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Abstract 
 

With the rise of numerical simulations as a common technique for  producing 

scientific knowledge, the everyday working activities of scientists involved in 

computer modelling center on computers and the virtual world they create. Like 

experiments, numerical simulations are capable of generating surprises and 

unexpected results. This article addresses how simulationists handle unexpected 

results, how doctoral students learn to do so, and the perspectives that the 

socialization into the activities of numerical simulations generates. On the basis of 

ethnographic case studies of astrophysics and oceanography, the analysis draws 

inspiration from Mead’s (1934) discussion on play and game and Shibutani’s 

(1955) development of Mead’s thoughts regarding reference groups and 

perspectives. The development of computer models creates a tension between play 

and game as different perspectives. While the focus on programming and 

computer work may impede the chances of achieving an individual scientific 

career, the possibilities of dealing successfully with uncertain output are greater 

when there is a familiarity with the “inside” of the numerical model. Comparison 

with observations is a way to evaluate simulations from the “outside” and the use 

of observations illustrates how the perspectives of play and game may can co-

exist. I also show how unrealistic outcomes are sometimes interesting in 

themselves, and how the fascination with these virtual features illustrates 

simulation work as a form of play. The paper concludes with some 

methodological reflections related to the reconstruction of the perspectives and a 

discussion of the findings in relation to previous research on simulation 

modelling. 
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Introduction1 
 

The role and influence of computers in modern society cannot be underestimated, as Sherry 

Turkle (1984[2004]; 1995), among others, has shown in her extensive studies of computer 

culture. Turkle explores the relationship between people and their computers, the holding 

power of computers and how they embody the boundary between the physical and the virtual. 

Yet it is unfortunate that discussions of virtual worlds tend to focus exclusively on 

phenomena in popular culture (Cubitt 2001: 130), without exploring the parallels within 

scientific culture. With the rise of numerical simulations as a widespread method for 

producing scientific knowledge, the everyday working activities of scientists involved in 

computer modelling center on computers and the virtual world they create.2  

 

While the activities involved in computer simulations can be partly understood as play (cf. 

Dowling 1999), it is more common to discuss computer simulations as a new form of 

experiment (e.g. Merz 2007). 3 Like experimental work, numerical simulations result in large 

quantities of numbers (output) which require analysis and there is a constant concern with 
                                                 
1 The author is grateful for comments by Patrik Aspers, Monika Nordvik, Árni Sverrisson, 
and Lars Udhen. An earlier version of this paper was presented at ScienceFutures, Swiss STS 
Meeting 2008 in Zürich. The author is also grateful for the financial support from the Swedish 
Science Council under contract 2006-1296. 
2 Numerical simulations are based on computer models, which are transformations of 
mathematical models into algorithms which are then translated into computer code (Winsberg 
1999). This enables researchers to execute (run) the program and thereby produce the 
simulation. Computer simulations in the physics based sciences tend to reduce the full 
complexity of the phenomena under study to a small number of physical laws; the related 
equations define the dynamics of the system. If the differential equations are non-linear, they 
cannot be solved analytically since it is impossible to write down closed form equations that 
represent a unique solution. The continuous equations are therefore discretized and 
transformed into difference equations for which solutions can be approximated. Because of 
their finite form, the simulation models often divide space into a large number of points 
resulting in a grid, and the numerical solutions for the equations are calculated for each grid 
point. The grid leads to a one-, two- or three-dimensional model domain. In dynamic models, 
there is also a time dimension. The smaller the distance between the grid points and the time 
step, the higher the resolution of the simulation model. In this article, I use the terms 
numerical model, computer model, and simulation model interchangeably and also switch 
among simulationist, computer modeller and simulation modeller to refer to the scientists 
working with this technique. 
3 Modellers often refer to simulations as (numerical) “experiments”. I do not explore in-depth 
the meaning of this term in their usage and do not implicate any connotation of the term 
experiment regarding the logic of scientific discovery (cf. Delamont and Atkinson 2001: 105), 
even if Collins (1985) approaches that discussion. See Winsberg (2003) for a discussion of the 
relation between simulation and experiment from a philosophy of science perspective. 
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uncertainty and error (Winsberg 2003). In his seminal work on the practice of 

experimentation, Collins (1985) claims that the sole defining criterion for a successful 

experiment is that it produce the expected result. Expectations are based on previous 

conceptions developed from the scientific literature, background and training. It is against this 

background that the scientist interprets new results as more or less plausible. Notwithstanding, 

outcomes that appear as implausible from this vantage point may obviously be important 

vehicles for the development of scientific knowledge. Unexpected output is not necessarily 

considered as incorrect in the end. However, the point here is that unexpected outcomes are 

initially problematic. They require that scientists work out how to judge them: as worthy of 

further analysis (potentially leading to exciting new findings), or as resulting from errors that 

must be fixed. How do simulationists work with computer models in order to deal with the 

unexpected results they may produce?  

 

This is something students learn during scientific training. An interesting topic in relation to 

unexpected results is how doctoral students learn to analyze output, and, more generally, how 

they socialize into the practice of numerical simulation. Previous research on the enculturation 

of doctoral students describes how they are rarely prepared for the craft work of science 

(Delamont and Atkinson 2001). They have learned about science from text books that present 

successful and choreographed experiments that are far from the messy reality of experimental 

work (Kuhn 1970; Traweek 1988), and they face the challenge of mastering new working 

techniques (Becker and Carper 1956: 296f.). Last but not least, they have to learn to evaluate 

and interpret data (Roth and Bowen 2001: 551; cf. Traweek 1988: 82).4  

 

The primary purpose of this article is to address the perspectives that the socialization into the 

activities of numerical simulations generates. It has previously been suggested that the 

distinction between simulations and the real becomes blurred among scientists working with 

simulations (see e.g. Helmreich 1998; Lahsen 2005). In what ways can the working activities 

and especially the socialization into them evoke this tendency?  

 

Using case studies of astrophysics and physical oceanography, this article answers the above 

questions by taking its point of departure in the activities that familiarize doctoral students 

with numerical simulations. In particular, it focuses on the mundane work that simulationists 
                                                 
4 For a more thorough review of social studies of science research on how new members 
become part of science, see Campbell (2003: 899ff).  
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must address when dealing with problematic output. In this sense, unexpected outcomes can 

be seen as everyday situations to be analyzed to illustrate further interesting aspects of 

numerical modelling practice and its perspectives. 

 

Exploration, Socialization and Perspectives in Simulation Modelling 
Simulation models are material rather than abstract objects; they effectively work like, and in 

fact are, particular forms of computer programs (cf. Knuuttila 2006; Sundberg 2008) that are 

often referred to as codes. In this article, I approach them as epistemic objects: objects with 

the potential to surprise and outstrip expectations and imagination produced by the current 

way of thinking and doing (Rheinberger 2000; see also Knorr Cetina 2001). The concept 

focuses on the relation between scientists and the objects they explore, as an attempt to 

change the division between scientific objects and technology (cf. Merz 1999; see also Knorr 

Cetina 1999; 2001).5 Scientists explore epistemic objects through unfolding and framing. 

Unfolding refers to the continuous unravelling of features, details, composition, and 

behavioral implications through which properties can be extracted and displayed (cf. Knorr 

Cetina 1999: 71f.; 197f.). Framing means to consider objects or pieces of information in the 

light of other such components which serve to check, control, extend, or compensate the 

former (Knorr Cetina 1999: 72 ff). I use these concepts to describe how simulationists 

investigate the unexpected and uncertain output that simulations produce.  

 

Two other interesting questions that arise are: What modes of reasoning do these activities 

generate and maintain? How do simulations remind of play? In this article, I see play as a 

perspective from which to conduct simulations. A perspective is an ordered view of one’s 

world, an organized conception of what is taken for granted, plausible and possible, but also a 

coordinated set of actions (Becker et al. 1961: 34; cf. Shibutani 1955: 564). It is through 

socialization that a person learns how to approach the world from the perspective of one’s 

reference group, which may vary according to the situation (Shibutani 1955). “The socialized 

person … sets the same standards of conduct for himself as he sets for others, and he judges 

himself in the same terms …. [H]is perspective always takes into account the expectations of 

others.” (Shibutani 1955: 564) According to Mead (1934), socialization takes place through 

                                                 
5 Merz (1999) suggests that computer models oscillate between being epistemic objects and 
technical artifacts and that they act as the former when they are opened up in problematic 
situations. Learning how a simulation model works and handling unexpected, uncertain results 
can be seen as constituting such a situation. 
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play and game. Play is marked by the ability to assume the attitude of only one particular 

individual at a time and a capricious attitude towards role playing. Game refers to the ability 

to assume the roles of many others simultaneously and to control actions on the basis of rules 

of the game. While play and game are originally a way of describing the early development 

stages of the self among children, the concepts have also been used to analyze socialization in 

general (see e.g. Persson 2007).  

 

In this article, I use play and game loosely, close to the everyday meaning of play as about 

playfulness and game as related to rules. For example, to take the role of the other is an 

essential part of Mead’s (1934) notion of play. My usage does not take this into account. In 

simulation practice, we can compare play to a narrow focus on the simulation model and its 

properties (a focus on you and your computer model so to speak) as opposed to focusing on 

the whole “game” of science (astrophysics or physical oceanography). The game includes the 

work with the computer model, but also the views and expectations of the other actors 

(supervisors, other scientists, journals) and the structure and organization of academia in 

general – what can be called “the rules of the game”.  

 

More specifically, I refer to play and game as embodied perspectives, evoked in different 

situations. Perspectives develop over time and people can handle different and contradictory 

perspectives and switch between them depending on the situation (cf. Becker et al. 1961). It is 

because of the symbolic interactionist focus on how ordered, but sometimes contradictory, 

views develop within groups that I use this theoretical stance (not the theoretical viewpoint of 

game theory or the cultural studies of computer games, for example) when analyzing the 

accounts on numerical simulation practice. As perspectives or modes (rather than as stages of 

a socialization process), the socialized person may switch between play and game, whereas 

the newcomer is unable to act in complete accordance with the game (cf. Persson 2007: 161). 

Although my focus retains the modes, not the process, doctoral students become important as 

they are likely to be the principal holders of the play perspective. 6 However, from a strictly 

Meadian viewpoint of socialization, a group perspective could only be part of a developed self 

and therefore not part of play stage. In this looser use of the concept of play, one could 

therefore suggest that a persistent play perspective is a sign that one is not yet fully capable of 

acting in accordance with the role of the scientist. 
                                                 
6 See Campbell (2003) for a symbolic interactionist analysis on the socialization of doctoral 
students.  
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Methodological Considerations 

The empirical basis for this analysis is two ethnographic case studies of numerical simulations 

in astrophysics and physical oceanography, both part of a larger study that I am completing.7 

Therefore, I did not specifically choose the cases to maximize their utility for a comparative 

analysis regarding the themes of this article, which primarily focuses on what is common 

rather than specific.8 Astrophysics and oceanography share the inability to carry out 

controlled experiments in the traditional sense. Processes like development and formation of 

stars and galaxies and patterns and changes of large-scale ocean dynamics cannot be brought 

into a laboratory setting and simulations – “numerical experiments” – have become common 

ways of performing research in these fields.  

 

I gathered the material through open-ended interviews with twelve oceanographers and eleven 

astrophysicists. They were, or had all been, working to some extent with numerical 

simulations.9 Of these 23 interviewees, there were six doctoral students, two post-doctoral 

students, ten research scientists, and five professors.10 I had the opportunity to listen in on 

                                                 
7 The study as a whole is based on three comparative case studies of astrophysics, 
meteorology, and oceanography. The general aim is to reconstruct the perspectives that 
develop in relation to simulation modelling and develop the sociological understanding of the 
role of simulation models in scientific practice, for individual scientists, research fields, and 
science more generally. 
8 Dowling (1999) highlighted similar attitudes among a variety of computer modellers. The 
current article focuses more on what the scientists say they are doing and the collective 
perspectives that evolve from these activities.  
9 Regarding astrophysics, the material covers a broad variety of research work on the 
processes and forces (e.g. turbulence, convection, magnetic fields) involved in planet 
formation, accretion disks (flattened astronomical objects made of rapidly rotating gas which 
slowly spirals into a central gravitating body), mass loss and formation of stellar (star) content 
in galaxies, the birth of stars, and modelling of stellar atmospheres. Regarding oceanography, 
the material covers modelling of small and large scale dynamics in the oceans, the Baltic 
Seas, the Nordic Seas, and the Arctic, and of processes such as sea-ice dynamics, air-sea 
interaction, and coupled physical-chemical-biological reactions. Nowadays, ocean modelling 
is often a part of coupled climate modelling, in which ocean models are connected to 
atmospheric models. Three of the ocean modellers worked with the ocean part of a coupled 
climate model and two with an ocean climate model.  
10 Four ocean modellers worked in Norway and three astrophysicists in Denmark. The 
remaining interviewees worked in Sweden, but several of the research scientists did their 
doctoral work elsewhere (e.g. in Germany, Finland, the Netherlands, France). Eight of the 
interviews were conducted in English, the rest in Swedish. Citations from these interviews 
have been translated to English. To protect the anonymity of the informants, I do no inform 
about translation. 
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both formal and informal discussions by attending seminars (seven in astrophysics, seven in 

oceanography), two workshops in astrophysics (lasting three and four days, respectively), and 

an interdisciplinary doctoral student course on multiscale modelling and simulation (which I 

attended six out of ten days). I have also discussed some issues by email with a few of the 

astrophysicists I have met. I base the analysis on the simulationists’ accounts of the work with 

simulation models and analyse the narratives as descriptions of practice or as expressions of 

perspective related to practice (cf. Gubrium & Holstein 1997). 

 

The analysis consists of three parts. First, I discuss the time-consuming work of developing 

computer models, the focus on programming and computer work, and how this relates to the 

individual’s career and the game. The second part presents more on the use of computer 

models. I describe how simulationists in general and doctoral students in particular diagnose 

problems and unrealistic output. At the same time, the fascination of these virtual features 

illustrates simulation work as a form of play. The final part of the analysis relates the role of 

observations in simulations to the game. It illustrates how the perspectives of play and game 

exist side by side, but tied to different situations.  

 
Development and Falling in Love with Computers 
Doctoral studies based on simulations often start with the task of modifying a computer 

model, by developing and implementing a new component, or developing completely new 

code. One of the major purposes of this is to gain a deeper understanding of the technique. 

Doctoral students in astrophysics and oceanography have university training in the physical 

sciences, but tend to have little initial knowledge of programming. One oceanographer 

emphasized that “you have to program as a modeller … which students sometimes don’t 

understand”. This lack of understanding may obviously be a consequence of lack of 

preparedness. At the same time, using and especially developing computer models requires a 

great deal of programming work.  

 

It takes a long time to learn how a computer model works if one is going to implement a new 

part of it, develop it, and make it work. After the discretization of equations and writing of 

code – frequently using “numerical recipes” – and often implementation into an existing 

program, it is common to test parts of the numerical model against an analytical model (cf. 

Kennefick 2000: 26). This is a way of framing the former by checking them in relation to the 
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latter. In both oceanography and astrophysics, analytical work refers to the writing of 

formulas and pen and paper calculations. During the development of new computer models, 

analytical test problems with known solutions are used as “prospective tests” (cf. Pinch 1993) 

for comparison of output. Whenever possible, these tests provide the lowest benchmark of 

computer model performance, but it sometimes takes a very long time before they can be 

performed at all.11  Debugging – finding errors in the computer code and fixing them – is a 

constant preoccupation during all stages of development and it is very time-consuming (cf. 

Kennefick 2000: 26). One astrophysicist who was just about to complete his doctorate told 

about the difficulties in working with simulations.  

 

Debugging and programming, developing code, it is hard, I think. Because you forget about, 

when you start focusing too much on programming, then you forget about physics. I don’t have 

the same, I have a good intuition around physics but when you start concentrating on variables 

and discretization and that, I feel you don’t have as good enough grip in the physics anymore.  

 

Along a similar line, another doctoral student in astrophysics said that when he started to 

develop and implement a piece of code to include the representation of particles in an existing 

computer model, it was about “learning how the code handles the particles, rather than 

learning new physics.” These accounts imply that developing a computer model requires the 

understanding of “code physics”. This task draws a lot of attention in itself, especially for 

someone with limited experience with computer models. One senior oceanographer defended 

the focus on understanding numerical models per se and suggested that it is a part of 

becoming a scientist: “Becoming a scientist is a development so to speak, at a certain stage the 

young researcher or student perhaps has a kind of interest where you want to understand how 

a model is working and forgets what it has to do with the rest. That is not necessarily 

something negative. It is simply a way of focusing.” This quote illustrates play in the sense of 

focusing exclusively on the model (and forgetting about “the rest”). It also implies that this 

focus can be regarded as negative, but that it is only part of a stage. There is, however, a fear 

of retaining this focus and remaining forever in that “stage” (cf. Turkle ([1984] 2004: 20; 
                                                 
11 Analytical solutions only exist for very simple problems. This is part of the reason why 
numerical rather than analytical models are used to approach the more complex problems in 
the first place (cf. Küppers et al. 2006: 11). In oceanography, this analytical technique to 
evaluate performance of simulations is hardly ever used because the non-linear differential 
equations that serve as the mathematical basis for the simulation models cannot be tackled 
analytically. Comparison to analytical solutions is therefore impossible. 
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1995: 30f.). For example, during an informal discussion with some astrophysicists at a 

workshop, a recent PhD said that there is a danger in computational astrophysics of “getting 

stuck” in model development because you “fall in love with the computers” and “stop doing 

science”. He knew several people who have become “system administrators”, referring to 

those who continued to focus on computer model development.  

 

The status difference is also manifested in the fact that astrophysicists distinguish between 

talking about “code”, including the simulation model and its characteristics, as opposed to 

“science”, i.e. the scientific problem. Ocean modellers refer to everything that has to do with 

the construction of simulation models as “technical”. Due to this value-laden distinction 

between science and technology, pure computer model development papers count as second-

class articles (“method papers”). They are commonly published as working papers or user 

manuals, as opposed to as articles in more prestigious journals. Because these accounts reflect 

the lack of prestige regarding code development as opposed to pursuing a scientific career, it 

might seem like a better career investment to focus on use (cf. Shibutani 1955: 567). In an 

email, one astrophysicist described his doctoral work consisting of the implementation of a 

new algorithm and concluded: “It took a few years of code development, which was costly 

because time spent writing code was time lost from performing numerical simulations and 

publishing papers” (emphasis added). This computer code was originally developed by the 

doctoral student’s supervisor. Later development has been conducted by his doctoral students. 

This is a typical scenario. Successful original developers (those who have reached a high 

position) tend to leave subsequent development work to their doctoral students. More 

generally, people in high positions tend to work more with interpretation of output than with 

development.  

 

This section has shown how programming is not only time-consuming, but may even appear 

to be a waste of time. In the “worst” case scenario, the student loses himself in programming, 

as opposed to in important physical problems.  

 

The next section shifts emphasis to the use of computer models and the activities involved in 

understanding unexpected output. It shows how the computer model is unfolded and framed 

in different ways, in part depending on the simulationist’s knowledge of the computer model 
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at hand. I also discuss the blurring between model physics and real world physics and the 

interest in the model as a virtual world per se. 

 

Using (a Ready-Made World) and Understanding Output 

Doctoral students who receive or search for a ready-made off-the-shelf computer model only 

take responsibility for the set-up of the simulation, without developing the simulation model 

used to perform it. They therefore do not examine the computer code closely. Sometimes, 

they do not even have to get their “hands dirty” – a way of categorizing the work inside the 

computer code. During a workshop, a doctoral student in astrophysics told me how he applied 

a well-known, widely distributed astrophysics computer code to his problem. He thought it 

was very easy to use and said that if you wrote the type of problem you wanted to do, e.g. 

hydrodynamics, the computer code could help to choose the required “solvers”, even if you 

did not know exactly which parts of code were necessary for a particular simulation. “So you 

can get results,” he said, without a deep knowledge of the innards of the simulation.12 A 

doctoral student in oceanography described her work with a ready-made “world” in the 

following way.     

 

They have created a functioning world and then I can decide what happens in that world…. So I 

can design the experiment on the basis of this, but I don’t have to go in and look very much at 

how they formulated the physical equations, because this is something static. The world behaves 

according to the laws of physics… nicely [laughs].  Those I don’t need to change. 

 

In other words, the doctoral student comments that it is not often necessary to check the code 

and look closely at the formulation of the equations. They are “static” and remain opaque.  

Yet the quote leaves ambiguous which world is governed by these laws of physics; is it the 

model world, the real world or both? This account neglects the fact that physical equations 

can be transformed and adapted to numerical simulations in different ways (this is one of the 

reasons why different computer models generate different outcomes). It also forgets that there 

is a difference between the physical laws that are believed to govern nature and the selection 

of laws and process descriptions that a particular computer model uses (cf. Lahsen 2005: 

912). “A representation of a ball, unlike a real one, never need obey the laws of gravity unless 

                                                 
12 In some well-developed, modular codes the user can “switch” parts on and off depending 
on what is necessary for a particular simulation.  
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its programmer wants it to,” writes Turkle ([1984] 2004: 69). The student’s quote above 

represents a far less distinct view. The consequences of this are accentuated when the 

understanding of how to deal with output is not straightforward.13 In the next section, I show 

how modellers diagnose and investigate uncertain output, how this relates to their insights 

into the computer model, and how the unexpected can also be interesting.  

 

Exploring Simulation Models 

Simulationists within oceanography and astrophysics frequently find themselves in uncertain 

situations where they are unsure how to interpret the output of simulations. For simulationists 

who develop numerical models and create simulations, questionable output is an everyday 

occurrence.  They use expressions like “all the time” or “many, many times” (cf. Kennefick 

2001: 26) and tell how they are often uncertain whether to take such output as a departure 

point for analysis or to recalculate. Doctoral students, lacking experience with scientific work, 

struggle the most with the interpretation of output in general and uncertain output in 

particular. As one astrophysicist said, “[Doctoral students] are often very frustrated, and 

complain, ‘numerical calculations, you don’t know if they are right or wrong’.”  

 

Just like traditional experimenters, simulation modellers need to develop an appreciation of 

the types of errors likely to emerge under different circumstances and of how to diagnose 

problems (cf. Collins 1985). One doctoral student in oceanography complained about a 

simulation and offered a suggestion for the reason behind it. 

 
I got lots of strange results. For example, the temperature was below zero in large parts of the 

water and so on. And then it is often something numerical that isn’t working and for my part I 

suspect that it was the time step that was too large. You know you calculate forward in time and 

if you take too big steps, too much can have happened along the way that is not resolved and 

then it gets off track. 

 

In a similar vein, a doctoral student in astrophysics talked about a simulation he was not sure 

he understood, “It’s a weird thing that this vortex here shows up in the boundary of the buffer 

zone right. I think that’s a hint that it is something numerical.” These two quotes show how 

                                                 
13 Rather than focus on what happens when particular cases of unexpected results are 
published and cause heated controversies in the scientific community (see e.g. Collins 1985; 
1999), I describe the different working methods computer modellers use to investigate 
uncertain results and handle such situations. 
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young scientists diagnose so-called numerical effects. A numerical effect is a particular type 

of artifact which is due to the numerical method that has been used to solve the set of 

equations, for example, the way they have been discretized. Blaming numerical effects for 

strange results is somewhat routine, but how do scientists determine if such results are 

numerical errors or reasonable output with which to work further?  

 

The first step is to look at output, in the form of visualizations, plots or diagrams. Another 

way to check if numerical effects are present when the outcome is uncertain (but not evidently 

wrong) is to run the computer simulation once again, change some parameter, or, if possible, 

the resolution. We can refer to these methods as ways of unfolding through investigation of 

the behavioral implications of the simulation. One way of framing simulations includes 

comparison to observations. This is a common way to evaluate how reasonable output is. One 

oceanographer stated, ”We don’t know if it is really going on this way or not. Is it just a 

model artifact? That it stabilizes around half the cycle of the tides. So this, we don’t really 

know. A colleague … is looking to see if she has some data for this.” We discuss the role of 

observations further below. At this point, it is more important to note that these methods of 

investigation are the only possible ones for users who treat computer models as black-boxes 

and who cannot analyze the computer code themselves. 14 Those simulationists who are more 

familiar with the internal features of the computer code can also look inside it. This they 

accomplish by stripping the simulation model of everything except its most essential 

mechanism and then checking this mathematically, as a way to unfold the simulation model 

by exploring its composition. This is possible when working with astrophysical as well as 

ocean simulations. One astrophysicist said: “You do something you call toy models so you 

take the equations and reduce them, throw away almost everything except the part that you 

suspect causes the effect, so to speak.  And then you go inside of them, on a sheet of paper, to 

see what it can be.” This approach to uncertain outcomes aims at understanding what happens 

                                                 
14 However, they may ask the developers of the code for help with interpretation. I will 
analyze the relations between users, developers and computer models in a subsequent article. 
At this point, suffice it to say that although simulationists emphasize the importance of 
choosing the right code for the problem under consideration, most simulationists tend to stick 
with the same code no matter what scientific problem they address (in fact, the capacities of 
the code are likely to influence what problem one addresses). They therefore learn and 
become accustomed to how the particular code behaves, including the particular weaknesses it 
might have. Some odd things may therefore be expected and to some extent accepted (cf. 
Lahsen 2005; Turkle [1984] 2004: 81).  
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inside the computer model when it calculates to determine in what sense the output derives 

from the underlying model.15  

 

The importance of understanding the inside of a computer model in relation to understanding 

unexpected output is often emphasized by modellers who have worked with numerical model 

development. One of the senior oceanographers (typical in the sense that he started his career 

with developing a model, although nowadays he only focuses on the interpretation of models) 

emphasized that a lack of awareness of the internal features of computer models may lead to 

interpretational problems.  

 

If you have a good apprehension of what physics and numerics there are in a circulation model, 

or in a model on the whole, what it tries to model, resemble, if you know the weaknesses of the 

model and the advantages and what it does and why it does, then you can look at it from the 

perspective of what is missing and what exists in reality. I often note when I show model results 

and someone points and says, “can it be this and this?” and then I jump, “but it is not even in the 

model” …. Tides, for example, it’s enough if you know there is or there isn’t but it is a quite 

good and clear example of that you cannot point, I mean if you have a circulation model that 

runs without tides, that this and this mixing is a result of the tide. No of course not, because it’s 

not included. There are other things which are not as obvious as tide, how you parameterize and 

model some things in the model, scales which are there … etc. If you don’t know this, then you 

can’t understand the model. (emphasis added) 

 

The excerpt suggests that in order to interpret its outcome, it is important to really know the 

inside of a computer model. One cannot necessarily use the knowledge of real world 

processes to understand what is going on in a model. One has to start from, and relate to, the 

underlying model and construction of the computer model as whole. What is plausible in one 

computer model may actually be completely “unrealistic” in another. The following excerpt 

from an ocean modeller clearly illustrates how a result could have been reasonable, if another 

process description had been included: “We have maybe suddenly one hundred degrees at the 

ocean floor and you know for sure that this is wrong because you didn’t include volcanism or 

                                                 
15 Computer models are constructed to deal with equations that are analytically intractable. 
Computer simulations are therefore not numerical solutions of theoretical models but employ 
a generative mechanism to imitate the dynamic behavior of the underlying process (Küppers 
et al. 2007: 11).  
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anything in the model.” Yet the analysis of output from the standpoint of the underlying 

model may also be viewed as an analysis that is “isolated from reality”:    

 

When you run a model, results are coming out. And then you can analyze why you got those 

results? And then you can understand this strictly dynamically from the model. And it is 

actually a science in itself to understand what the model spits out and why and what, then it gets 

kind of its own life, isolated from reality. This maybe sounds horrible but there is actually 

nothing wrong about thinking like that. It is important, to a certain extent, but you always have 

to be conscious about that; if you don’t relate to reality … then some use the word 

hydrodynamical playschool. It has no [laughs] it has no value. The taxpayers have no reason to 

pay for something like that, scientists are just playing in that case, but, but the interesting thing 

is to know if our models have something to do with reality. (emphasis added) 

 

This oceanographer implies that value of play is disputable and questionable as motivation for 

funding – play has per definition no social utility (Asplund 1987: 55). Understanding the 

model is distinguished from trying to understand reality. From the game perspective, the 

“interesting thing” is the latter. But if this would be the only perspective, why coin an 

expression like “hydrodynamical playschool”?  

 

Playing with Simulation Models 

Interestingly, a perceived unrealistic outcome is not necessarily only considered as 

problematic. Outcome that is thought to be evidently incredible can also be “interesting”. For 

example, one doctoral student in astrophysics said: “But you can also find yourself in 

situations when you get a result that doesn’t have any physical meaning. You get some very 

interesting output but it has no physical meaning, it’s a pure numerical artifact.” When 

simulations serve as teaching tools, they do not necessarily represent plausible scenarios. For 

example, during a doctoral course in multiscale modelling and simulation, students had to 

choose a particular modelling project to work on. The climate modelling project was 

introduced by a climate modeller as a “wild experiment to see how you get complete ice-

cover” on Earth. The intention was to make the students “get a feeling” for the simulation 

model and understand it. Frequently, instructors facilitate the understanding of a simulation 

model and its output through extreme settings. This pedagogical technique may enhance the 

curiosity for generating completely unrealistic outcomes. 
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In his classic work on play as the paradigm of collective life, Huizinga (1948: 224) suggests 

that modern science is quite unsusceptible to play because it sticks to the strict demands of 

truth. But when the modelled world behaves in an unpredictable fashion, exploration of 

strange outcomes that are far from true may take place. One professor in astrophysics 

suggested that there are diverse ways of dealing with “strange” output.  

 

If the program starts producing things that look interesting but strange, then you can work in 

different ways. You can say that I don’t think reality is like this so then I have to get rid of this 

and then you go and look. But you can also do the opposite and say this was funny, I wonder 

how I can make the program produce even stranger things? And then you trigger this, perhaps 

find some property of the program or the equations that makes it become very strange although 

you remove yourself from reality. You know you remove yourself from reality, but it does not 

prevent you from trying to study the phenomenon and refine it. (emphasis added) 

 

To see how one can produce “even stranger things” unravels the properties of simulation 

models. It is a form of unfolding, albeit without any expectation that the results bear any 

relation to how natural systems behave. There is no question of conflation, but of a sincere 

desire to explore the simulation model itself, as a modelled world that does not command 

attention on the basis of being like the real world (cf. Riezler 1941: 505). The astrophysicist 

talks about the fascination for strange things just like Turkle ([1984] 2004: 143) discusses 

how adolescent children delight in spectacular screen effects that computer scientists call 

“artifacts”. In the astrophysicist’s wording, simulation reminds of play, a feeling of 

excitement and enchantment about something that is different from ordinary life (cf. Huizinga 

1945). In this case, it differs from ordinary science aimed at investigating plausible, as 

opposed to “strange”, results.  

 

Many scientists actually talked about how they “play around” with computer models (cf. 

Dowling 1999). For example, illustrating the essential character of play as fun (cf. Huizinga 

1945: 11; Goffman 1961: 17), one professor said the following about what started his interest 

in ocean modelling: “It is really fun, fascinating. What started me out was the whole 

fascination of having the whole ocean in your computer and playing around with it and 

learning about it.” This quote also implies that a playful perspective is more likely among 

doctoral students, or any newcomer to simulations. Even if we consider play and game as 
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different perspectives rather than as stages, play is primarily related to the learning of new 

activities (cf. Persson 2007: 132, compare the expression hydrodynamical playschool). One 

astrophysicist described the work with simulations in the following way: “Simulation is an 

activity that reminds of play and if you would go over in the corridor where most of my 

students sit and follow their work for a day, you would see that there is a distinct element of 

play”. While this astrophysicist first refers to the similarity between simulation work and play 

in general, he uses doctoral students as examples. He also connects this to their interest in 

computer models as “virtual” by adding that he has “students who live completely in the 

virtual”. Interestingly, he uses the term “virtual” – derived from popular culture – to talk 

about the relation between scientists and their computer models. However, later on the 

astrophysicist stressed:  

 

The moment of truth is when you stand there and compare with observations …. But this feeling 

can be of different intensity. I think that I belong to the … type of researcher that feels strongly 

you can feel this “show evidence” with your models. Some others are more fascinated with the 

models and less with this confrontation with reality.  

 

This astrophysicist emphasized the importance of realism, but also distinguished between 

types of researchers (without particularly distinguishing between doctoral students and 

research scientists) in terms of what importance they put on confronting the models with 

reality, in other words, comparing simulation results to observations. The next section 

discusses the role of observations in relation to the rules of the game.  

 

The Role of Observations in the Game 

In simulation modelling, it is customary to test the realism of the model through comparison 

with observations (see e.g. Heymann 2006; Merz 2006; Oreskes et al. 1994). This is 

reminiscent of the positivist philosophy of science, in which comparison of theories or models 

with observations is a fundamental idea and a rule for evaluating science. One should evaluate 

scientists’ statements about the role of epistemological “rules” of science in relation to 

working practice with a critical eye, but they represent the scientists’ understanding of their 

work and their perspective (Sundberg 2006). In this paper, the point is not to discuss the 

extent to which simulation models are “realistic”, or if comparison to observations is a good 
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measure of this. The issue that interests us here is how computer modellers relate to the rules, 

as an illustration of play or game. 

 

In an earlier study, I showed how meteorological research modellers tend to praise the 

principle of falsification and comparison of output and observations, but  “defend” their 

models in practice, for example by attributing problems to data or comparison in general 

(Sundberg 2006). The material from the current study resembles the meteorologists’ accounts; 

for example, it emphasizes that observations include errors. One oceanographer spoke a great 

deal about the general importance of “observations” early in the interview, whereas his 

concrete examples later focused on how “data” contain errors and are not always suitable for 

model comparisons:  

 

Data doesn’t give, isn’t the truth, either, really. Because data can contain lots of errors. So when 

you are modeling, you also have to assess data, and I had a doctoral student … and he looked at 

something and then he looked at all the existing data and it turned out that they contained lots of 

errors, so he took away some data and took away some more data and finally, he had very little 

data that held for the numerical study he was undertaking. 
 

The oceanographers and astrophysicists speak of “observations” as principally synonyms of 

“the truth”, “reality”, or “nature” (cf. Merz 2006: 168f.; Knorr Cetina 1999: 52). When it 

comes to comparison to measurements in practice, existing data do not have the same status 

as the more general reference to “observations”. Comparisons between output and data are 

also difficult; it is like contrasting “apples and bananas” (sic), as one oceanographer expressed 

it. Thus, when researchers talk about comparisons with observations in general, they refer to 

observations as an ideal that constitutes the basis of empirical evidence. When they speak of 

how they use observations in practice, the messiness and inadequacy of concrete data enter 

the picture.  

 

The practical use of observations also depends on whether the simulations are “idealized” or 

“realistic”, a distinction which both oceanographers and astrophysicists make (cf. Sundberg 

2005: 139ff.). Compared to “idealized” simulations, “realistic simulations” are more 

comprehensive. They include more detailed process descriptions that interact in the 

calculation to better reflect the variability and complexity of real processes. The models often 

include more dimensions. In astrophysics, they have spherical or cylindrical rather than 
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Cartesian geometry. As one astrophysicist explained, the reason to “dress up the model” with 

“all these details” is to enable comparison with observations. Idealized simulations usually 

have a simpler set-up of initial conditions. They include fewer process descriptions, and they 

may be based on models with fewer spatial dimensions. Generally, the aim is to understand 

the relative importance of different physical processes for a particular phenomenon or the 

underlying mechanisms. The simulationist excludes descriptions of other real world processes 

that do not have major importance since they just interfere with the interpretation of what is 

important. Talking about one such simulation, an astrophysicist talked about how he “uses 

them as experiments, to try to understand the system, then you don’t necessarily match any 

observations. As in this case, we have no observations of planet in disks, we cannot compare 

this to anything, but we know that this happens sometime in some system.” This quote also 

shows that observations of astrophysical relevance are generally sparse compared to 

oceanographic data.  

 

Data are actually not only used to confront simulation output. Simulations are also seen as 

complements to the scarcity of observations (cf. Winsberg 2006). For example, one ocean 

modeller complained that “In the ocean there are so many processes and so many regions that 

are very poorly measured” but also added, “Actually the models help in getting the full 

picture.“ Oceanographers talk about how simulations “fill in the gaps” and give “more 

information”, not least because they produce so much output. This illustrates the persuasive 

impact of the abundance of numbers that simulations generate (Law 2007; cf. Helmreich 

1998). In addition, it shows how measurements do not only provide an epistemological test in 

relation to simulations. Output and data also complement each other as different forms of 

information.  

 

More importantly, comparison to observations serves a legitimatizing purpose. One 

oceanographer I interviewed did not himself place great importance on comparison to data, 

but mentioned it in order to legitimatize his research to others:  

 

A good theoretical article can be based on simulations [you have run] for the oceans … and 

perhaps you don’t verify, maybe you don’t have so many observations. That’s good research. 

But there is always the possible critique about how realistic is this? So what I did as a young 
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researcher [was to say] that the next step is to verify this, to make the reviewers happy, but you 

never did this [laughs]. No one makes a follow-up. (emphasis added) 

 

This researcher apparently felt that lack of comparison is somewhat controversial. At the 

same time, the quote indicates that there is a common acceptance of omitting it – as long as 

you present your work in an approved style and thereby relate to the “rules of the game”.  The 

inclusion of the reservation “to make the reviewers happy” illustrates the perspective of game, 

in which the expectations of the others in the group are recognized and anticipated. To publish 

in an approved style and know what goes on in your scientific field in a way that reflects the 

expectations of the group are skills to be learned (Delamont and Atkinson 2001: 103 ff; cf. 

Campbell 2003: 911). Thus, comparison of models and data is part of the rules of the game to 

which one publicly adheres. Yet the quote points out that the perspectives of game and play 

may exist side by side.  

 

The socialized simulationist in astrophysics or oceanography knows how to follow the rules 

of the game (in which the official striving for “realism” is important). One astrophysicist 

talked about why he had included a sentence on the importance of making realistic 

simulations in an article based on some highly idealized simulations: “If you would publish in 

a mathematical journal or a theoretical physics journal, then you would perhaps not write 

anything about observations. But because this is Astronomy and Astrophysics, then, if you 

don’t have a little bit of connection to observations, then you may be afraid that they [the 

readers] think that this is not astronomy.” 16  I do not claim that idealized simulations manifest 

the perspective of play and realistic simulations are part of game, but point out that scientific 

journals function as common communication channels. The choice of journal is therefore a 

choice of reference group and, consequently, of which expectations you are acknowledging. 

In Mead’s terminology, it is a question of which generalized other’s role is to be taken (cf. 

Shibutani 1955: 568).17 Most important, it is the publishing situation which brings out the 

perspective of game, even if everyday work is to some extent conducted from the perspective 

and activity of play.  

                                                 
16 A & A is one of the most important journals in astronomy and astrophysics.  
17 This discussion evokes associations to Bourdieu’s (e.g. 1988) theory of fields, the relation 
between the positions inside of them in general, and his analysis of the academic world in 
particular. However, it should be clear that the focus here is on the perspectives that the 
simulationists have in relation to rules.  
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Concluding Remarks  
This article has shown how the practice of numerical simulations gives rise to perspectives 

that can be understood in accordance with play and game, and are related to, but not 

exclusively part of, the process of socialization. I have also attempted to show how 

simulationists handle the everyday situation of dealing with unexpected output and in 

addition, how this relates to the perspectives.  

 

Unexpected outcomes lead to unfolding of computer models through adjustment of the set-up 

and investigation into the deepest mechanisms and framing. Observations serve both to check 

and complement simulation results. While this exploration’s primary purpose is to determine 

if the results are reliable and plausible, there is also fascination for what is strange, 

particularly for doctoral students. However, learning to evaluate data is part of doctoral 

studies. An experienced scholar may consider some results as “obviously wrong” or 

“implausible” results. To investigate results like that is therefore considered to be exploration 

of an artificial world. The doctoral student who interprets the results differently may think of 

it as an investigation of their potential realism (cf. Traweek 1988: 82).  

 

In addition, my observations indicate that the activity and perspective of playing is primarily a 

part of the working situation of doctoral students. Nevertheless, it was the research scientists 

who spoke most openly about both playing and interest in the modeled, “virtual” world. In 

fact, they gave their accounts spontaneously during the interviews. They are therefore of high 

evidential value with respect to the reconstruction of perspectives (cf. Becker 1958: 655). A 

possible explanation is that the doctoral students I interviewed had begun to acquire the game 

perspective, but in the position they occupied as not yet fully qualified members of the 

scientific world, they chose to emphasize the competence of their scientific work to a 

sociologist and outsider. In other words, their aim was probably to show how well they played 

the role of scientists. In contrast, a socialized member and participant in the game can afford 

to give a glimpse of playfulness to the outsider, while remaining a respected scientist among 

peers. This can be seen as an example of Goffman’s (1961: 114f.) point that it is those who 

feel secure in their role who express distance, whereas newcomers leave the expression of 

distance to a time when their competence has been proven.  
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Students who use simulations for their doctoral research work socialize into this practice and 

the ontology of computer models through development and/or use of simulation models. This 

presents two “dangers”. On the one hand, the student may become “trapped” in “code 

physics” and focus too much on the inner workings of the computer model. On the other 

hand, interpretation of the output without knowing the internal features of the computer code 

that created it may lead to a failure to distinguish between model physics and real world 

physics. Yet movements between observations, theory and simulations (through unfolding 

and framing) are movements in an internally referential system, not about encounters with 

reality. This is a feature of modern science in general, not a particular feature of simulation-

based science (cf. Knorr Cetina 1999: 71; 287 ff.). Nevertheless, this article has made a 

sociological contribution to the discussions about confusion of simulations, data and the real 

world by showing how playing with models is related to both situation and position. It has 

also shown how the focus on the virtual develops from practice. The “virtual worlds” of 

simulation models may enhance the facility by which the connection of scientific work to 

playing seems reasonable, but the more general point is that the investigation of scientists’ 

perspectives enables us to acknowledge that scientific practice is both serious (game) and fun 

(play). This complements the views of science as about power, alliance-building, or reputation 

(e.g. Bourdieu 1988; Latour 1987) (or mundane work, for that matter).  

 

Finally, this article has focused on similarities between the simulationists we have 

encountered in oceanography and astrophysics, rather than their differences. Nevertheless, in 

discussing “rules of the game”, one interesting difference concerns the connection to 

observations (and analytical results), and touches on the question of whether simulations are 

about to establish new standards and values of scientific practice (cf. Heymann 2006). 

Dowling (1999) has shown how simulation modellers make use of the methodological 

ambivalence of whether simulation is “theory” or “experiment”.  While it is problematic for a 

sociological analysis to draw upon these epistemologically laden categories without exploring 

the meanings of “theory” and “experiment” in the simulationists’ usage, it is clear that this 

ambivalence may be useful in everyday work, as we have seen in some of the examples in this 

article. Yet this ambivalence is not necessarily an asset in relation to, for example, 

publication, as the last part of the analysis suggests. What is the role of the simulationists’ 

work? Should it be framed to follow current standards of more traditional scientific 

knowledge or should it develop new ones? Further sociological investigation is necessary to 
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analyze how the particular “rules of the game” in simulation-based science are about to 

develop from within – rather than as prescribed from outside by the philosophy of science, 

and how the scientific disciplines will negotiate these changes.  

 

Literature 

Asplund, J. (1987) Det sociala livets elementära former. Göteborg: Korpen. 

Becker, H. S. (1958) “Problems of Inference and Proof in Participant Observation”, American 

Sociological Review, 23 (6): 652-660. 

Becker, H. S. and Carper, J. (1956) “The Development of Identification with an Occupation”, 

The American Journal of Sociology, 61 (4): 289-298. 

Becker, H.S., Geer, B., Hughes, E.C., Strauss, A. (1961) Boys in White: Student Culture in 

Medical School. Chicago: Chicago University Press. 

Bourdieu, P. (1988) Homo Academicus. Cambridge: Polity Press. 

Campbell. R. A. (2003)”Preparing the Next Generation of Scientists: The Social Process of 

Managing Students”, Social Studies of Science 33 (6): 897-927. 

Collins, H. M. (1985) Changing Order. Replication and Induction in Scientific Practice 

London: SAGE Publications. 

Collins, H. M. (1999)”Tantalus and the Aliens: Publication, Audiences and the Search for 

Gravitational Waves”, Social Studies of Science 29 (2): 163-197. 

Cubitt, S. (2001) Simulation and Social Theory. SAGE Publications. 

Delamont, S. and Atkinson, P. (2001) “Doctoring Uncertainty: Mastering Craft Knowledge” 

Social Studies of Science 31 (1): 87-107.   

Dowling, D. (1999) “Experimenting on Theories“, Science in Context 12 (2): 261–273. 

Edwards, P.N. (2001) “Representing the Global Atmosphere: Computer Models, Data, and 

Knowledge about Climate Change” in Miller, C. A. & Edwards, P. N (eds.) Changing the 

Atmosphere: Expert Knowledge and Environmental Governance. Cambridge, Massachusetts: 

The MIT Press. 

Goffman, E. (1961) Encounters. Two Studies in the Sociology of Interaction. Indianapolis: 

Bobbs-Merrill Educational Publishing. 

Heymann, M. (2006) “Modeling Reality. Practice, Knowledge, and Uncertainty in 

Atmospheric Transport Simulation”, Historical Studies in the Physical and Biological 

Sciences, 37 (1): 49-85. 

Huizinga, J. (1945) Den lekande människan (Homo ludens). Stockholm: Natur och Kultur.  

 22



Kennefick, D. (2000) “Star Crushing: Theoretical Practice and the Theoreticians’ Regress”, 

Social Studies of Science, 30 (1): 5-40. 

Knorr Cetina, K. (1997) “Sociality with Objects: Social Relations in Postsocial Knowledge 

Societies”, Theory, Culture and Society 14 (4):1-30. 

Knorr Cetina, K. (1999) Epistemic Cultures. How the Sciences make Knowledge. Cambridge: 

Harvard University Press. 

Knorr Cetina, K. (2001) “Objectual Practice” in Schatzki, T. R., Knorr Cetina, K., von 

Savigny, E. (eds.) The Practice Turn in Contemporary Theory. London: Routledge.  

Knuuttila, T. (2006) “From Representation to Production: Parsers and Parsers in Language 

Technology” in Lenhard, J., Küppers, G., Shinn, T (eds.) Simulation: Pragmatic 

Constructions of Reality. Sociology of the Sciences Yearbook. New York: Springer. 

Kuhn, T. (1970) The Structure of Scientific Revolutions. Chicago: University of Chicago 

Press. 2nd edition. 

Küppers, G., Lenhard, J., Shinn, T. (2006) “Computer Simulation: Practice, Epistemology, 

and Social Dynamics” in Lenhard, J., Küppers, G., Shinn, T (eds.) Simulation: Pragmatic 

Constructions of Reality. Sociology of the Sciences Yearbook. New York: Springer. 

Lahsen, M. (2005) “Seductive Simulations? Uncertainty Distribution around Climate 

Models”, Social Studies of Science 35(6): 895-922. 

Law, A. M. (2007) Simulation Modelling and Analysis. McGraw Hill. 4th edition. 

Latour, B. (1987) Science in Action. How to Follow Scientists and Engineers through Society. 

Cambridge: Harvard University Press. 

Mead, G. H. (1934) Mind, Self and Society. Chicago: Chicago University Press. 

Merz, M. (1999) “Multiplex and Unfolding: Computer Simulation in Particle Physics”, 

Science in Context, 12 (2): 293–316. 

Merz, M. (2006) “Locating the Dry Lab on the Lab Map” in Lenhard, J., Küppers, G., Shinn, 

T (eds.) Simulation: Pragmatic Constructions of Reality. Sociology of the Sciences Yearbook. 

New York: Springer. 

Oreskes, N., Shrader-Freshette, K., Belitz, K. (1994) “Verification, Validation, and 

Confirmation of Numerical Models in the Earth Sciences” Science 263: 641-646. 

Persson, M. (2007) Mellan människor och ting. En interaktionistisk analys av samlandet. 

Lund Dissertations in Sociology 76. Department of Sociology, Lund University. 

Pinch, T. (1993) “Testing, One, Two, Three-Testing: Towards a Sociology of Testing”, 

Science, Technology, and Human Values, 18 (1): 25-41. 

 23



 24

Rheinberger, H. J. (2000) “Cytoplasmic Particles: The Trajectory of a Scientific Object“ in 

Daston, L. (ed) (2000) Biographies of Scientific Objects. Chicago: Chicago University Pres. 

Roth, W.-R. and Bowen, G. M. (2001) “Creative Solutions and Fibbing results: Enculturation 

in Field Ecology”, Social Studies of Science, 31 (4): 533-556. 

Riezler, K. (1941) “Play and Seriousness”, The Journal of Philosophy, 38 (19): 505-517. 

Shibutani, T. (1955) “Reference Groups as Perspectives”, American Journal of Sociology, 60 

(6): 562–569. 

Sundberg, M. (2005) Making Meteorology. Social Relations and Scientific Practice. 

Stockholm: Stockholm University Studies in Sociology, New Series 25. 

Sundberg, M. (2006) “Credulous Modellers and Suspicious Experimentalists? Comparison of 

Model Output and Data in Meteorological Simulation Modelling”, Science Studies 19 (1): 52-

68. 

Sundberg, M. (2008) “The Everyday World of Simulation Modelling: The Development of 

Parameterizations in Meteorology”, Science, Technology, and Human Values. Doi: 

10.1177/0162243907310215. 

Traweek, S. (1988) Beamtimes and Lifetimes: The World of High Energy Physicists. 

Cambridge, MA: Harvard University Press. 

Turkle, S. (1984 [2004]) The Second Self. Computers and the Human Spirit. Cambridge, MA: 

The MIT Press. Twentieth Anniversary Edition. 

Turkle, S. (1995) Life on the Screen. Identity in the Age of the Internet. Touchstone. 

Winsberg, E. (1999) “Sanctioning Models: The Epistemology of Models”, Science in Context 

12 (2): 275–292. 

Winsberg, E. (2001) ”Simulations, Models and Theories: Complex Physical Systems and their 

Representations”, Philosophy of Science 68: 442–454. 

Winsberg, E. (2003) “Simulated Experiments: Methodology for a Virtual World”, Philosophy 

of Science, 70: 105-125. 

Winsberg, E. (2006) ”Models of Success versus the Success of Models: Reliability without 

Truth“, Synthese 152: 1-19. 



DEPARTMENT OF SOCIOLOGY 
WORKING PAPER SERIES  

 
Published by the Department of Sociology. Editors: Patrik Aspers, Christofer Edling and Barbara Hobson. 
 
This working paper series was launched in December 2005 to replace the two older series: Work, Organization, 
Economy Working Paper Series and Working Papers on Social Mechanisms. Copies of these working papers can 
still be ordered from the department. 
 
A complete list of old and new working papers can be found at www.sociology.su.se/publikationer. Recent working 
papers are downloadable in pdf-format. Older working papers can be ordered by e-mail from info@sociology.su.se. 
 
 
2008 
Nr 14 Socialization into Numerical Simulations:                     Mikaela Sundberg 
          The Perspectives of Simulationists in Astrophysics and Oceanography 
Nr 13 Interviews with mathematical sociologists                                                  Christofer Edling  
Nr 12 Friedrich Nietzsche as a Sociologist                                                                  Patrik Aspers  
Nr 11 Does the sex composition of a workplace differentially affect                       Magnus Bygren  
men´s and woman´s turnover rates?  
Nr 10. Den svenska forskningen om etnisk diskriminering av brottsoffer                 Olof Dahlbäck  
Nr 9. Immigration Skeptics, Xenophobes, or Racists? Radical Right-wing                 Jens Rydgren  
Voting in six West European Countries  
Nr 8. Stage Actors and Emotions at Work                                                                         Stina Blix  
Nr 7. A Note on Global Capitalism                                                                              Patrik Aspers  
Nr 6. Samhälle, globalisering och generell sociologisk teori                            Thomas Coniavitis,  
                                                                                                                                       Göran Ahrne  
Nr 5. Spatial Bridges and the Spread of Chlamydia:                                       Monica K. Nordvik,  
the Case of a County in Sweden                                                Fredrik Liljeros, Anders Österlund,  
                                                                                                                                 Björn Herrmann  
Nr 4. Den etniska omgivningen och skolresultat: en analys av elever                    Ryszard Szulkin  
i grundskolan 1998 och 1999  
Nr 3.  Analytical Sociology in Tocqueville´s                      Christofer Edling  
          Democracy in America                                                                                   Peter Hedström  
Nr 2.  Stock Repurchases and Interfirm Relations – A case study     Love Bohman  
Nr 1.  The role of social networks in ethnic conflicts:      Jens Rydgren 
         Locality and escalation 
 
 
 
 
 
 
 

http://www.sociology.su.se/publikationer
mailto:info@sociology.su.se

	Framsidemall_1_mikaela
	Department of Sociology
	Working Paper Series

	No 14 (August 2008)
	Mikaela Sundberg


	Socialization into Simulation WP edited
	Sista sidan1

