STOCKHOLM RESEARCH RESPORTS IN DEMOGRAPHY

No. 17

A NUMERICAL ALGORITHM FOR THE CALCULATION OF COEFFICIENTS IN MOVING AVERAGES

by

Bengt Lindberg*

University of Stockholm
Section of Demography
S-106 91 Stockholm
Sweden

$$
\begin{aligned}
& \text { 17n }
\end{aligned}
$$

CONTENTS
Page

1. BACKGROUND AND NOTATION FOR THE NUMERICAL ALGORITHM
1.0 General 2
1.1 Optimization problem 3
1.2 Numbering of the unknowns 4
1.3 Data structure for the matrix Q 5
1.4 Constraints 6
1.5 Data structure for the constraints 10
1.6 Operations involving V 13
2. NUMERICAL SOLUTION
2.1 Basic problem 14
2.1.1 Algorithm 14
2.2 Modified problem, some values of \mathbb{F} given 15
2.2.1 Algorithm 19
3. USER INSTRUCTION
3.1 No coefficients specified 21
3.2 The coefficients of the main moving average specified 22
4. INSTRUCTIONS FOR INSTALLATION AND MODIFICATION 25
5. PROGRAM ORGANIZATION AND LISTING
5.1 The main program 26
5.2 The subroutine SYSTEM 30
5.3 The subroutine CONSTRAINT 38
5.4 Input and output subroutines 41
APPEXDIX 1. Construction of Q 44
APPENDIX 2. NAG 1 ibrary routines 48
ACKNOWLEDGEMENTS 49
REFERENCES 49

1~ BACKGROUND AND NOTATION FOR THE NUMERICAL ALGORITHM

1.0 General

Given a vector of values $\hat{\lambda}=\left(\hat{\lambda}_{1}, \hat{\lambda}_{2}, \ldots, \hat{\lambda}_{m}\right)^{T}$.
For given integer a construct coefficients $r_{j}, j=1,2, \ldots, 2 a+1$, and $Y_{j}^{t}, t=1,2, \ldots, a, j=1,2, \ldots, a+t$ in the averaging formulas

$$
\begin{aligned}
& \lambda_{t}^{*}=\sum_{j=1}^{a+t} Y_{j}^{t} \hat{\lambda}_{j} ; \quad t=1,2, \ldots, a ; \\
& \lambda_{t}^{*}=\sum_{j=1}^{2 a+1} r_{j} \hat{\lambda}_{t+j-a-1} ; \quad t=a+1, a+2, \ldots, m-a ; \\
& \lambda_{m+1-t}^{*}=\sum_{j=1}^{a+t} Y_{j}^{t} \hat{\lambda}_{m+1-j} ; \quad t=a, a-1, \ldots, 1 .
\end{aligned}
$$

The coefficients r_{j} shall be symmetric with respect to r_{a+1}, i.e.,

$$
r_{a+1+j}=r_{a+1-j} ; \quad j=1,2, \ldots, a \text {. In Section } 1.2 \text { we will use }
$$ the notation $Y_{j}^{a+1}=r_{j} ; \quad j=1,2, \ldots, 2 a+1$. The coefficients shall be optimal in a certain sense defined in Section 1.1 and satisfy certain constraints defined in Section 1.4.

For a general statistical motivation of this numerical problem and further analysis of the method of moving averages, see Hoem (1978) and Linnemann (1979, 1980).

This paper deals solely with the practical computer implementation of a problem suggested to the present author by Jan M. Hoem.
1.1 Optimization problem

Define for given integer $z>0$
$L=\sum_{t=1}^{m-z}\left(\Delta^{z} \lambda_{t}^{*}-\Delta^{z} \hat{\lambda}_{t}\right)^{2}$,
where A is the forward difference

$$
\Delta \lambda_{t}=\lambda_{t+1}-\lambda_{t}
$$

and Δ^{z} denotes z applications of Δ.
The expression for L is a quadratic function in the coefficients r_{j}, Y_{j}^{t}.

If we number the unknown coefficients in the way described in Section 1.2 , we can write

$$
L=\underline{\underline{y}}^{T} Q \underline{\underline{y}}
$$

where the matrix Q can be constructed in the sequence of steps described in Appendix 1.

Arrange the unknown coefficients Y_{j}^{t} in a table as follows.

j	1	2	3		a
1	Y_{1}^{1}	Y_{1}^{2}	Y_{1}^{3}	-••	$\mathrm{Y}_{1}^{\mathrm{a}}$
2	Y_{2}^{1}	Y_{2}^{2}	Y_{2}^{3}	-••	$\mathrm{Y}_{2}^{\mathrm{a}}$
-	-				
-					
$a+1$	Y_{a+1}^{1}	Y_{a+1}^{2}	Y_{a+1}^{3}	-••	Y_{a+1}^{a}
$a+2$		Y_{a+2}^{2}	Y_{a+2}^{3}	-••	Y_{a+2}^{a}
$a+3$			Y_{a+3}^{3}		-
$:$				-	-
$a+a$					Y_{a+a}^{a}

Then define a vector $\underset{\underline{y}}{ }$ containing the unknowns of this table in lexiographic order, i.e., numbered line by line according to

$$
y_{\text {index }}=Y_{j}^{t}
$$

with

$$
\text { index }=\left\{\begin{array}{cl}
(j-1) a+t ; & 1 \leq j \leq a+1 ; \\
a^{2}+a+t-1 ; & 1 \leq t \leq a ; \\
a^{2}+a+a-1+t-2 ; & j=a+3 ; \\
\cdot & 3 \leq t \leq a ; \\
\cdot \\
a^{2}+\frac{1}{2} a(a-1) ; & j=a+a ; \\
& t=a
\end{array}\right.
$$

For example for $\mathrm{a}=3$ we get the following indexing table.

		2	3
		2	3
2	4	5	6
3	7	8	9
4	10	11	12
5		13	14
6			15

The unknowns $r_{1}, r_{2}, \cdots, r a+1$ are adjoined according to

$$
\underset{a+!(a-1)+j}{2}=\underset{j}{r_{j} ;} \quad \text { J } \quad 1,2, \cdots, a+1
$$

Denote by

$$
n=a^{2}+i a(a-1)+a+1
$$

the total number of unknowns.

1.3 Data structure for the matrix Q

The matrix Q is symmetric, positive definite and has the following structure of non-zero elements (cf. Appendix 1).

To suit the NAG-routine F01MCF we use the skyline or envelope storage scheme for this matrix. Only half the matrix is needed and only the elements from the first non-zero element of a row to the diagonal element of the same row need to be stored for each row. The data of the matrix is stored in a long vector together with an integer vector that points to the first non-zero element of each row. For further technical details, see the description of the parameters of F01MCF in the NAG 1 ibrary manual.

1.4 Constraints

All the formulas in Section 1.1 shall be exact for polynomials of degree less than d (a given integer), i.e., if

$$
\hat{\lambda}_{j}=P\left(x_{j}\right) ; \quad j=1,2, \ldots, m ;
$$

with P a polynomial of degree $d-1$ and $x_{j} \equiv x_{0}+j \cdot \Delta x, j=1,2, \ldots$, m for some given $\Delta \mathrm{x}$, then

$$
\lambda_{t}^{*}=P\left(x_{t}\right)
$$

for all $t=1,2, \ldots$, m.
These conditions can be expressed in several equivalent ways. They all amount to d equations for each of the sets of coefficients

$$
\left\{Y_{1}^{t}, Y_{2}^{t}, \ldots, Y_{a+x}^{t}\right\} ; \quad t=1,2, \ldots, a+1
$$

In all there are $(a+1) \times d$ equations. Due to the symmetry-condition for $r_{j}, j \equiv 1,2, \ldots, 2 a+1$; some of the equations for
$Y_{j}^{a+1} ; \quad j=1,2, \ldots, a+1$
are redundant, see below.
We have chosen to construct sets of orthogonal polynomials
$\left\{\phi_{s}^{t}(x)\right\}_{s=0}^{d-1}$ for each of the intervals $I_{t} \equiv\left[x_{1}, x_{a+t}\right] t \equiv 1,2, \ldots, a+1$ to use as bases for the space of polynomials of degree $\mathrm{d}-1$ on each interval I_{t}. The polynomials are othogonal with respect to the inner product

$$
\langle f, g\rangle_{t}=\sum_{i=1}^{a+t} f\left(x_{i}\right) g\left(x_{i}\right)
$$

This special choice of basis is motivated by a wish to get orthogonal rows for the matrix of constraints.

The constraints can be written

$$
\begin{array}{r}
\sum_{j=1}^{a+t} Y_{j}^{t} \phi_{S}^{t}\left(x_{j}\right) \equiv \phi_{s}^{t}\left(x_{t}\right) ; \\
s=0,1, \ldots, d-1 ; \\
t=1,2, \ldots, a+1 ;
\end{array}
$$

i.e.,

$$
\mathrm{V}_{\mathrm{t}} \underline{\underline{Y}}^{\mathrm{t}}=\stackrel{\Phi}{=}{ }^{\mathrm{t}} ; \quad \mathrm{t}=1,2, \ldots, \mathrm{a}+1
$$

where

$$
\underline{Y}^{t}=\left[\begin{array}{c}
Y_{1}^{t} \\
Y_{2}^{t} \\
\cdot \\
\cdot \\
Y_{a+1}^{t}
\end{array}\right] ;
$$

$$
\stackrel{\Phi}{=}^{t}=\left[\begin{array}{c}
\phi_{0}^{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}\right) \\
\phi_{1}^{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}\right) \\
\cdot \\
\cdot \\
\phi_{\mathrm{d}-1}^{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}\right)
\end{array}\right] ;
$$

$$
v_{i}=\left[\begin{array}{ccc}
\phi_{0}^{t}\left(x_{1}\right), & \phi_{0}^{t}\left(x_{2}\right), & \ldots, \phi_{0}^{t}\left(x_{a+t}\right) \\
\phi_{1}^{t}\left(x_{1}\right), & \phi_{1}^{t}\left(x_{2}\right), & \ldots, \phi_{1}^{t}\left(x_{a+t}\right) \\
\vdots & & \\
\cdot & \\
\phi_{d-1}^{t}\left(x_{1}\right), \phi_{d-1}^{t}\left(x_{2}\right) & \ldots \phi_{d-1}^{t}\left(x_{a+t}\right)
\end{array}\right] .
$$

These are $a+1$ uncoupled sets of equations.

$$
\begin{aligned}
& \text { For } t=a+1 \text { the symmetry condition reduces the equations to } \\
& \mathrm{V}_{0} \underline{\underline{\underline{r}}}=\Phi_{\underline{\Phi}}{ }^{a+1}
\end{aligned}
$$

with

$$
\underline{\underline{r}}=\left[\begin{array}{l}
r_{1} \\
r_{2} \\
\cdot \\
\cdot \\
r_{a+1}
\end{array}\right]
$$

$$
V_{0}=\left[\begin{array}{l}
\phi_{0}^{a+1}\left(x_{1}\right)+\phi_{0}^{a+1}\left(x_{2 a+1}\right), \phi_{0}^{a+1}\left(x_{2}\right)+\phi_{0}^{a+1}\left(x_{2 a}\right), \ldots, \phi_{0}^{a+1}\left(x_{a+1}\right) \\
\phi_{1}^{a+1}\left(x_{1}\right)+\phi_{1}^{a+1}\left(x_{2 a+1}\right), \phi_{1}^{a+1}\left(x_{2}\right)+\phi_{1}^{a+1}\left(x_{2 a}\right), \ldots, \phi_{1}^{a+1}\left(x_{a+1}\right) \\
\cdot \\
\cdot \\
\phi_{d-1}^{a+1}\left(x_{1}\right)+\phi_{d-1}^{a+1}\left(x_{2 a+1}\right), \phi_{d-1}^{a+1}\left(x_{2}\right)+\phi_{d-1}^{a+1}\left(x_{2 a}\right), \ldots, \phi_{d-1}^{a+1}\left(x_{a+1}\right)
\end{array}\right] .
$$

V_{0} is obtained by folding $\mathrm{V}_{\mathrm{a}+1}$ along column $\mathrm{a}+1$ and adding columns. Due to the fact that the points $x_{1}, x_{2}, \ldots, x_{2 a+1}$ are symmetric around x_{a+1}, the rows containing odd numbered polynomials $\phi_{i}^{a+1}, i=1,3, \ldots$ are identically zero, also these right hand sides are identically zero. Thus, these equations read $0=0$ and can be omitted.

The remaining equations are written

$$
V *_{\underline{\underline{r}}}=\Phi *
$$

with

$$
\underline{\underline{r}}=\left[\begin{array}{l}
r_{1} \\
r_{2} \\
\cdot \\
\vdots \\
r_{a+1}
\end{array}\right] ;
$$

$$
\stackrel{\Phi *}{=}\left[\begin{array}{c}
\phi_{0}^{a+1}\left(x_{a+1}\right) \\
\phi_{2}^{a+1}\left(x_{a+1}\right) \\
\vdots \\
\phi_{2 p}^{a+1}\left(x_{a+1}\right)
\end{array}\right] ;
$$

$$
V *=\left[\begin{array}{ll}
\phi_{0}^{a+1}\left(x_{1}\right)+\phi_{0}^{a+1}\left(x_{2 a+1}\right), & \phi_{0}^{a+1}\left(x_{2}\right)+\phi_{0}^{a+1}\left(x_{2 a}\right), \ldots, \phi_{0}^{a+1}\left(x_{a+1}\right) \\
\phi_{2}^{a+1}\left(x_{1}\right)+\phi_{2}^{a+1}\left(x_{2 a+1}\right), \phi_{2}^{a+1}\left(x_{2}\right)+\phi_{2}^{a+1}\left(x_{2 a}\right), \ldots, \phi_{2}^{a+1}\left(x_{a+1}\right) \\
\cdot \\
\cdot \\
\phi_{2 p}^{a+1}\left(x_{1}\right)+\phi_{2 p}^{a+1}\left(x_{2 a+1}\right), & \phi_{2 p}^{a+1}\left(x_{2}\right)+\phi_{2 p}^{a+1}\left(x_{2 a}\right), \ldots, \phi_{2 p}^{a+1}\left(x_{a+1}\right)
\end{array}\right)
$$

where p is the integer part of $\frac{d-1}{2}$.
The number of constraint equations is

$$
n_{c}=a \cdot d+p+1
$$

Note: Even if another base is used to construct the constraint equations, the same redundancy is obtained, maybe in disguise, such that there are only $p+1$ independent equations for $r_{1}, r_{2}, \ldots, r_{a+1}$. If the redundant equations are not removed, the algorithm will break down.

All the equations can be summarized as
$\mathrm{V} \underline{\mathrm{y}} \equiv \underline{\underline{\mathrm{v}}}$,
where V is an $n_{c} \times n$ sparse matrix with special structure and
1.5 Data structure for the constraints

We store the matrices V^{*} and $V_{t}, t=1,2, \ldots, a$, in a rectangular matrix VT in the following fashion. For our description denote the transpose of VT by U. Then

Together with VT we store six integer vectors that carry information on the structure of the $n_{c} \times n$ matrix V of constraints

$$
V \underline{\underline{\mathrm{y}}}=\underline{\underline{\mathrm{v}}}
$$

For each of the n columns of U the components of the vector COLIND tell the index of the corresponding unknown in $\underline{\underline{y}}$, i.e., the colum number of the corresponding column in the matrix V .

The vectors LOWCOL and UPCOL tell for each colum of U the lower rowindex and upper rowindex for that column's location in V.

For most of the columns $\operatorname{UPCOL}(j)-\operatorname{LOWCOL}(j)=d$, but for the last $a+1$ colums of U the difference is smaller.

There are n_{c} rows in V, for each row the vectors INDV, LOWV, UPV indicate the location in the matrix U of the coefficients for the actual row. INDV gives the row number, LOWV and UPV the lower columnindex and the upper columnindex respectively.

COLIND we get the location in the matrix V.

$\operatorname{INDV}(p)$ takes values in the set $\{1, \ldots, d\}$.

1.6 Operations involving V

In the algorithms of Section 2 we need to perform the following operations with V:
(i) Calculate a vector V Z.
(ii) Calculate a vector $\mathrm{V}^{\mathrm{T}} \underline{\underline{w}}$.
(iii) Extract a colum of v^{T}.
(i) The n_{c} components of the vector $\underline{\underline{w}}=V_{\underline{\underline{z}}}$ are given by
$w(p)=\sum_{j=\operatorname{LOWV}(p)}^{\operatorname{UPV}(p)} \mathrm{U}(\operatorname{INDV}(p), J) Z(\operatorname{COLIN}(J)) ;$

$$
\mathrm{p}=1,2, \ldots, \mathrm{n}_{\mathrm{c}}
$$

(ii) The n components of the vector $\underline{\underline{z}}=\mathrm{V}^{T} \underline{\underline{w}}$ are
$\mathrm{Z}(\operatorname{COLIN}(\mathrm{I})) \equiv \sum_{\mathrm{J}=\mathrm{LOWCOL}(\mathrm{I})}^{\mathrm{UPCOL}(\mathrm{I})} \mathrm{U}(\operatorname{INDV}(\mathrm{J}), \mathrm{I}) \mathrm{w}(\mathrm{J}) ;$

$$
I=1,2, \ldots, n
$$

(iii) The p-th column of V^{T} is the p -th row of V . Thus the non-zero elements of the colum are given by
$Z(\operatorname{COLIN}(J)) \equiv U(\operatorname{INDV}(\mathrm{p}), \mathrm{J}) ;$

$$
J \equiv \operatorname{LOW}(P), \operatorname{LOWV}(p)+1, \ldots, \operatorname{UPV}(p) .
$$

In the program we have used the matrix $V T \equiv U^{T}$ instead of U so whenever the matrix element $U(p, q)$ appears above we should replace it with $\operatorname{VT}(q, p)$.

2. NUMERICAL SOLUTION

2.1 Basic Problem

The problem
$\left\{\begin{array}{l}\underset{\underline{\underline{z}}}{\min } \frac{1}{2} \underline{\underline{y}}^{T} Q \underline{\underline{y}} \\ \text { for } \\ V \underline{\underline{y}}=\underline{\underline{v}},\end{array}\right.$
with $\quad Q$ an $n \times n$ symmetric positive definite matrix,
V an $\mathrm{n}_{\mathrm{c}} \mathrm{x}_{\mathrm{n}}$ matrix,
y an n-vector, and
v an n_{c}-vector, $\quad \mathrm{n}_{\mathrm{c}} \ll \mathrm{n}$,
has the solution

$$
\underline{\underline{\underline{x}}}=Q^{-1} v^{T}\left(V^{-1} v^{T}\right)^{-1} \underline{\underline{v}}
$$

See e.g. Gill et al. (1981, Section 5.4.1) and Section 2.2 of this paper.

2.1.1 Algorithm

The solution is computed in the following sequence of steps, using subroutines from the NAG-1 ibrary.

1. Compute the Choleski factorization $R^{T} R$ of Q. Here R is an upper triangular $n \times n$-matrix. Due to the special structure of Q this is best done by the NAG-routine F01MCF.
2. Define $Z=Q^{-1} V^{T} . Z$ is an $n \times n_{c}$-matrix. The n_{c} columns of Z are the solutions of the n_{c} systems of linear equations

$$
\mathrm{QZ}=\mathrm{V}^{\mathrm{T}} .
$$

These systems are solved using the Choleski factorization of Q. This is done by the NAG-routine FO4MCF.
3. Form the symmetric, positive definite matrix
$H=V Q^{-1} V^{T}=V Z$.
H is a $n_{c} x_{c}$-matrix. Only the upper triangular part of H need to be computed.
4. Define $\underset{\underline{w}}{ }=H^{-1} \stackrel{\underline{v}}{ }$. The n_{c}-vector $\underline{\underline{w}}$ is the solution of the symmetric "small" linear system

$$
\mathrm{H} \underline{\underline{\underline{w}}}=\underline{\underline{\mathrm{v}}}
$$

which is solved by the NAG-routine F04ASF.
5. Form $\underline{\underline{\underline{u}}}=\mathrm{V}^{T} \underline{\underline{w}}$. E is an n-vector.
6. Finally compute $\underset{\underline{y}}{\underline{V}}=Q^{-1} \underline{\underline{\underline{u}}}$. This is equivalent to solving the system of linear ewuations

$$
\mathrm{Q} \underline{\underline{y}}=\underline{\underline{u}}
$$

which is done by F04MCF.

Note that this algorithm never explicitly computes the inverses of Q and H. The inverses have no structure even if Q and H have, so they should be avoided. The Choleski-factors, however, have the same kind of structure as the original matrices. For numerical calculations it is always advisable to avoid explicit inverses unless you are interested in the individual elements of them. In our algorithm we are only interested in operating with the inverse on certain given vectors.
2.2 Modified problem, some values of y given

The problem

can be solved by first enlarging the set of constraints V픈 $\underline{\underline{v}}$ with the k constraints $y_{i}=c_{i}$ to

$$
W \underline{\underline{y}}=\underline{\underline{w}},
$$

with W an $\left(n_{c}+k\right) \times n$ matrix and $\underset{=}{w}$ an $\left(n_{c}+k\right)$ vector. Then the problem is solved as in Section 2.1. This, however, may be grossly inefficient.

The following transformations give a much simpler problem.
The idea is to eliminate y_{i}, $i=n-a, \ldots, n$, from both the quadratic form and the constraints.

Introduce the following notation
$\underline{\underline{y}}=\left[\begin{array}{l}\underline{\underline{x}} \\ \underline{\underline{r}}\end{array}\right] \quad \begin{aligned} & (\mathrm{n}-\mathrm{a}-1 \text { components }) \\ & (\mathrm{a}+1 \text { components }) .\end{aligned}$

Let $k=a+1$.
Partition Q as follows (the same partition as in Appendix 1-):

$$
Q=\left(\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{12}^{T} & Q_{22}
\end{array}\right] \quad(n-k)
$$

and V as

$$
\begin{gathered}
V \equiv\left[\begin{array}{cc}
V_{A} & \left.V_{B}\right] \\
(n-k) & (k)
\end{array} .\right.
\end{gathered}
$$

The quadratic form is then

$$
\begin{aligned}
\underline{\underline{y}}^{T} \underline{\underline{y}} & =\left(\underline{\underline{x}}^{T} \underline{\underline{r}}^{T}\right)\left[\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{12} & Q_{22}
\end{array}\right]\left[\begin{array}{l}
\underline{\underline{x}} \\
\underline{\underline{r}}
\end{array}\right] \\
& =\underline{x}^{T} Q_{11} x+2 \underline{\underline{x}}^{T} \underline{\underline{b}}+\alpha
\end{aligned}
$$

with

$$
\underline{\underline{b}}=Q_{12} \stackrel{r}{\underline{r}} \text { and } \alpha=\underline{\underline{r}}^{T} Q_{22} \underline{\underline{r}}
$$

The constraints become

$$
V \underline{\underline{y}}=\left[\begin{array}{ll}
\mathrm{V}_{\mathrm{A}} & \mathrm{~V}_{\mathrm{B}}
\end{array}\right]\left[\begin{array}{l}
\underline{\underline{X}} \\
\underline{\underline{r}}
\end{array}\right]=\mathrm{V}_{\mathrm{A}} \underline{\underline{\underline{x}}}+\mathrm{V}_{\mathrm{B}} \underline{\underline{\underline{r}}}=\underline{\underline{\underline{v}}},
$$

i.e.,

$$
V_{A} \underline{x}=\underline{\underline{v}}-V_{B} \underline{\underline{r}}
$$

Due to the special form of V (cf. Sec. 1.4 - 1.5) this is equivalent to

$$
W \underline{\equiv} \equiv \mathrm{~m},
$$

where w is an $n_{W} \times(n-k)$ matrix consisting of the $f i r s t n_{W}$ rows and ($n-k$) first columns of V, m consists of the n_{W} first components of $\underline{\underline{v}}$, and $n_{W}=a \cdot d$. Thus we have dropped the constraints on I and incorporated the known values of $\underline{\underline{r}}$ into the linear and constant terms of the quadratic form.

Our problem is now

$$
\left\{\begin{array}{l}
\min \quad \frac{1}{2} \underline{\underline{x}}^{T} Q_{11} x+\underline{x}^{T} \underline{\underline{b}}+\frac{1}{2} \alpha \\
\underline{\underline{x}} \\
\text { for } \\
W \underline{\underline{x}}=\underline{\equiv} \cdot
\end{array}\right.
$$

The solution is obtained from the unconstrained problem ($\underset{\underline{\lambda}}{ }$ is a vector of Lagrange multipliers)

The solution is given by the condition

$$
\operatorname{grad}_{\underline{\underline{x}}, \underline{\underline{\lambda}}} \psi=0
$$

i.e.

$$
\left\{\begin{array}{l}
Q_{11} \underline{\underline{x}}+\underline{\underline{b}}-W^{T} \underline{\underline{\lambda}} \equiv 0 \\
W \underline{\underline{x}}-\underline{\underline{m}}=0
\end{array}\right.
$$

In partitioned form we write

$$
\left[\begin{array}{cc}
Q_{11} & -W^{T} \\
W & 0
\end{array}\right]\left[\begin{array}{l}
\underline{\underline{x}} \\
\underline{\underline{\lambda}}
\end{array}\right]=\left[\begin{array}{c}
-\underline{\underline{b}} \\
\underline{\underline{m}}
\end{array}\right]
$$

Multiply the first partition with $W Q Q_{11}^{-1}$ and subtract from the second partition.

This gives

$$
\left[\begin{array}{ll}
Q_{11} & -W^{T} \\
0 & W Q_{11}^{-1} W^{T}
\end{array}\right]\left[\begin{array}{l}
\underline{\underline{x}} \\
\underline{\underline{\lambda}}
\end{array}\right]=\left[\begin{array}{l}
-\underline{\underline{b}} \\
\underline{\underline{m}}+W Q_{11}^{-1} \underline{\underline{b}}
\end{array}\right]
$$

ie.

$$
\underline{\underline{\lambda}}=\left(W Q_{11}^{-1} \mathrm{~W}^{\mathrm{T}}\right)^{-1}\left(\underline{\underline{m}}+W \mathrm{Q}_{11}^{-1} \underline{\underline{\mathrm{~b}}}\right) .
$$

Insert this into the first partition and solve for x to get

$$
\begin{aligned}
\underline{\underline{x}} & =Q_{11}^{-1}\left[-\underline{\underline{b}}+W^{T} \underline{\underline{\lambda}}\right] \\
& =Q_{11}^{-1}\left[-\underline{\underline{b}}+W^{T}\left(W Q_{11}^{-1} W^{T}\right)^{-1}\left(\underline{\underline{m}}+W Q_{11}^{-1} \underline{\underline{b}}\right] .\right.
\end{aligned}
$$

Note that for $\underline{\underline{b}}=0$ we get the same expression as in Section 2.1.

2.2.1 Algorithm

The solution is computed in the following sequence of steps, using subroutines from the NAG-1ibrary. The only differences compared to the algorithm of Section 2.1 .1 are the steps $0,1 \mathrm{~b}$, 1 c and 5 b .
0. Compute $\underline{\underline{b}}=Q_{12} \underline{\underline{\underline{r}}}$.

1a. Compute the Choleski factorization $R^{T} R$ of $Q_{11} \cdot R$ is an upper triangular $n \times n$-matrix. Due to the special structure of Q_{11}, this is best done by the NAG-routine FO1MCF.

1b. Solve $Q_{11}=\underline{\underline{t}}$.
1c. Put $\underset{\underline{\underline{\#}}}{ }=\underline{\underline{\underline{m}}}+\mathrm{Wt}$.
2. Define $z=Q_{11}^{-1} v_{1}^{T}, Z$ is an $n \times n_{c}$ matrix. The n_{c} columns of z are the solutions of the n_{c} systems of linear equations

$$
\mathrm{Q}_{11} \mathrm{Z}=\mathrm{V}_{1}^{\mathrm{T}}
$$

These systems are solved using the Choleski factorization of Q. This is done by the NAG-routine F04MCF.
3. Form the symmetric, positive definte matrix
$\mathrm{H}=\mathrm{V}_{1} \mathrm{Q}_{11}^{-1} \mathrm{~V}_{1}^{\mathrm{T}}=\mathrm{V}_{1} \mathrm{Z}$.
H is an $n_{c} x_{c}$ matrix. Only the upper triangular part of H needs to be computed.
4. Define $\underset{\underline{\underline{W}}}{ }=\mathrm{H}^{-1} \underline{\underline{\underline{m}}}$. The n_{c}-vector $\underline{\underline{\underline{W}}}$ is the solution of the symmetric "small" linear system
$H \underline{\underline{w}}=m$,
which is solved by the NAG-routine FO4ASF.
5a. Form $\underline{\underline{u}}=V_{1}^{T} \underline{\underline{w}}$. $\underline{\underline{u}}$ is an n-vector.
5b. Put $\underset{\underline{\underline{\psi}}}{ }=-\underline{\underline{b}}+\underline{\underline{\underline{u}}}$.
6. Finally, compute $\mathbb{F}^{-1}=Q_{11}^{-1}$. This is equivalent to solving the system of 1 inear equations

$$
Q_{11 \underline{Y}}=\underline{\underline{u}},
$$

which is done by F04MCF.

3. USER INSTRUCTION

Th is instruc t ian is f or the in stallat ion on the VAX-compu ter $1 . n$ the Phy sic s Depar tmen t of the Un iver sity of Stockholm.

The data to the p rogram are p resen ted via a termina l in an in ter ac t ive session in one of the f ollowing types. The session s are hopef uly self -exp lained. Under lined items are the user's rep lies to the computer.

3.1 No coef ficents spec if ied

The prog ram is start ed by the f ir st connnand.
run glid
The no. of points in the main moving average is 2*a+1. (1<=a<=4○) Give tail length a:
3
T° he graduation method will be exact for polynomials of degree G (<=5 and <=a). Give G:
i.

The object function contains a difference of order z.
(1 <=z<=5 and $z<a$)
Give z:
1
The no. of observations is m (>2*a+z).
Give m:
22.

Coefficients of the main moving average known?(YES/NO)
.B2.
For results, see file FRI2107.50

The results from the calculation are stored inan automatically generated filewith the name

FRI<G><Z><2a+1>.<m>
where < > means the character of the numerical value of the enclosed quantity.

The session above generated the result

95681	31121	982	-7533
12956	27224	21356	9656
-12956	31605	39794	29177
4319	30636	42668	3740
0	-20586	4951	29177
0	0	-9751	9656
0	0	0	-7533

TRACE= $0.903714 E+\odot 1$

The table contains the unknowns $Y_{j}^{t}, j=1,2, \ldots, a+1, t=1,2, \ldots, a+1$, arranged in the way described in Section 1.2, i.e., the first columncontains $Y_{1}^{1}, Y_{2}^{1}, \cdots, Y_{4}^{1}$ and the last column contains $r_{1}, r_{2}, \ldots, r 7^{\prime \prime}$ Also TRACE $=$ Qi.

3.2 The coefficients of the main moving average specified

 of the main moving average must be prepared before the program is executed.

In the file the coefficients must be stored as
$r<1>$
$r<2>$
$r<a+1>$
i.e., sequentially with one value on each row.

The numbers must contain a decimal point, 1.e., even if the value is 5500 it must be given as 5500.0.
If $r<a+l>$ is greater than 1 the program assumes that the coefficients in the file are scaled by the factor $10^{* *}$ I, where I is a positive integer. In that case the file should be terminated with one row containing the integer I.

Example RC. DAT contains

$$
\begin{aligned}
& -7533-0 \\
& 9656.0 \\
& 29177.0 \\
& 37401.0 \\
& 5
\end{aligned}
$$

A session is started with the first command below.
runglid
The no. of points in the main moving average is $2 * a+1$. (1<=a<=40)
Give tail length a:
I.

The graduation method will be exact for polynomials of degree G (<=5 and <=a). Give G:
2
The object function contains a difference of order z.
(1 <=z<=5 and $z<a$)
Give z :
1
The no. of observations is m (>2*a+z).
Give m:
50
Coefficients of the main moving average known?(YES/NO)
Give the name of the file of the r-coefficients:
rc! '.dat
For results, see file FST2107.KFF

The results are again stored inan automatically generated file with the name

FST<G><Z><2a+1>.KFF
The session above generated the result

95681	31121	982	-7533
12956	27224	21355	9656
-12956	31605	39794	29177
4319	30636	42668	3740
0	-20586	4951	29177
0	0	-9751	9656
0	0	0	-7533

with the same organization as in Section 3.1.

4. INSTRUCTIONS FOR INSTALLATION AND MODIFICATION

As the program uses several NAG-library routines, the source files for the main program and all the subroutines should be compiled, linked and loaded together with the appropriate routines from the NAG-library, into an executable module. 0n the VAX we have named this module GLID.

The program is written in FORTRAN 77, but mast of the program 1s 1 n accordance with the rules of standard FORTRAN.

Only the input routine GIVEDATA and the output routine OUTCOEFF use non-standard FORTRAN. In these routines the character handling facilities of FORTRAN 77 are used. Fur thermore, same system dependent file handling 1s performed ere.

If the program is installed on other systems, these two routines may have to be changed.

5. PROGRAM ORGANIZATION AND LISTING

5. The main program

The main modules of the program interact as follows.

The logical variable GIVENR is used to select between the two algorithm paths described in Sections 2.1.1 and 2.2.1.

The following three pages contain a listing of the main program.

REAL*8 VT (2461, 6), Z(2461, 1) , A(128000) , DIAG(2461) , H(246, 246)
REAL*8SUM, R (11) , WK1 (246) , WK2 (246) , Y (246) , B(2461) , QSUM, V (246)
INTEGER ND, NA, NZ, M, LOWV (246),UPV(246),INDV (246), COLIN(2461)
INTEGER NROW (2461) , UP, LOWCOL (2461) , UPCOL(2461)
LOGICAL GIVENR
CALL GIVEDATA(NA, ND, NZ, M, R, GIVENR)
CALL SYSTEM (A, NROW, NA, NZ, M, LAL, NOEKV, GIVENR, R, B)
CALL CONSTRAINT (VT, V, ND, NA, NCON, LOWV, UPV, INDV, LOWCOL, UPCOL, * COLIN, GIVENR)

CALL FOIMCF (NOEKV, A, LAL, NROW, A, DIAG, I FAIL)
IF (IFAIL NE . 0) WRITE (5,91) IFAIL
91 FORMAT (${ }^{\prime}$ IFAIL〒I5, 'I FOMCF)
IF(. NOT . GIVENR) GOTO 190
IF THE R-COEFFICIENTS ARE GIVEN WE SOLVE
Q<1, 1>Z=B $\quad(Q<1,1>$ IS THE UPPER LEFT PARTITION OF Q)
FOLLOWED BY CALCULATION OF V= (VT)**T*Z+V
DO $110 \mathrm{~J}=1$, NOEKV
$Z(J, 1)=B(J)$
CONTINUE
NZDIM=2461
ISELECT=1
NR=1
CALL F04MCF (N0EKV, A, LAL, DIAG, NROW, NR, Z, NZDIM, ISELECT, Z,
NZDIM, IFAIL)

DO 160 IV=1, NCON
SUM=0 . 0
INDEX=INDV (IV)
LOW=LOWV (IV)
UP=UPV (IV)
DO 150 J=LOW, UP SUM=SUM+VT
(J , INDEX)*Z(COLIN(J), 1)
CONTINUE
$V(I V)=S U M+V(I V)$
CONTINUE

190 CONTINUE

C
CONSTRUCTION OF PROJECTED MATRIX $\mathrm{H}=(\mathrm{NT})^{* *} \mathrm{~T}^{*} \mathrm{Q}^{* *}(-1)^{*} \mathrm{~V} T$
DO 500 IZ=1, NCON
DO $200 \mathrm{~J}=1$, NOEKV
$Z(J, 1)=0.0$
CONTINUE

```
        INDEX=INDV (IZ)
        LOW=LOWV (IZ)
        UP=UPV (IZ)
        DO 300J=LOW, UP
        Z(COLIN (J),1 )=VT (J,INDEX)
    CALL F04MCF (NOEKV, A, LAL, DIAG,NROW,NR, Z,NZDIM, ISELECT, Z,
                NZDIM, IFAIL)
    IF (IFAIL NE . 0 ) WRITE ( 5,311 ) IFAIL
311 FORMAT ('IFAIL I FOMCF= ,I5)
    DO 400IV=IZ, NCON
        SUM=0. 0
        INDEX=INDV (IV)
        LOW=LOWV (IV)
        UP=UPV (IV)
        D0 390J=LOW, UP
            SUM=SUM+VT (J,INDEX)*Z (COLIN (J),1 )
        CONTINUE
            H(IZ, IV) \(=\) SUM
400 CONTINUE
500 CONTINUE

C SOLVE \(H^{*} Y=V\)
NHDIM=246
CALL F04ASF(H,NHDIM,V,NCON, Y, WK1 ,WK2,IFAIL)
IF (IFAIL NE .0) WRITE \((5,591)\) IFAIL
591 FORMAT ('IFAIL= ,I5 'I FOAASF )
C COMPUTE THE VALUE OF THE QUADRATIC FORM
QSUM=0
DO \(600 \mathrm{I}=1\),NCON QSUM=QSUM+V (I ) \({ }^{*}\) (I)
600 CONTINUE
C FORM THE VECTOR Z=VT*Y
DO \(1500 \mathrm{I}=1\), NOEKV
LOW=LOWCOL (I)
UP=UPCOL (I)
SUM=0
DO 1400J=LOW, UP
INDEX=INDV (J)
SUM \(=\) SUM \(+V T\) ( I, INDEX \() *\) ( J\()\)
1400
CONTINUE
Z (COLIN (I), 1 ) FUM
1500
CONTINUE

IF (.NOT.GIVENR) GOTO 1560 IF THE R-COEFFICIENTS ARE GIVEN WE CALCULATE Z=Z-B

DO 1550 I=1, NOEKV \(Z(I, 1)=Z(I, 1)-B(I)\) CONTINUE

1560 CONTINUE
C SOLVE Q*Z=Z
ISELECT=1
NZDIM=2461
NR=1
CALL F04MCF (NOEKV, A, LAL,DIAG,NROW,NR, Z,NZDIM, ISELECT,Z,NZDIM, IFAIL)
IF (IFAIL.NE.0) WRITE \((5,1591)\) IFAIL
1591
FORMAT ('IFAIL= ,I5, 'I ANROP 2 AV FOAMCF )

IF (.NOT . GIVENR) GOTO 1800
C WHEN THE R-COEFFICIENTS ARE GIVEN CONCATENATE THOSE TO THE
C SOLUTIONVECTOR BEFORE PRINTING.
ILOW=NOEKV+1 NOTOT=NOEKV+NA+1 DO 1700 I=ILOW, NOTOT Z(I, 1 ) \(=\) R(I-NOEKV)
1700 CONTINUE

1800 CONTINUE
CALL OUTCOEF (Z, QSUM, NA, ND, NZ, M, LOWV, UPV, COLIN, GIVENR)
END

The subroutine SYSTEM and the subprograms it uses are listed below.

SUBROUTINE SYSTEM(A, NROW, NA, NZ, M, LAL, NOEKV, GIVENR, RCOEF, B)
REAL*8A(1),B(1), RCOEF(1),SL
INTEGER NROW (1), NA, NZ, LAL, NOEKV, M
INTEGER T(40, 40), Q21(41,2420), Q22(41,41), ROWNO, ROWT, COLINDEX
LOGICAL GIVENR
CALL TMATRIX (T,NA,NZ )
CALL QMAT21 (Q21,NA,NZ)
CALL QMAT22(Q22,NA,NZ,M)
C STORE THE MATRIX Q IN THE VECTOR A ACCORDING TO THE
C STORAGE SCHEME FOR THE NAG-ROUTINE F01.
NEXTirrnEX=1
C TREAT THE FIRST NA+1 DIAGONAL BLOCKS OF Q<1,1>
NA1 =NA +1
D0 500IP=1,NA1
LOW= (IP-1 )*NA
00400 I=1, NA
NSUB=NZ+1
IF (I.LE.NZ)NSUB=I
NROW (LOW+I) =NSUB
JLOW=I - NSUB+1 D0 300 J=JLOW, I.
A (NEXTINDEX)=2*DFLOAT (T(I, J))
NEXTINDEX=NEXTINDEX+1
CONTINUE
\(300 \quad\) CONT
500 CONTINUE
C CONTINUE WITH THE DIAGONAL BLOCKS NA+2,NA+3, ••2*NA OF Q<1, 1>
ROWNO=NA
NA2=NA+2
NTW0=2*NA
DO 1500 IP=NA2,NTWO
LOW=LOW+ROWNO
ROWNO=ROWNO-1
ROWT=IP -NA
DO 1400I=1, ROWNO
NSUB=NZ+1
IF (ROWT. LE. NZ ) NSUB=ROWT
JLOW=ROWT-NSUB+1
IF (JLOW.LT. (IP-NA)) JLOW=IP-NA
NROW (LOW+I) =ROWT - JLOW +1
DO \(1300 \mathrm{~J}=\mathrm{JLOW}\), ROWT
```

 A (NEXTINDEX)=2*DFLOAT (T(ROWT, J))
 NEXTINDEX=NEXTINDEX +1
 CONTINUE
 ROWT=ROWT+1
 CONTINUE
 CONTINUE
 C REMEMBER THE NUMBER OF STORED ELEMENTS OF Q<1,1>
KLAL=NEXTINDEX-1
C DECODING OF Q21 AND Q22
NOROW=NA+1
NCOL=NA*(3*NA+1)/2
DO 2500I=1,NOROW
COLINDEX=1
DO 2100 J=1 ,NCOL
IF (Q21 (I, J).NE .O) GOTO 2101
COLINDEX=COLINDEX+1
CONTINUE
2100
CONTINUE
NROW (NCOL+I)=NCOL+1 -COLINDEX+I
IF (COLINDEX.GT.NCOL) GOTO 2201
DO 2200 J=COLINDEX,NCOL
A (NEXTINDEX)=DFLOAT(Q21(I, J))
NEXTINDEX=NEXTINDEX+1
2200
CONTINUE
2201
CONTINUE
DO 2300 J=1, I
A (NEXTINDEX)=DFLOAT (Q22(I, J))
NEXTINDEX=NEXTINDEX+1
2300
CONTINUE
2500
CONTINUE
LAL=NEXTINDEX-1
NOEKV $=$ NCOL+NOROW
IF (. NOT . GIVENR) GOTO 3500
C IF THE R-COEFFICIENTS ARE GIVEN THE SIZE OF THE MATRIX IS
C REDUCED AND THE VECTOR $B=Q<1,2>R$ IS CALCULATED.
LAL=KLAL
NOEKV=NOEKV - (NA+1)
NA1 =NA+1
IUP $=N A^{*}\left(3^{*} N A+1\right) / 2$
DO 3000I=1, IUP
SL=0
DO 2900 J=1, NA1
SL=SL+Q21 (J, I) *RCOEF (J)
CONTINUE
$B(I)=S L$
3000
CONTINUE
3500 CONTINUE

```

RETURN
END
```

 SUBROUTINE QMAT22(Q22,NA,NZ,M)
 INTEGER Q22(41,1),S1(81,81),S2(81,81),K22(81,81),PZ(41),Q,QUP
 INTEGER QLOW,NA,NZ,M
 CALL FACTZ(NZ,PZ)
 IUP=2*NA+1 -NZ
 D0 500 IP=1,IUP
 IPOS=1
 QUP=NZ-1
 DO 400 Q=0, QUP
 ISUM=0
 JUP=NZ-Q
 DO 300 J=1 ,JUP
 ISUM=ISUM+J*PZ(J)*PZ(J+Q)
 CONTINUE
 S1(IP+Q,IP)=IPOS*ISUM
 S1(IP,IP+Q)=S1(IP+Q,IP)
 IPOS=-IPOS
 4 0 0 ~ C O N T I N U E
QUP=2*NA+1-IP
DO 450Q=NZ,QUP
S1(IP+Q,IP)=0
S1(IP,IP+Q)=0
4 5 0 ~ C O N T I N U E
5 0 0 ~ C O N T I N U E ~
ILOW=2*NA+2-NZ
IUP=2*NA+1
DO 700 IP=ILOW, IUP
QUP=2*NA+1 -IP
DO 600Q=0,QUP
S1(IP+Q,IP)=0
S1(IP,IP+Q)=0
6 0 0 ~ C O N T I N U E
700CONTINUE
CALL FACTORIAL (NZ,PZ)
MFACT=M-2*NA-NZ
IUP=2*NA+1
DO 1500 IP=1,IUP
DO 1300Q=1,NZ
INDEX=IP+Q
IF (INDEX.GT.IUP)GOTO }129
S2(IP+Q,IP)=MFACT*PZ(Q)
S2(IP,IP+Q)=S2(IP+Q,IP)
1290
CONTINUE
1 3 0 0
CONTINUE
S2(IP,IP)=MFACT*PZ(NZ+1)
QUP=2*UA+1 -IP
QLOW=NZ+1
DO 1400Q=QLOW,QUP
S2(IP+Q,IP)=0
S2(P,IP+Q) =0
CONTINUE
1500 CONTINUE

```
```

 IUP=NA+1
 JUP=2*NA+1
 :DO 1700I=1,IUP
DO 1600 J=1,JUP
K22(I, J)=S2(I, J)+2*S1(I, J)
1600
CONTINUE
1700 CONTINUE
DO 2500 I=1,NA
DO 2400J=1,I
DO 2700J=1,NA
Q22(NA+1,J)=K22(NA+1,J)+K22(NA+1, 2*NA+2-J)
CONTINUE
Q22(NA+1,NA+1)=K22(NA+1,NA+1)
RETURN
END
SUBROUTINE TMATRIX (T,NA,NZ)
INTEGER T (40,1),KF (40)
CALL FACTZ(NZ,KF)
DO 500I=1,NA
DO 400 J=1,I
ISUM=0
ISIGN=1
IJ=I+J
IF ((IJ/2)*2.NE.IJ) ISIGN=-1
DO 300K=1 ,NA
IMK=I-K
IF (IMK.GT.NZ)IFACT1=0
IF (IMK.LT.0) .IFACT1=0
IF (IMK.EQ.0) IFACT1=1
IF (IMK.GT.O .AND.IMK.LE.NZ)IFACT1=KF(IMK)
JMK=J-K
IF (JMK.GT.NZ)IFACT2=0
IF (JMK.LT.0) IFACT2=0
IF (JMK.EQ.0) IFACT2=1
IF (JMK.GT.O .AND. JM.X.LE.NZ) IFACT2=KF(JMK)
ISUM=[SlJM+IFACT1 *IFACT2
300 CONTINUE
T(I,J)=ISIGN*ISUM
4 0 0 ~ C O N T I N U E
5 0 0 ~ C O N T I N U E ~

```

RETURN
END
```

 SUBROUTINE QMAT21 (Q21,NA,NZ)
 INTEGER Q21 (41,1),U(40,6),R (40,15),K12 (2420,81),PSI (80)
 CALL FACTORIAL(NZ,PSI)
 CALL UVECTORS (U,NZ,NA,PSI)
 CALL RMATRICES(U,R,NZ,NA)
 CALL KMAT1 2(K1 2,R,NZ,NA)
 IUP=NA*(3*NA+1)/2
 DO 200 I=1 ,IUP
 DO 100 J=1,NA
 Q21(J, I) 2* (K1 2 (I, J)+K12(I,2*NA+2-J))
 100 CONTINUE
Q21(NA+1 ,I)=2*K12(I,NA+1)
200 CONTINUE
RETURN
END
SUBROUTINE FACTORIAL (N,KF)
INTEGER N,KF (1)
C CALC OF FACTORIALS (2NOVER N),(2NOVER N-1),\cdots(2N OVER 0)
C RESULT STORED AS KF(J) = (-1)**J *(2N OVER N-J) FOR .J=1,2\cdots`N
C KF (O)= (2N OVER N) IS STORED IN KF(N+1)
NR= (N/2)*2-N
ISIGN=1
IF (NR.NE.0) ISIGN=-1
KF (N)=ISIGN
N1=N-1
DO 100K=1,N1
INDEX=N-K+1
KF (INDEX-1)-KF (INDEX)* (2*N-K+1)K
100 CONTINUE
KF (N+1)KKF (1)* (N+1)/N
IF (KF (N+1).LT .0) KF (N+1 F-KF (N+1)
RETURN
END

```
```

 SUBROUTINE FACTZ(N,KF)
 INTEGER KF(1)
C CALC OF FACTORIALS (N OVER I)I=1,\cdotsN
C KF(I)= (N OVER I) I=1,\cdotsN
KF (1) =N
IF (N.EQ.1)GOTO 200
DO 100K=2,N
KF (K)=KF(K-1)* (N-K+1)/K
100CONTINUE
200 CONTINUE
RETURN
END
SUBROUTINE UVECTORS (U,NZ,NA,PSI)
INTEGER U(40,1),PSI(1)
C CALC OF THE VECTORS U(J) J=1, \cdots • Z
C U(J) = (0, . 0,PSI (NZ),\cdotsPPSI (J))}\mp@subsup{}{}{*}*
C THE VECTORS ARE STORED COLUMNWISE IN THE MATRIX U
C AS U= (U(1),U(2),\cdotsU(NZ))
DO 1000 J=1 ,NZ
NUP=NA+J-NZ-1
DO 100I=1,NUP
U (I, J)=0
NLOW=NUP+1
INDEX=NZ
DO 200 I=NLOW,NA
U(I,J)=PSI(INDEX)
INDEX=INDEX-1
CONTINUE
1000 CONTINUE
RETURN
END

```
```

 SUBROUTINE RMATRICES(U,R,NZ,NA)
 INTEGER U(40,1),R(40,1)
 C CALC OF R-MATRIX
c R(P)=(U(P),U(P-1),\cdotsUU(1)) P=1,2,\cdotsNZ
C THE MATRICES ARE STORED IN THE LARGE R-MATRIX
C R=(R(1),R(2),\cdots R (NZ))
JCOLR=0
DO 500 JP=1, NZ
DO 400 J=1 , JP
JCOLR=JCOLR+1
JCOLU=JP - J+1
DO 300I=1,NA
R (I,JCOLR)=U (I,JCOLU)
CONTINUE
400 CONTINUE
'100 CONTINUE
RETURN
END
SUBROUTINE KMAT1 2 (\$1 2,R,NZ,NA)
INTEGER K12(2420,1),R(40,1),RCOL
C CALC OF THE MATRIX K12
IUP=NA*(NA+1)+NA*(NA-1)/2
JUP=2*NA+1
DO 100 I=1,IUP
D0 100 J=1, JUP
K12(I, J)=0
100 CONTINUE
DO 500 IP=1 ,NZ
KROWLOW= (IP-1)
RCOL=IP(IP-1)/2
DO 400 J=1, IP
RCOL=RCOL+1
KROW=KROWLOW
DO 300 I=1,NA
KROW=KROW+1
K12(KROW, J)=R(I,RCOL)
300 CONTINUE
400 CONTINUE
500 CONTINUE

```
```

 IPLOW'=NZ+1
 IPUP=NA+1
 D0 1500IP=IPLOW, IPUP
 KROWLOW= (IP-1)*NA
 RCOL=(NZ-1)*NZ/2
 JLOW=IP -NZ+1
 JUP=JLOW+NZ-1
 DO 1400 J=JLOW, JUP
 RCOL=RCOL+1
 .KROW=KROWLOW
 DO 1300I=1,NA
 KROW=KROW+1
 K12(.KROW, J)=R (r ;acoL)
 CONTINUE
 CONTINUE
 1400
1500 CONTINUE
IPLOW=NA+2
IPUP=2*NA
DO 2500IP=IPLO ,IPUP
NY=IP-(NA+1)
KROWLOW= (NA+1)*NA+ (NY-1)*NA-NY* (NY-1)/2
RCOL= (NZ-1)
JLOW=IP-NZ+1
JUP=JLOW+NZ-1
DO 2400J=JLOW, JUP
RCOL=RCOL+1
KROW=KROWLOW
ILOW=IP-NA
DO 2300I=ILOW,NA
KROW=KROW+1
K1 2(KROW,J)=R (I,RCOL)
CONTINUE
2300
CONTINUE
2400
2500 CONTINUE
RETURN
END

```
5.3 The subroutine CONSTRAINT
```

 SUBROUTINE CONSTRAINT(V,HL,D, A ,NOCONSTR,LOWV,UPV, INDV,
 * LOWCOL, UPCOL, COLIN,GIVENR)
 REAL*8 V (2461,1),HL(1)
 INTEGER D,A,LOWV (1),UPV(1),INDV(1),LOWCOL(1),UPCOL(1),COLIN(1)
 LOGICAL GIVENR
 INTEGER LOW,LOWHL,UP,I,J,IP
 REAL*8 FI (81,6)
 LOWHL=O
 UP=0
 LOW=1
 DO 300 IP=1,A
 NROW=A +IP
 UP=UP+NROW
 CALL ORTBASIS(NROW,D,FI)
 DO 200 I=1,D
 INDEX=1
 DO 190 J=LOW,UP
 V(J,I)=FI(INDEX,I)
 INDEX=INDEX+1
 CONTINUE
 LI=LOWHL+I
 HL(LI)=FI(IP,I)
 LOWV (LI)=LOW
    ```
            \(\operatorname{UPV}(L I)=U P\)
            INDV(LI) \(=I\)
200 CONTINUE
    DO 250 J=LOW,UP
        CALL NEWINDEX (J,IP,A, JNEW)
        COLIN ( J ) = JNEW
        LOWCOL ( J ) \(=\mathrm{LOWHL}+1\)
        UPCOL \((J)=L O W H L+D\)
250 CONTINUE
    LOWHL=LOWHL + D
    LOW \(=\mathrm{L} O W+\) NROW
300 CONTINUE
```

 LOW=UP+1
 UP=LOW+A-1
 NROW=2*A+1
 CALL ORTBASIS(NROW,D,FI)
 IVCOL=1
 DO 500 I=1 ,D
 INDEX=1
 IF ((I-(I/2)*2).EQ.0) GOTO 495
 DO 490 J=LOW, UP
 V (J, IVCOL)=FI (INDEX, I)+FI (2*A+2 - INDEX, I)
 INDEX= INDEX+1
 CONTINUE
 LI=LOWHL+IVCOL
 HL (LI)=FI (A+1,I)
 V (UP+1,IVCOL)=FI(A+1,I)
 LOWV (LI), LOW
 UPV (LI)=UP+1
 INDV (LI FIVCOL
 IVCOL=IVCOL+1
 CONTINUE
 495 CONTIN
NOCONSTR=LOWHL+ IVCOL-1
UP=UP+1
DO 600 J=LOW,UP
COLIN (J)=J
LOWCOL (J)=LOWHL+1
UPCOL(J)=NOCONSTR
6 0 0 CONTINUE
IF (GIVENR) NOCONSTR=A *D
RETURN
END
SUBROUTINE ORTBAS IS(M,D,FI)
REAL*S FI(81,1),GAMMA, BETA, CAPPA,SUM, SUMX,TERM,SUMNX
INTEGER D,D1
C FIND AN ORTHOGONAL BASIS FOR THE SPACE OF POLYNOMIALS OF
C DEGREE LESS THAN D. THE ORTOGONALITY IS WITH RESPECT TO
C THE INNERPRODUCT
C $\langle F, G\rangle=f(1)^{\star} g(1)+\cdots \quad f(M) * g(M)$
C THE RESULT IS A SET OF ORTHOGONAL VECTORS STORED COLUMNWISE
C IN THE UPPER LEFT CORNER OF THE MATRIX FI.

```
```

 SUM=0
 SUMX=0
 SUMNX=0
 GAMMA= (M+1)/2DO
 CAPPA=SQRT (M/1DO)
 DO 100I=1,M
 FI(I,1)=1 DO/CAPPA
 FI(I, 2)=1-GAMMA
 TERM=FI (I,2)*FI(I,2)
 SUM=SUM+TERM
 SUMX=SUMX+I*TERM
 SUMNX=SUMNX+I *FI(I,1)*FI(I,2)
 100CONTINUE
D1=D-1
DO 500 N=2,D1
CAPPA=SQRT (SUM)
BETA=SUMX/SUM
GAMMA=SUMNX/ CAPPA
SUM=0
SUMX=0
SUMNX=0
DO 400I=1,M
FI(I,N)=FI(I,N)/CAPPA
FI(I,N+1)=(I-BETA)*FI(I,N)-GAMMA*FI(I,N-1)
TERM=FI (I,N+1)**2
SUM=SUM+TERM
SUMX=SUMX+TERM*I
SUMNX=SUMNX+I *FI(I,N+1)*FI(I,N)
CONTINUE
400 CONTI
RETURN
END
SUBROUTINE NEWINDEX (ININD,T,A,OUTIND)
INTEGER ININD,T,A,OUTIND
J=L IND-(T-1)*A-T*(T-1)/2
IF(J.LT. (A+2))GOTO 100
OUTIND=(-1)*A+T- (J-A)* (J-A-1)/2
RETURN
100 CONTINUE
OUTIND= (J-1)*A+T
RETURN
END

```

\subsection*{5.4 Input and output subroutines}

SUBROUTINE GIVEDATA (A, D, Z,M,R,GIVENR)
REAL*8R(1)
INTEGER A, D, Z, M, Al ,G
LOGICAL GIVENR
CHARACTER*1 ANS
CHARACTER*15 INFILE
WRITE \((5,11)\)
11 FORMAT ( "The no. of points in the main moving average is 2*a+1.' * ,/," ( \(<=a<=40\) ) ,/, ' Give tail length \(a:\) )

READ \((5,15)\) A

15 FORMAT(I)
 * ,/,' degree G (<=5 and <=a) . ,/, ' Give G: )
\(\operatorname{READ}(5,15)\) G
\(\mathrm{D}=\mathrm{G}+1\)
WRITE \((5,31)\)
31 FORMAT ("The object function contains a difference af order z.', * /, ( \(1<=z<=5\) and \(z<a\) ) ,/,' Give z: )

READ \((5,15) \mathrm{Z}\)
WRITE (5, 41)
41 FORMAT ('The no. of observations is m ( \(\mathrm{P}^{2 *} \mathrm{a}+\mathrm{z}\) ).,/, ' Give m: ) \(\operatorname{READ}(5,15) \mathrm{m}\)

WRITE (5,101)
101 FORMAT ("Coefficients af the main moving average known? (YES/NO) ) READ \((5,102)\) ANS
102 FORMAT (A)
IF (ANS EQ . Y ' OR . ANS EQ . y ' OR. ANS EQ. J ' OR. ANS EQ . j )
* GOTO 200

GOTO 1000

\section*{200 CONTINUE}

WRITE \((5,208)\)
208 FORMAT ("Give the name of the file of the r-coefficients: )
c In the file the coefficients must be stored as
c \(\quad r<1>\)
C \(\quad r<2>\)
c i.e. sequentially with one value on each row.
c The numbers must contain a decimal point, i.e. even if the
c value is 5500 it must be given as 5500.0.
c If \(r<a+1>\) is greater than 1 the program assumes that the
C coefficients in the file are scaled by the factor 10**I where I is a positive integer. In that case the file is terminated with one row containing the integer I.

READ \((5,209)\) INFILE
20 FORMAT (A)
OPEN (UNLT=9,FILE=INFILE,STATUS= OLD )
GIVENR=. TRUE.
A1 =A+1
READ (9, 302) (R(I), I=1,A1 )
302 FORMAT (F)
IF (R(A1) .LE.1D0 ) GOT0 400
READ \((9,307)\) ISCALE
307 FORMAT (I)
MSCALE=f
DO 320I=1, ISCALE
320 MSCALE=MSCALE*10
DO \(350 \mathrm{I}=1\),A1
350 R (I) \(=\) R(I)/MSCALE

400 CONTINUE
1000 CONTINUE
RETURN
END
```

SUBROUTINE OUTCOEF(X,QSUM,A,D,Z ,M,LOWV,UPV,INDROW,GIVENR)
REAL*8X(1),QSUM
INTEGER A, D,Z,M, LOWV (1),UPV (1),INDROW (1)
INTEGER A1,A2,0UTMAT (81,41)
LOGICAL GIVENR
CHARACTER*1 1 RFILE
CHARACTER *1GP

```
C CREATE A FILENAME AND FILE FOR OUTPUT OF RESULTS
C !THIS IS NOT STANDARD FORTRAN !
    LED=Z*100+2*A+1
    ND=D-1
    IF (ND EQ D) GP= 0 '
    IF (ND.NE.0) WRITE (GP , 5) ND
5 FORMAT (I1 )
    IF (.NOT.GIVENR) WRITE(RFILE,10)GP, LED, M
    IF (GIVENR) WRITE(RFILE,20)GP, LED
10 FORMAT(FRI ,A1,I3, .I3)
20 FORMAT (FST , A1,I3, .KFF )
    OPEN (UNIT=8,FILE=RFILE,STATUS= NEW )

C PREPARE DATA FOR PRINTING
A1 \(=A+1\)
A2 \(=2^{*} A+1\)
DO \(200 \mathrm{I}=1\), A 2 D0 190 J=1, A1 OUTMAT \((\mathrm{I}, \mathrm{J})=0\)
190 CONTINUE
200 CONTINUE

DO \(400 \mathrm{~J}=1\), A 1
IND \(=(J-1) * D+1\)
LOW=LOWV (IND)
UP=UPV (IND)
DO 300 I=LOW, UP

300 CONTINUE
400CONTINUE
DO 500I=1, A
OUTMAT (2*A+2-I, A1 )=0UTMAT (I, A1 )
500 CONTINUE
DO \(700 \mathrm{I}=1, \mathrm{~A} 2\)
WRITE \((8,709)\) (OUTMAT (I, J), J=1, A1 )
700 CONTINUE
709 FORMAT (11 I8)
WRITE \((S, 709)\)
IF ( NOT .GIVENR) WRITE ( \((, 719)\) QSUM
719 FORMAT ( \({ }^{(T R A C E} \overline{\text { E }}\) E15.6)
WRITE (S, 809) RFILE
809 FORMAT (• For results, see file ,'A11)
RETURN
END

\section*{APPENDIX 1. Contruction of Q}

Here is a safe way of stepwise construction of the matrix \(Q\). This algorithm was given by Hoem (1983).

Let
\(T_{i j} \equiv(-1)^{i+j} \underset{k=1}{a}(\underset{i=k}{z})(\underset{j-k}{z})\),
for \(i=1,2, \ldots, a\), and \(j=1,2, \ldots, a\), and let
\[
\begin{aligned}
& F_{p}=T, \quad \text { for } p=1,2, \ldots, a+1, \\
& F_{p}=\left\{T_{i j}: i, j=p-a, p-a+1, \ldots, a\right\} \quad \text { for } p=a+2, \ldots, 2 a .
\end{aligned}
\]

Then define
\[
K_{11}=\operatorname{diag}\left\{F_{1}, F_{2}, \ldots, F_{2 a}\right\}
\]

Note that \(K_{11}\) has a dimension \(\frac{1}{2} a(3 a+1) \times \frac{1}{2} a(3 a+1)\). Let
\[
\psi_{j}=(-1)^{j}\binom{2 z}{z-j}
\]
for integer \(j\), and note that \(\psi_{j}=0\) for \(j>z\). Define
\[
\underline{\underline{u}}_{j}=\left(\psi_{j+a-1}, \psi_{j+a-2}, \ldots, \psi_{j}\right)^{T} \quad \text { for } j=1,2, \ldots, z
\]

Then \(\underline{\underline{u}}_{\mathrm{j}}\) is a column vector with a components. Also let
\[
R_{p}= \begin{cases}\left(\underline{\underline{u}}_{p}, \underline{\underline{u}}_{p-1}, \ldots, \underline{\underline{u}}_{1}\right), & \text { for } p=1,2, \ldots, z-1, \\ \left(\underline{\underline{u}}_{z}, \underline{\underline{u}}_{z-1}, \ldots, \underline{\underline{u}}_{1}\right), & \text { for } p \equiv z, z+1, \ldots, 2 a+1 .\end{cases}
\]

Note that
\[
\underline{\underline{\psi}}_{\mathrm{j}}=\left(0, \ldots, \underline{0}, \psi_{z}, \psi_{z-1}, \ldots, \psi_{j}\right)^{T},
\]
with \(a+j-z-1\) leading zeros, so a lot of the elements of each \(R_{p}\) are 0 .

Now let \(C_{p}=R_{p}\) for \(p=1,2, \ldots, a+1\), while for \(p>a+1\) we define \(C_{p}\) as \(R_{p}\) with the \(p-a-1\) first rows omitted:
\[
C_{p}=\left\{\begin{array}{l}
R_{p}, \quad \text { for } p=1,2, \ldots, a+1, \\
\left\{\begin{array}{l}
\left.\left(R_{p}\right)_{i j} ; \quad \begin{array}{l}
i=p-a, p-a+1, \ldots, a ; \\
j=1,2, \ldots, z
\end{array}\right\}, \text { for } p \equiv a+2, \ldots, 2 a .
\end{array} .\right.
\end{array}\right.
\]

Now define

Here \(O(m, n)\) is an \(m \times n\) matrix all of whose elements are zero. Then \(\vec{C}_{p}\) has \(2 a+1\) columrs.

\section*{Let}
\[
\mathrm{K}_{12}=\left[\begin{array}{l}
\overline{\mathrm{c}}_{1} \\
\overline{\mathrm{c}}_{2} \\
\cdot \\
\vdots \\
\overline{\mathrm{c}}_{2 \mathrm{a}}
\end{array}\right] \text {, and } \mathrm{K}_{21}=\mathrm{K}_{12}^{\mathrm{T}}
\]

Then \(K_{12}\) is \(a \frac{1}{2} a(3 a+1) \times(2 a+1)\) matrix. Let \(S_{1}\) be a symmetric \((2 a+1) \times(2 a+1)\) matrix with elements
\[
\left(S_{1}\right)_{p, p+q}=\left\{\begin{array}{l}
(-1)^{q} \sum_{j=1}^{z-q} j\left({\underset{j}{z}}_{z}\right)\binom{z}{j+q}, \text { for } q=0,1, \ldots, z-1, \\
0, \quad \text { for } q=z, z+1, \ldots, 2 a+1-p,
\end{array}\right.
\]
when \(\mathrm{p}=1,2, \cdots, 2 \mathrm{a}+1-\mathrm{z}\). For \(\mathrm{p}=2 \mathrm{a}+2-\mathrm{z}, \cdot \cdot \cdot, 2 \mathrm{a}+1\), and \(q=0,1, \ldots, 2 a+1-p,\left(S_{1}\right)_{p, p+q}\) is again defined by the above summation formula. Also let \(\mathrm{s}_{2}\) be a symmetric (2a+1)x(2a+1)matri.x defined by
\[
\left.\left(e_{2}\right) p, p+q=(m-2 a-z)(-1)<; q\right),
\]
for \(q=0,1, \cdots, 2 a+1-p\), and \(p=1,2, \cdots, 2 a+1\). Note that
\(\left(S_{2}\right)_{p, p+q}=0\) for \(q>z\). As before, the parameter \(m\) represents the number of observation points on the curve which is to be smoothed.
\[
\text { Finally, let } \mathrm{K}_{22}=\mathrm{s}_{2}+2 \mathrm{~S}_{1} \text { and }
\]
\[
K=\left|\begin{array}{ll}
\mathrm{K} 11^{\prime} & \mathrm{K} 12 \\
\mathrm{~K}_{21}, & \mathrm{~K}_{22}
\end{array}\right|
\]

The matri.x Q can now be obtained from K in the following way:

> Partition Q as
\[
Q=\left|\begin{array}{ll}
Q_{11}, & Q_{12} \\
Q_{21}, & Q_{22}
\end{array}\right|
\]
with \(Q_{21}=Q_{12}^{T}, Q_{11}\) a symmetria! ( a \(a+1\) ) !a ( \(3 a+1\) ) matrix, and \(Q_{22}\) a symmetric (a+1)(a+1)matri.x. Thus \(Q_{12}\) has dimension a! \((a+1) \times(a+1)\).

Furtherm.ore,
\[
Q_{11}=2 K_{11},
\]
\(2\left\{(12)_{1 J}+(\mathbb{1} 2), 2_{a-} 2_{-J}\right\}\), for \(J \quad 1,2, \ldots, a\), \(\left(Q_{12}\right)_{i j}=\)
\[
Z(\mathbb{1} 12)_{i, a+1} \text { ' for } J=a+1
\]
for 1: \(=1,2, \cdots, a(3+1)\).

Also,

APPENDIX 2.NAG library routines

The following subroutines from the NAG library, Mark 9, have been used:

F01MCF,
F04MCF,
F04ASF.
Descriptions of the routines can be found in the NAG library manuals.

\section*{ACKNOWLEDGEMENTS}

Many thanks to Jan M. Hoem for suggesting and financing the work of this report.

For her excellent typing IthankHulda Hjörleifsd6ttir.

REFERENCES

Gill, P., W. Murray, M. Wright (1981). Practical Optimization. London:Academic Press.

Hoem, Jan M. (1978). Same solved and unsolved problems in the statistical theory of linear graduation. University of Copenhagen, Laboratory of Actuarial Mathematics, WP 17.

Hoem, Jan M. (1983). Personal communication.

Linnemann, P. (1979).A solution to the problem of •the tails in moving average graduation. University of Copenhagen, Laboratory of Actuarial Mathematics, WP 28.

Linnemann, P. (1980).A band matrix solution to the problem of the tails in moving average graduation. University of Copenhagen, Laboratory of Actuarial Mathematics, WP 34.
\begin{tabular}{|c|c|}
\hline SRRD-1 & Hoem, Jan M. and Randi Selmer: The interaction between premarital cohabitation, marriage, and the first two birth in current Danish cohorts, 1975. (March 1982) \\
\hline SRRD-2 & \begin{tabular}{l}
Hoem, Jan M. and Ulla Funck Jensen: Multistate life table methodology: A probabilist critique. (March 1982) \\
Pp. 155-264 in K.C. Land and A. Rogers (eds.), Multidimensional Mathematical Demography. New York etc.: Academic Press.
\end{tabular} \\
\hline SRRD -3 & \begin{tabular}{l}
Hoem, Jan M.: Balancing bias in vital rates due to an informative sampling plan. (April 1982) \\
Pp. 81-88 in Statistical Review 1983:5. Essays in Honour of Tore E. Dalenius.
\end{tabular} \\
\hline SRRD-4 & Hoem, Jan M.: Distortions caused by nonobservation of periods of cohabitation before the latest. (May 1982) Demography \(2 \underline{=}(4)\), 491-506. \\
\hline SRRD-5 & \begin{tabular}{l}
Hoem, Jan M.: The reticent trio: Some little-known early discoveries in insurance mathematics by Oppermann, Thiele, and Gram. (July 1982) \\
International Statistical Review 51(1983), 213-221.
\end{tabular} \\
\hline SRRD-6 & Hoem, Jan M. and Bo Rennermalm: Biases in cohabitational nuptiality rates caused by nonobservation of periods of cohabitation before the latest: An empirical note. (Dec. 1982) \\
\hline SRRD-7 & Funck Jensen, Ulla: An elementary derivation of moment formulas for numbers of transitions in time-continuous Markov chains. (Dec. 1982) \\
\hline SRRD-8 & Hoem, Jan M. and Bo Rennermalm: Cohabitation, marriage, and first birth among never-married Swedish women in cohorts born 1936-1960. (Dec. 1982) \\
\hline SRRD-9 & Funck Jensen, Ulla: The Feller-Kolmogorov differential equation and the state hierarchy present in models in demography and related fields. (Dec. 1982) \\
\hline SRRD-10 & Hoem, Jan M.:Multistate mathematical demography should adopt the notions of event-history analysis. (Feb. 1983) \\
\hline SRRD-11 & Hoem, Jan M.: Weighting, misclassification, and other issues in the analysis of survey samples of life histories. (Feb. 1983) \\
\hline SRRD-12 & Lyberg, Ingrid: Nonresponse effects on survey estimates in the analysis of competing exponential risks. (April 1983) \\
\hline SRRD-13 & Hartmann, Michael: Past and recent experiments in modeling mortality at all ages. (Nov: 1983) \\
\hline SRRD-14 & Lyberg, Ingrid: The effects of sampling and nonresponse on estimates of transition intensities: Some empirical results from the 1981 Swedish fertility survey. (Dec. 1983) \\
\hline
\end{tabular}

SRRD-15 Hoem, Jan M.:A flaw in actuarial exposed-to-risk theory. (Jan. 1984)

SRRD-16 Hoem., Jan M.: Statistical analysis of a multiplicative model and its application to the standardization of vital rates: A reyiew. (Feb. 1984)

SRRD-17 Lindberg, Bengt: A numerical algorithm för the calculation of coefficients in moving averages. (March 1984)

Also available on request:
Hoem, Jan M.: Sveriges hundraåriga fruktsamhetsfall. Pp. 185-212
in Barn? Författare, forskare och skolungdöm diskuterar varför det föds så få barn. Stockholm:Liber Förlag, 1983.

Hoem:; Jan M.: Forsikringsmatematik. Pp. 229-235 in Kbenhavns ,Universitet 1479-1979, Bind XII. Kbenhavn: G.E.C. Gads Forla, 1983.

Hoem, JanM.:Acontribution to the statistical theory of linear graduation. Insurance Mathematics and Economics 3(1984), 1-17.```

