN. 

To assess the robustness of these findings, we conducted additional analyses with other 

alternative hypotheses. First, one could argue that the oddball MMN may overestimate the 

upper limit of the true MMN, as the standard is biased towards positivity due to neural 

adaptation. Unfortunately, the true MMN is unknown, and the cascade-corrected MMN 

probably underestimates the true MMN. Nonetheless, if the cascade-corrected MMN is used 

instead to define the upper limit, the BF was unaffected, BF01 = 2.13. Second, one may argue 

that there is no strong theoretical reason to think that the corrected MMN should be stronger 

for the cascade than the no-repetition rule, and effects may actually be reversed. To conduct a 

two-tailed analyses, the alternative hypothesis was modeled to range from −1.00 to + 1.00, 

which is the size of the oddball MMN. With this wide alternative hypothesis, the BF01 = 3.33 

provides moderate evidence for similar effects of the cascade and no-repetition rule on the 

corrected MMN. 
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