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We propose a new method for computing equilibria in heterogeneous-agent models with 

aggregate uncertainty. The idea relies on an assumption that linearization offers a good 

approximation; we share this assumption with existing linearization methods. However, 

unlike those methods, the approach here does not rely on direct derivation of first-order 

Taylor terms. It also does not use recursive methods, whereby aggregates and prices would 

be expressed as linear functions of the state, usually a very high-dimensional object (such 

as the wealth distribution). Rather, we rely merely on solving nonlinearly for a determinis- 

tic transition path: we study the equilibrium response to a single, small “MIT shock” care- 

fully. We then regard this impulse response path as a numerical derivative in sequence 

space and hence provide our linearized solution directly using this path. The method can 

easily be extended to the case of many shocks and computation time rises linearly in the 

number of shocks. We also propose a set of checks on whether linearization is a good ap- 

proximation. We assert that our method is the simplest and most transparent linearization 

technique among currently known methods. The key numerical tool required to implement 

it is value-function iteration, using a very limited set of state variables. 

This article is part of a Special Issue entitled “Fiscal and Monetary Policies”. 

© 2018 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

In this paper we propose a new and simple linearization method for analyzing frameworks with consumer heterogeneity

and aggregate shocks. We apply it in the context of an otherwise standard real business cycle model with two kinds of

technology shocks: those that are neutral, as in Kydland and Prescott (1982) , and those that are investment-specific, as

in Greenwood et al. (20 0 0) . Our main goal is to show how the method works but we also consider the simplest type of

potentially stabilizing fiscal policy for a version of our environment, namely, countercyclical budget deficits (financed by

lump-sum transfers). The method we propose is very straightforward and therefore, we hope, significantly easier to use

than many existing methods—it is accessible even to advanced undergraduates in economics. In this introduction, we begin
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with a brief motivation for including household heterogeneity in macroeconomic analysis. We then provide a quick summary

of the core features of the method and turn to the model setting and policy analysis. 

1.1. Why an interest in heterogeneity? 

Recently, the literature on business cycles and stabilization has placed an increasingly heavy emphasis on heterogene-

ity across households in a variety of characteristics: wealth, earnings, and more. Whence comes this new emphasis in

macroeconomics? There are several types of answers. One type of answer relies on the effect inequality has on macroe-

conomic aggregates. In the economic realm, there is now increasing evidence that the marginal propensities to make deci-

sions that are central for households—regarding consumption (in total as well as in terms of its structure), hours worked,

and investments in various forms of assets—vary quite substantially in the population; see, for example, the findings in

Johnson et al. (2004) who provided evidence on the departure from the permanent income hypothesis, and Misra and

Surico (2014) for estimating the heterogeneity in responses across households. This basic evidence has potentially sharp

implications for macroeconomic aggregates. Policy makers thus need to know how their proposed instruments affect dif-

ferent subgroups, as seemingly similar policies may actually have radically different effects (policies that are identical in

a representative-agent model are often not under heterogeneous agents). Thus, the use of representative-agent models in

macroeconomic theorizing runs the risk of overlooking these important channels. In particular, a given policy action can be

either more or less potent than what is predicted from such a representative-agent model. The rapidly expanding literature

on heterogeneous-agent modeling can likely be attributed in large part due to these arguments. 

One might also worry, as elaborated on in Piketty (2014) , that extreme inequality can lead to social unrest and even

threaten our democratic institutions. That is, there is a political realm too where inequality affects the macroeconomy. A

different way of expressing this point, along the lines of the argument above, is that the marginal propensities relevant

in political decisions—voting and political activities more generally—also vary within the distribution. The point that the

wealth distribution influences aggregate policy, like taxes, via dispersed political preferences is since long established (see,

e.g., Downs, 1957 , and Meltzer and Richard, 1981 ) but the broader implications for the smooth workings of democracy

are now increasingly emphasized. There is an older macro-and-political economy literature formalizing the tax-distribution

channel (see, e.g., Persson and Tabellini, 1994 , and Alesina and Rodrik, 1994 , as well as Krusell and Ríos-Rull, 1999 ) but the

broader connection is less explored. 

A second type of argument for the focus on inequality is simply that there is an increasing interest in it per se, per-

haps because we have social preferences displaying inequality aversion. In addition, economists and policymakers may be

interested in understanding the distributional consequences of aggregate shocks. For example, a small aggregate decline in

hours may mask substantial heterogeneity in unemployment risk across individuals. Regardless of any potential taste for

redistribution, it seems important for macroeconomists not just to work out the aggregate consequences of different shocks

and policy options but also their distributional impacts. 

A third type of argument, that is related to the first one but also more general in nature, is that the representative-agent

nature of most of macroeconomic modeling, like any other assumption, needs to be examined from a robustness perspec-

tive. Clearly, people in the real world are heterogeneous in many dimensions and how well the representative-agent model

approximates the aggregate behavior of a more diverse population really is a very open question. 1 That is, the focus on

heterogeneity can simply be viewed as an effort at examining the robustness (and perhaps inappropriateness) of the bench-

mark model. This endeavor has been ongoing but has been challenging due to the difficulties involved in solving dynamic

models with consumer heterogeneity, especially models with aggregate shocks. Krusell and Smith (1998) are a step forward

here, as are a number of other papers, including Den Haan (1997) , Ríos-Rull (20 01) , Reiter (20 09, 2010) , Ahn et al. (2017) ,

and many others; the present paper follows in the footsteps of especially the three latter papers. Many of the methods

that have been proposed were perhaps once upon a time demanding in terms of computer processing time or numerical

knowledge investments but these challenges are now much less daunting. As a result, in our view, computational difficulty

should no longer be a primary excuse for applied macroeconomists in abstracting from heterogeneity in modeling when

such heterogeneity is plausibly important for the workings of policy; after all, imagine if engineers had this attitude when

constructing buildings, bridges, or airplanes. At the same time, we must continue pushing forward in terms of providing

even better and more easy-to-use tools—just like in engineering science—and the present paper is one such effort. In the

case of heterogeneous-agent economies with aggregate uncertainty, all the available methods rely on some sort of approx-

imation, moreover, so it seems valuable to have an arsenal of different methods, thus justifying “engineering-style” work

along several parallel lines. 

1.2. The method 

As mentioned above, the literature has provided us with number of tools and techniques to numerically solve models

with heterogeneity and aggregate shocks. These methods can be used for the models we discuss in the present paper.
1 When macroeconomic theory is criticized by researchers from other areas within economics, the representative-agent assumption may be the most 

commonly mentioned point. When it comes to communicating with non-economists how macroeconomic textbook models work, it, of course, is even 

harder to motivate the representative-agent assumption; it is often best to simply not mention it. 
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However, the tools we develop here are, we think, particularly simple to use and intuitive. We especially hope that they

can become valuable for analyzing fiscal and monetary policy rules and their welfare implications for different subgroups

of consumers. However, as for how useful and accurate our method will be, of course, remains to be seen. As is typically

the case in computational economics, the most suitable method really varies depending on the specific model to be solved

and economic question to be answered. We will therefore not aim to make a general method evaluation here, but merely

present the key ideas and apply it in a set of simple examples. It should be noted that although our setting is very standard

and closely related to the setting in Krusell and Smith (1998) and that studied in the JEDC volume referred to below, its

benchmark does allow two continuously-valued shocks along with valued leisure. 

The key idea is to come up with an easy-to-use linearization technique. Linearization techniques of different sorts have

been developed in a number of applications. The first complete such contributions were provided in Michael Reiter’s work

( Reiter, 2009, 2010 ), but early approaches were also explored by a number of other economists, including Jeff Campbell, Hess

Chung, Stefan Krieger, and Marcelo Veracierto. Current, rather advanced, linearization techniques include Ahn et al. (2017) ,

which provides a very ambitious and general toolbox based on the authors’ previous work, and David Childers’ recent pa-

per ( Childers, 2017 ). In all these approaches, the linearization approach relies on taking derivatives analytically along the

lines of a Taylor expansion. In contrast we do not compute analytical derivatives. More importantly, unlike ours, the stan-

dard approach is built on recursive methods whereby aggregates and prices are expressed as (to be linearized) functions

of the state. The state is usually a very high-dimensional object—involving at a minimum the distribution of wealth across

agents, an infinite-dimensional object—and therefore potentially quite challenging to even describe, let alone linearize with

respect to. There are also many ways of constructing such a linearization and its law of motion. The approach we follow

here uses recursive techniques for solving the households’ problems but not for describing aggregates. Rather, we base our

linearization on a nonlinearly obtained solution for a deterministic transition path to an “MIT shock”. An “MIT shock” is an

unexpected shock that hits an economy at its steady state, leading to a transition path back towards the economy’s steady

state. We study a single, small “MIT shock” carefully, and then linearize directly using the computed impulse response. We

thus consider this impulse response as a numerically computed derivative of the effect of an initial (infinitesimal) shock on

the variable in question at different time horizons. 

As is typical, the linearization will be performed around a steady state. 2 Hence, in a first step we solve for a steady state

with entirely standard, and fully nonlinear, methods. We then study a deviation from this steady state and a transition back

to it. Consider for example a shock to aggregate TFP, which we denote by z and which, in the economy with aggregate

shocks, follows an AR(1) process in logs with a serial correlation parameter ρ . Thus, (the log of) the shock will go up by,

say, one unit in period 0 and thus delivers the full sequence of values (1 , ρ, ρ2 , ρ3 , . . . ) . When we solve for our resulting

deterministic equilibrium transition path, we consider a dynamic-programming version of the household’s problem where

the state variable consists of the individual’s own states (asset holdings and an income shock in our simple model, as in

Aiyagari, 1994 ) and, importantly, time. The appearance of time captures how aggregates affect the individual: the individual

takes as given a sequence of prices and because it is irrelevant for the individual how these prices are determined, they can

be summarized as depending simply on time. Notice that they will not involve aggregate uncertainty since we consider a

deterministic path. The computation of the deterministic equilibrium path is straightforward: it uses entirely standard meth-

ods. In particular, we guess on a price path (or the path for an aggregate variable like consumption), solve the household’s

problem backwards—given that we know that there will be convergence back to the same steady state—and then derive the

aggregate implications of the households’ behavior and update our guess for the price path. This iterative procedure is also

standard and fully nonlinear. 

The result of having computed the nonlinear transition path for the heterogeneous-agent economy is a time path for all

aggregate statistics: output, consumption, investment, prices, and the entire wealth distribution (as well as labor supply if

considered as endogenous). 3 So let us focus on a generic such aggregate statistic; we label it x , and we have thus obtained a

sequence { x 0 , x 1 , x 2 , . . . } . Now consider the same economy subjected to recurring aggregate shocks to z . The key idea behind

the procedure we use to compute equilibria in the aggregate-shocks economy is that we can, and do, regard the x sequence

in response to the one-time shock in the aggregate technology variable z (and exponential convergence back to its mean) as

well approximated by a linear system. (The shock appears in a multiplicative way and hence we linearize in the logarithm

of the variables.) A linear system would precisely mean that the effects of shocks are linearly scalable and additive so that

the level of x at some future time T , after a sequence of random shocks is simply x 0 εz,T + x 1 εz,T −1 + x 2 εz,T −2 + . . . , where

εz , t is the innovation to (the logarithm of) z in period t . Thus, our model with aggregate shocks can be obtained by mere

simulation based on the one deterministic path—the non-linear impulse response function—we obtained. 

It is instructive to compare our method with the recursive linearization methods in the literature referred to above.

In essence, those techniques construct (i) a linear mapping from (log) z and some summary description of the aggre-

gate state (such as a set of moments of the wealth distribution) to x and then (ii) a resulting linear law of motion for

the summary of the aggregate state. But this delivers precisely a linear system that, in reduced form, gives our simple
2 As all methods that rely on linearization, our method imposes certainty equivalence. Then, the variables in the non-stochastic steady state will by 

assumption coincide with the ergodic mean of those of the stochastic economy. 
3 Of course, individual agents move stochastically within this distribution due to idiosyncratic income shocks, but these wash out in the aggregate. 
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x 0 εz,T + x 1 εz,T −1 + x 2 εz,T −2 + . . . , so in this sense the intermediate steps (i) and (ii) are not needed if one can obtain

{ x 0 , x 1 , x 2 , . . . } , which we do with our nonlinear method. 

Linearity of a dynamic system allows for very powerful generalizations. First, we can look at any outcome variable.

For example, our transition-path equilibrium delivers the evolution for any distributional statistic, so x could be, say, the

3rd percentile of the wealth distribution. Second, one can incorporate more kinds of aggregate shocks easily: computa-

tion time rises linearly in the number of independent shocks. In the case of two shocks, a z and a q shock, one would

simply compute two transition-path equilibria, one for a period-0 deviation of z from its steady-state value and then a sim-

ilar one for q . Then, given the linearity, the effects of the two shocks are simply additive: the final effect on x in period

T is x z 
0 
εz,T + x 

q 
0 
εq,T + x z 

1 
εz,T −1 + x 

q 
1 
εq,T −1 + x z 

2 
εz,T −2 + x 

q 
2 
εq,T −2 + . . . , where εq , t is the innovation to (the logarithm of) q in

period t. 

A virtue of the linearization method compared to that in Krusell and Smith (1998) is that the case with valued leisure

can be computed in a more straightforward manner. In such a model, as in most cases where there is a nontrivial market-

clearing condition each period, 4 Krusell and Smith (1998) argue that it is necessary to use a two-step procedure: each

period during a simulation, a price (the wage in this case) needs to be iterated on so as to achieve exact market clearing,

and hence a supply function (for labor) of this static price needs to be computed. This supply function is obtained from

consumer maximization where future prices are taken as given functions of the future aggregate state but the current price

can deviate from such a rule. 5 In the linearization method here, no extra complication arises if there are nontrivial market-

clearing conditions each period. 

We must also emphasize that the key numerical tool used to implement our method—if not the only tool—is value-

function iteration. Value-function iteration is used for solving the consumer’s problem in a steady-state equilibrium. This

value-function iteration involves a small set of state variables (an exogenous idiosyncratic shock and capital, in our applica-

tion). Value-function iteration is then used again in solving for the transition path, now backwards over time, so time is the

only additional state variable here and the iteration involves only a number of steps equal to the number of time periods

until the new steady state is reached. In the former case, there is an outer layer of iterations over the steady-state interest

rate and in the latter case the iteration is over a sequence of interest rates, but there is no additional conceptual difference

between the two cases. Hence, solving for a transition path is really very similar to solving for a steady state. 

Is the equilibrium we compute accurate? That is, is our linearization an accurate method for the economy at hand? Given

that a distance measure between the computed equilibrium and the true one cannot typically be obtained in this class of

models, there is no simple answer. One check that can be performed, however, is to compute transition paths for different

initial shock sizes and signs and assess whether the resulting effects on the variables in question ( x in our example) are

scalable, as assumed in the linearization method. It may then turn out that significant nonlinearities appear or that the

shock responses are not approximately symmetric around zero, in which case non-linear methods are needed. One can

design a variety of checks of, such as drawing two consecutive MIT shocks, in period 0 and in period 1, and seeing whether

the resulting transition path is close to that obtained as a sum of two consecutive shocks. With two type of shocks z and q ,

one can subject the economy to simultaneous shocks of these variables at time 0 and then compare to the sum of each of

the two shocks, and so on. 

Finally, one may ask whether linearization does not eliminate some important mechanisms in a heterogeneous-agent

economy, such as the nontrivial evolution of the wealth distribution over time and its effects on aggregates. It does not: it

includes all the mechanisms (to a first order). For example, an aggregate shock will influence outcomes in a manner taking

into account the distribution of marginal propensities to consume and work, and the evolution of this distribution will itself

be solved for; linearization does not set these effects to zero but merely consider their first-order elements. 6 

1.3. The model 

The model we look at is a standard ( Aiyagari, 1994 ) economy, augmented to include valued leisure, with two kinds of

aggregate shocks: an input-neutral technology shock and an investment-specific technology shock. Consumers face idiosyn-
4 In the baseline Krusell and Smith model without valued leisure both the capital stock and aggregate hours are predetermined along any simulation 

path, such that the output market trivially will clear given the wage and interest rate from the firm’s problems. Along simulation paths households may 

be making forecast errors about next period’s capital stock, but contemporaneous prices always clear the market. 
5 The same complication appears, for example, when one solves an asset pricing model where a bond price needs to be computed each period; see 

Krusell and Smith (1997) . 
6 To be more concrete, consider an alternative model that will have similar features: one with two agents with a common utility function u ( c ), 

no idiosyncratic shocks and unrestricted borrowing and lending, but unequal wealth between the two agents. Then the equilibrium laws of motion 

will be given by the function H such that A ′ 1 = H(A 1 , A 2 , z) and A ′ 2 = H(A 2 , A 1 , z) and output will be given by y = G (A 1 , A 2 , z) , where A i denotes the 

wealth of agent i , y output, and z an exogenous shock; a prime denotes the variable’s value the following period. Because A 1 + A 2 = k, the aggre- 

gate capital stock, we have G (A 1 , A 2 , z) = 

˜ G (A 1 + A 2 , z) . Now consider how y t+ m will change for m > 1 in response to a change in log z 0 . Lineariza- 

tion means that we will identify dy t+ m 
d log z 0 

based only on the first-order effects, i.e., ˜ G 1 (A 1 ,t+ m + A 2 ,t+ m , z t+ m ) H 1 (A 1 ,t+ m −1 , A 2 ,t+ m −1 , z t+ m ) 
dA 1 ,t+ m −1 

d log z 0 
+ 

˜ G 1 (A 1 ,t+ m + 

A 2 ,t+ m , z t+ m ) H 1 (A 2 ,t+ m −1 , A 1 ,t+ m −1 , z t+ m ) 
dA 2 ,t+ m −1 

d log z 0 
+ 

˜ G 2 (A 1 ,t+ m + A 2 ,t+ m , z t+ m ) 
dz t+ m 

d log z 0 
. If preferences aggregate, H 1 = H 2 for all values of the arguments, and then 

it is easy to show that the first two terms of this expression are identical and thus collapse. If not, however, the evolution of the wealth distribution will 

evolve nontrivially, and it will nontrivially affect equilibrium outcomes. Thus, despite a lack of aggregation the linearization method does captures the 

effects going through an unequal and evolving wealth distribution. This argument is general and can in particular be applied in our context, where there 

is also a lack of aggregation. 
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cratic labor productivity risk against which they cannot insure directly but they can accumulate precautionary savings. For

this model, no aggregation theorem is available: the whole distribution of asset holdings among consumers matters for de-

termining aggregate capital accumulation and for total hours worked, because the marginal propensities to save (and work)

differ across consumers. In particular, more wealthy consumers are better insured and have higher marginal propensities to

save and lower marginal propensities to work. The consumption function is not linear either and is not necessarily concave.

We briefly look at a formulation of the model with a “demand externality” in the form of a reduced-form pure externality

on TFP from aggregate consumption. In particular, if consumption rises, so does TFP. The interpretation is that of utilization

of the input factors and the motivation comes from the recent work by Bai et al. (2017) . The difference being that our

demand channel amounts to a market failure; whereas those authors describe a search market with price posting, which

yields efficient outcomes. 

We illustrate the failure of aggregation by showing that Ricardian equivalence does not hold: we look at a transfer policy

with a stable rule for government bonds involving deficits when consumption is below steady state. 

1.4. Outline 

We begin by describing the model in Section 3 . We then briefly describe our computational approach in Section 4 after

which we show our results in Section 5 . In the latter section we also discuss accuracy of linearization based on looking at

transition paths with different sizes and signs of the initial shock. We conclude in Section 6 . 

2. Numerical methods in macroeconomics: a mini-history 

In this section we provide some relevant background in the form of a very brief history of numerical methods used in

dynamic macroeconomics for the purpose of producing “quantitative macroeconomic theory”, i.e., theory restricted to match

relevant microeconomic data and other facts, such as long-run trends. The specific aim here is to make connections between

the method we propose in the present paper and earlier methods and concepts; that is, we do in no way aim to accurately

reflect the whole literature on solving dynamic macroeconomic models. We discuss representative-agent models and how

they have been solved first. 

2.1. Representative-agent models 

We begin by noting that prior to the path-breaking work by Kydland and Prescott (1982) , researchers had used analytical

methods to characterize perfect-foresight equilibria that were the result of “MIT shocks”. An MIT shock, a term coined by

Tom Sargent, refers to an unpredictable shock to the steady-state equilibrium of an economy without shocks. That is, in

this economy no shocks are expected to ever materialize but nevertheless a shock now occurs. The analysis then focuses on

understanding the resulting equilibrium transition along a perfect-foresight path, again under the assumption that no shock

will ever occur again. Thus, the described procedure seems hard to square with rational expectations. 7 

The Kydland–Prescott paper developed a non-linear model without market frictions and, hence, could focus on solv-

ing a planning problem. This problem was approached using “linearization” around the steady state; Kydland and Prescott

first solved for the steady state, then provided a quadratic (second-order Taylor expansion) approximation of the objective

function—expressed in terms of the vector of choice variables—around that steady state, along with a linear set of (or lin-

earized) constraints. Thus, they obtained a linear-quadratic problem, which was well known to have an exact solution in

the form of a quadratic value function along with linear policy rules. The paper by King et al. (1988) and its technical ap-

pendix (separately published later, see King et al., 2002 ) describe this procedure in detail, including how to compute all the

endogenous policy and value-function parameters. 8 

A key element in the approach pioneered by Kydland and Prescott was the use of a recursive system, which fits value-

function methods well. The key objects sought were thus functions of a state vector of exogenous and endogenous variables.

To be concrete, one would for example in the very simplest case of a stochastic growth model with optimal saving and no

adjustment costs find output, y , to be a function G of the capital stock, k , and TFP, z : y = G (k, z) . Similarly, the law of motion

for the endogenous state would be written using a function H as k ′ = H(k, z) . Thus, linearization amounted to finding linear

approximations of G and H —in the form of vectors. 9 Once the vectors approximating G and H had been found, the system

was simulated by drawing shocks and unconditional moments were computed, such as correlations between macroeconomic
7 The “MIT” qualifier reflects the fact that one or more researchers at MIT used this method. Sargent, at the time of the invention of the term, was at 

Minnesota; he received his PhD in Cambridge, Mass., but from Harvard. 
8 As of publication, King, Plosser, and Rebelo’s two papers the Kydland–Prescott paper all have thousands of citations. The paper by King et al. (1988) of 

course made other, distinct contributions, such as finding an explicit class of utility functions that was sufficient and necessary for balanced growth with 

constant hours worked. 
9 An alternative method in the literature has been to derive a set of linear stochastic difference equations whose solutions then delivers G , when ex- 

pressed recursively. The solved-out stochastic sequence for capital, in our example, would then satisfy k 1 = H(k 0 , z 0 ) , k 2 = H (H (k 0 , z 0 ) , z 1 ) , and so on. 



T. Boppart et al. / Journal of Economic Dynamics & Control 89 (2018) 68–92 73 

 

 

 

 

 

variables and their relative percentage standard deviations. The figure below, drawn from Kydland and Prescott (1982) , il-

lustrates. 

Quite soon, researchers started examining the numerical accuracy of the solutions obtained with the linear-quadratic

approximation method; after all, the underlying model had nonlinear elements of potential quantitative importance. The

classic 1990 issue in the Journal of Business and Economic Statistics , edited by Talyor and Uhlig (1990) , collected a number

of papers employing linear-quadratic other methods to solve the same underlying model—the stochastic optimizing growth

model: see the next figure for the front page. 
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The conclusion from the JBES issue was that nonlinearities simply did not seem to play a very important role in the

model under study. 

Meanwhile, another development in macroeconomics was taking place whereby VARs—vector autoregressions, a tool pri- 

marily used for empirical analysis—came to increasing use. The path-breaking paper on this topic, Sims (1980) , specified a

linear system of equations for macroeconomic aggregates. From the present perspective, such a system can also be derived

from the solution to a linear-quadratic model, which researchers soon realized. This meant, in particular, that estimated

VARs became a convenient tool for comparing model to data: one compared the model-generated VAR to that estimated in

the data, the result of which became known as “structural VARs”, whereby some model parameters were estimated directly

using a VAR, either with classical or Bayesian econometrics. 

But more importantly from the present perspective, VARs propelled the use of impulse response functions , IRFs in quanti-

tative macroeconomic theory: the use of the linear system to trace out the path for an endogenous variable in response to

an exogenous shock at an initial point in time. Using a purely empirical VAR, one would identify exogenous shocks—such as

one to technology—along with their autocorrelation properties and then evaluate how an endogenous variable, like output,

would behave over time in response to a shock innovation at time zero. Using the linear system obtained as an approxima-

tion to the optimal policy rules at a steady state of the theoretical model one can also generate an IRF (and the two IRFs

can be compared—an alternative data-model comparison to that of using the unrestricted VAR system); a typical example

from the literature of model-generated IRFs is shown in the figure below (countless papers display such multi-box graphs,

especially in the monetary literature). 

The key about an IRF here is that it can be viewed as a response to an MIT shock: let the economy be in steady

state, expose it to an “unexpected” shock and work out how the endogenous variables will behave over time in a rational-

expectations equilibrium under the assumption that no other shocks materialize. The rational-expectations part sounds con-

tradictory, again, but is not: in a linear-quadratic model, certainty equivalence holds, i.e., the coefficients of the linear policy

rules do not depend on the second-order moments of the shock processes. This means, in particular, that an IRF can be

viewed as the average (conditionally expected) path of an endogenous variable, thus integrating in this expectations oper-

ator across outcomes of all future shocks (given the initial shock). Thus, the perfect-foresight response to an unexpected

shock conditional on no other shocks occurring coincides with the average response to a shock of the same size that was

expected (in the sense that it had a zero expected mean but a positive variance) and that is later followed by other shocks.

Hence, the linearity of the basic models made MIT shocks turn out to be really useful! 

Approximate linearity was then used to compute equilibria in a very broad set of business-cycle models, including those

with price and wage stickiness. Thus, packages like Dynare or Uhlig’s Toolkit became ubiquitous in research as well as teach-

ing; it is probably not an understatement to say that this development revolutionized quantitative macroeconomic theory.

These packages ask the researcher to input the model’s dynamic equations in their non-linear form and then automatically

offer (i) a calculation of the steady state; (ii) the (linear) equilibrium decision rules; (iii) the corresponding impulse response

functions; and (iv) an estimation routine. It should be noted that in many (most?) of the applications in the literature there

was no separate check that a linear approximation is indeed accurate. 

For some questions, the linear-quadratic approximation is not useful; one example is asset pricing or portfolio choice,

where higher moments of the shocks are at the core of the analysis. Similarly, in models where non-linearities are believed

to play a central role, it is also crucial to use other methods. Here, researchers have explored different paths; one is to

use one out of a variety of the general non-linear approaches (of which several were applied in the Taylor-Uhlig volume

referred to above) and another path was to develop second-order perturbation methods; see, e.g., Judd and Guu (1997) or

Schmitt-Grohe and Uribe (2004) . 
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2.2. Heterogeneous-agent models 

The numerical analysis of models with heterogeneous consumers and uninsurable idiosyncratic shocks started with pa-

pers by Imrohoroglu (1989) , in a partial-equilibrium case, and Huggett (1993) and Aiyagari (1994) in general equilibrium.

Given that borrowing constraints and uninsurability were central features in these models, it was impossible to avoid non-

linear methods for solving the consumers’ problems. 10 Thus, these papers, which defined and computed steady states, em-

ployed value-function iteration, much as in some of the contributions to the JBES volume, now applied at the individual

level. In Huggett’s and Aiyagari’s work, the price-determination algorithm worked as follows: (i) the agent’s dynamic pro-

gramming problem is first solved using non-linear methods based on a guess on a set of prices (such as the steady-state

interest rate); (ii) the decision rules are then aggregated to check market clearing in the steady state; (iii) and, in case

markets do not clear, an update on the price(s) is computed and the procedure is repeated until markets do clear. 

A steady-state equilibrium in the heterogeneous-agent economy under study in these papers consists (aside from de-

cision rules and value functions solving the consumers’ problems) of a small set of prices or aggregate variables (one, in

each of the cases of Huggett, 1993 , and Aiyagari, 1994 ) and a stationary distribution of consumers, within which there are

idiosyncratic movements but whose aggregate moments are all constant. The algorithm described has proven to work for

a large number of applications. It should be noted here in this context that a reason why these steady-state equilibria are

rather straightforward to compute is that a given consumer’s dynamic-programming problem is mostly independent of how

other consumers behave; the only relevant input is a very low-dimensional object such as an interest rate and a wage

rate (which, of course, are affected by all consumers). 11 Not all steady-state models with heterogeneous agents have this

pleasant feature, however. One case in point is models where consumers care directly about the whole distribution of the

other consumers’ state variables, such as in a decentralized search-matching context (whether in a monetary, labor, or other

application). A concrete example here is the setup considered in Krusell et al. (2010) : they solve a model that is a straight

marriage between Aiyagari (1994) and Pissarides (1985) . In their model, a consumer’s asset holdings will influence the value

of being unemployed and hence, in a bargaining situation with a firm, determine the wage outcome: a higher asset level

allows you to bargain for a higher wage. Moreover, the wage as a function of asset holdings then becomes an equilibrium

object that consumers need to know when solving their savings problems, since a higher rate of saving today then implies

higher wages in the future according to the equilibrium wage function. Thus, the set of equilibrium variables appearing as

an input into the consumer’s problem is not small in this case: it is a whole function. Thus, one needs more sophisticated

numerical methods to solve for this kind of stationary equilibrium. 

Equilibria with heterogeneous agents and aggregate shocks were initially computationally intractable. The reason is

that in such models, the recursive objects G and H that generalize the representative-agent framework are both infinite-

dimensional. The key reason for this, in turn, is that the economy’s endogenous state vector is infinite-dimensional: it con-

sists of the whole distribution of wealth (jointly with idiosyncratic shock outcomes). The incomplete-markets assumption,

namely, makes any aggregation theorem invalid as a rule, even with preferences in a suitable class and, hence, the whole

distribution of asset holdings today is necessary for predicting the total amount of capital tomorrow. The reason, of course,

is that agents with different amounts of wealth have different mar ginal propensities to consume. Denoting the distribu-

tion by �, we would thus have (again with a focus on output as the endogenous variable), y = G (�, z) and �′ = H(�, z) .

Linearization did not seem like a natural path forward because (i) the individual’s problem (which is also a determinant

of G and H ) is fundamentally nonlinear and (ii) linearization in infinite dimensions is a challenge ( G and H both have an

infinite-dimensional argument and H is an infinite vector-valued function). 

Surprisingly, however, Krusell and Smith (1998) , followed by Krusell and Smith (1997) , Den Haan (1997) , and Ríos-

Rull (2001) , found that a (fully non-linear) solution method appeared to work quite well for a set of economies that could

be viewed as straightforward extensions of Huggett (1993) and Aiyagari (1994) to the case of aggregate uncertainty, or to

Kydland and Prescott (1982) by adding heterogeneous agents and uninsurable idiosyncratic risk. 12 The approach pursued by

Krusell and Smith was to summarize the distribution � by a small set of moments and replace H with a function that only

maps this small set of moments from the current to the next period. Thus, so long as a consumer only needed to know

prices which are determined by the small set of moments and these moments could be predicted well by their own past,

one obtained a “solvable” setting; for a very detailed discussion of the method and a discussion of its accuracy, see Krusell

and Smith (2006). It turned out, in particular, that “approximate aggregation” obtained, namely that only one moment of �

(the mean) sufficed for producing remarkably good forecasting accuracy. 
10 The focus of our paper is household heterogeneity, but the methodological challenges posed by models with firms heterogeneity, see, e.g., Khan and 

Thomas (2008) for a representative contribution, are very similar to those presented here. Our method is therefore applicable in that class of models as 

well. 
11 Moreover, for a constant-returns production function, the interest rate and the wage rate are in a one-to-one relation to each other so really only one 

endogenous equilibrium variable is used in the consumer’s problem. 
12 Krusell and Smith (1998) also considered valued leisure; Den Haan (1997) looked at an endowment economy; and Krusell and Smith (1997) looked at 

portfolio choice and asset pricing. 
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Like in the early days of numerical representative-agent analysis, a volume appeared, now in the Journal of Economic

Dynamics and Control : the issue edited by Den Haan et al. (2010) ; a front page is displayed in the figure below. 13 

The overarching question in this JEDC issue was whether the proposed small-set-of-moments approach was accurate

enough. Hence, the issue contained papers offering a plethora of other methods and a summary of the findings in the issue

was that, at least for the model under study, all the methods delivered close-to-identical equilibria and, by implication, that

the small-set-of-moments approach was quite accurate and powerful. 

A name in the JEDC issue stands out: Michael Reiter. Reiter’s earlier work ( Reiter, 2009 ), namely, had unveiled how

linearization could be accomplished in this class of models, again something that had appeared impossible. The idea here

was to solve the consumer’s problem at steady state fully non-linearly and then to summarize the decision rules of this

problem with a finite set of parameters. These parameters were then made to depend on an aggregate state variable ˆ �,

which in turn was a reduced-dimension version of the full distribution � (but not necessarily the moments of �). The

equilibrium could then be linearized with respect to this finite vector summarizing �: G and H can be replaced by (large but

finite) vectors. The description of Reiter’s approach here is too brief to be clear, but the point is that a sophisticated method
13 It proved impossible to find a front page on the internet; we would be very grateful if anyone could send us a copy of it. With a little help from a 

friend, Filip Rozsypal, we got by: he very kindly produced a photo-shop “replica”. 
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can be designed and implemented, thus in the end allowing a feasible linearization approach also to heterogeneous-agent

models with aggregate risk. Reiter (2010) offers a refined, more efficient version of the same method. Several other authors

had previously explored linearization but failed to deliver a completed and tested algorithm. Since Reiter’s work, more

papers have offered additional linearization methods. Most recently, Ahn et al. (2017) propose a method that is particularly

powerful in reducing the dimensionality efficiently. 14 

Substantively, Reiter’s method suggested that the class of models not only appeared to satisfy approximate aggregation

but also that these models were well approximated by a linear system. Interestingly, in parallel, some papers in the literature

did provide fully nonlinearly obtained numerical solutions to transition paths following MIT shocks. 15 I.e., they provided

impulse responses. The point we make in the present paper is that under the assumption that linearization works well—

as suggested by Reiter—these impulse-response functions, obtained by non-linear methods, can be used directly to also

simulate the behavior of the economy under aggregate uncertainty, as outlined in the introduction and described in more

detail below. The fundamental reason is that in linear systems, effects of recurring, or different, shocks are additive and the

effects scalable. The assumption “linearization works well” then simply means that an impulse response, if it is a response

to a small MIT shock, can be interpreted directly as a linear response. The word “small” is important here, as one should

view it as of the size required to produce a numerical derivative: the entire impulse response (of all endogenous variables)

should thus be viewed as a numerically computed derivative of the initial shock. 

As pointed out, the methods proposed here rely on assuming that linearization works, but in this sense the approach is

not different than that in most of the applied Dynare-based literature on representative agents, or that in the recent papers

like Ahn et al. (2017) on solving heterogeneous-agent models: they all assume that linearization works. We do discuss this

key assumption and propose some tests that can be conducted, namely to try out different MIT shocks (or combinations

thereof) and see whether the additivity and scalability are approximately satisfied. In our example economies, these tests

are passed with flying colors. 

3. The settings 

We consider a variety of models, the focus of course being on heterogeneous-agent economies. However, we also study

a very standard representative-agent model to illustrate how our methods work. The representative-agent model can be

solved non-linearly for a response to an MIT shock with standard Dynare commands. We then use this response to gen-

erate a simulation with shocks and use it to compute conditional moments. Therefore, we begin with a description of the

representative-agent economy, after which we describe the heterogeneous-agent economy. At the end we also look at a

model with a demand externality; we describe this setting last. 

3.1. A benchmark representative-agent model 

Though our benchmark representative-agent framework involves no frictions, so that one could focus on a planning

problem, we describe the decentralized equilibrium here as it is the core on which the equilibrium with heterogeneous

agents is later built. 

The production technology is standard and involves two shocks. There is a representative firm producing under perfect

competition according to the following production function: 

y t = z t k 
α
t h 

1 −α
t . (1)

Thus, the firm solves 

max 
k,h 

= z t k 
αh 

1 −α − r t k − w t h, (2)

at time t where the rental rate, r t , and the wage rate, w t , are taken by the firm as given. The term z t is a random variable

that is taken by the firm as given too; it is exogenous and follows a stochastic process given by log z t+1 = ρz log z t + σεz εz,t+1 ,

with ρz ∈ (0, 1) and εz a standard normal shock. 

Capital accumulation occurs according to 

k t+1 = (1 − δ) k t + i t , (3)

where i t is investment measured in efficiency units of capital. 

The resource constraint reads 

c t + q t i t = y t , (4)

where q t is an investment-specific technology shock; a fall in its value increases the capacity for producing capital. We

assume that the investment-specific technology too follows an AR(1) process in logs: log q t+1 = ρq log q t + σεq εq,t+1 , with

ρq ∈ (0, 1) and εq a standard normal shock. 
14 Ahn et al. (2017) are also producing easy-to-use Dynare-like packages based on their methods. 
15 One example is provided in Krusell et al. (2009) , where there is an unexpected removal of all TFP fluctuations—these shocks are replaced with their 

conditional mean as of time 0—and a deterministic path toward a steady state is solved for. 
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There is a representative household solving 

max 
{ k t+1 ,b t+1 ,h t ,c t } ∞ t=0 

E 0 

{ 

∞ ∑ 

t=0 

βt u (c t , h t ) 

} 

, 

subject to 

q t k t+1 + b t+1 = (q t (1 − δ) + r t ) k t + b t (1 + ̃

 r t ) + w t h t − c t − T t , (5)

h t , c t ≥ 0, and a standard no-Ponzi scheme condition. We have 0 < β < 1, σ > 0, and θ > 0. Labor supply is endogenous; T is

a lump-sum transfer that will be considered only in the heterogeneous-agent model. We note that there are two assets:

physical capital and government bonds (denoted by b ). They must have the same return in a deterministic version of the

model and, under aggregate uncertainty and a linearized equilibrium, the same expected return, even though government

bonds gives a safe return and the return to capital is risky: 

1 + ̃

 r t+1 = E t 

[ 
q t+1 

q t 
(1 − δ) + 

r t+1 

q t 

] 
. (6) 

The government budget, finally, reads 

b t+1 = b t (1 + ̃

 r t ) − T t . (7) 

When we implement a budget rule in the heterogeneous-agent model we will be more specific on the joint path T and b ;

in the representative-agent model Ricardian Equivalence holds so whatever rule is in place will not affect the equilibrium

allocation. 

The equilibrium characterization is straightforward and standard. The first-order conditions of the household problem

read 

u c (c t , h t ) = βE t 

{ (
q t+1 

q t 
(1 − δ) + 

r t+1 

q t 

)
u c (c t+1 , h t+1 ) , 

} 

(8) 

and 

u c (c t , h t ) w t = −u h (c t , h t ) , (9)

together with a transversality condition. The firm’s first-order conditions are 

r t = αz t (k t /h t ) 
−(1 −α) , (10) 

and 

w t = (1 − α) z t (k t /h t ) 
α. (11) 

The equilibrium sequence { c t , h t , k t+1 } ∞ 

t=0 is then simply given by 

u c (c t , h t ) = βE t 

{ [ 
q t+1 

q t 
(1 − δ) + 

αz t+1 

q t 
(k t+1 /h t+1 ) 

−(1 −α) 
] 

u c (c t+1 , h t+1 ) 
} 

, (12) 

u c (c t , h t )(1 − α) z t (k t /h t ) 
α = −u h (c t , h t ) , (13)

and 

q t k t+1 = (1 − δ) q t k t + z t k 
α
t h 

1 −α
t − c t , (14)

which amounts to a system of stochastic difference equations in the sequences for consumption, hours, and capital, with

the restrictions k 0 and a limit condition that combines the no-Ponzi game constraint and a transversality condition; the

stochastic z and q processes are an exogenously given determinant of the consumption, hours, and capital processes. 
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The steady state can be found as a solution ( k , h , c ) to the above equations when shocks are constant (and normalized

to 1), i.e., three equations in three unknowns: 

1 = β
(
1 − δ + α(k/h ) −(1 −α) 

)
, 

u c (c, h )(1 − α)(k/h ) α = −u h (c, h ) , 

and 

δk = k αh 

1 −α − c. 

In our application we will use the following functional form of preferences: 

u (c t , h t ) = 

c 1 −σ
t − 1 

1 − σ
− ψ 

h 

1+ 1 
θ

t 

1 + 

1 
θ

. 

3.2. The heterogeneous-agent model 

We now describe the model when consumers are subject to idiosyncratic shocks. For easier notation, we describe it

without transfers and bonds but our computations include the same kinds of taxes as used in the representative-agent

setting. 

In the heterogeneous-agent model, different consumers will have different amounts of efficiency units of labor per hour

worked and different levels of wealth. Wages thus consist of two components: an aggregate part, w, and an idiosyncratic

one, ε, which is independent across consumers and for which a law of large number holds. There is no direct insurance

against wage shocks but workers can save and they can borrow subject to a borrowing constraint: their borrowing must

not exceed −k . The implication of these assumptions is that a workers wealth will fluctuate over time—reflecting precau-

tionary savings—and that the marginal propensities to consume and work will vary in the population. Hence, changes in

the aggregate economy, e.g., through policy, will generate nontrivial responses by the aggregate of consumers. Hence, the

joint distribution of ε and wealth will matter for outcomes in this model; we will denote this distribution � and it will be

defined below. This distribution is also the high-dimensional state variable that makes computation in this class of models

challenging as it will evolve endogenously over time. In a steady state it will be constant: individual wealth and income will

vary stochastically but the overall distribution of these quantities across individuals will not change. 

Aside from aggregate prices today and in the future, the consumers decision will be informed by the initial individual

state, which can be summarized here by the idiosyncratic wage shock, ε, and cash on hand (excluding current labor income),

which we denote ω. We formulate the consumer’s problem recursively and we begin by defining a stationary equilibrium.

For all ( ω, ε), the following functional equation has to be met: 

V (ω, ε) = max 
k ′ ,h 

u (ω + εwh − k ′ , h ) + βE[ V (k ′ (1 − δ + r) , ε′ ) | ε] , 

s.t. k ′ ≥ k . Here, ε is some (idiosyncratic) productivity process on finite support to be specified later. This problem leads to a

pair of decision rules for capital accumulation and hours: f k ( ω, ε) and f h ( ω, ε), respectively. 

A stationary equilibrium can now be defined as prices r and w, decision rules f k and f h , and a stationary distribution �

such that 

1. f k ( ω, ε) and f h ( ω, ε) attain the maximum in the consumer’s problem for all ( ω, ε); 

2. r = F k ( ̄k , ̄h ) and w = F h ( ̄k , ̄h ) , where k̄ ≡ ( 
∑ 

ε

∫ 
ω ω �(dω , ε)) / (1 − δ + r) and h̄ ≡ ∑ 

ε

∫ 
ω ε f h (ω, ε)�(dω, ε) ; and 

3. for all relevant Borel sets B , �(B, ε) = 

∑ 

˜ ε πε| ̃ ε
∫ 
ω : f k (ω , ̃ ε)(1 −δ+ r) ∈ B �(dω, ̃  ε) . 

In this definition we use F (k, h ) ≡ k αh 1 −α and we implicitly, then, set z = 1 ; similarly, we implicitly set q = 1 . 

An equilibrium with aggregate shocks can be defined as well in a standard manner. We instead define the equilibrium

we will compute, that is, a deterministic equilibrium where z and q follow predictable paths. 16 In an equilibrium, we have

a consumer’s problem that can be written, for all t , 

V t (ω, ε) = max 
k ′ ≥k ,h 

u (ω + εw t h − k ′ , h ) + βE 

[ 
V t+1 

(
k ′ 

(
q t+1 

q t 
(1 − δ) + 

r t+1 

q t 

)
, ε′ 

)
| ε

] 
. 

This problem leads to decision rules f k , t ( ω, ε) and f h , t ( ω, ε). 

A sequential equilibrium can now be defined as the sequences of prices { r t } ∞ 

t=0 and { w t } ∞ 

t=0 , decision rules 
{

f k,t 

}∞ 

t=0 
and{

f h,t 

}∞ 

t=0 
, and a distribution { �t } ∞ 

t=0 such that 

1. f k , t ( ω, ε) and f h , t ( ω, ε) attain the maximum in the consumer’s problem for all ( ω, ε) and t ; 
16 Our definition here also serves the role of highlighting how the agent’s problem in a transition-path equilibrium is very similar to that in a steady 

state and, hence, can be computed in a very similar way. 
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2. r t = z t F k ( ̄k t , ̄h t ) and w t = z t F h ( ̄k t , ̄h t ) , where k̄ t ≡ ( 
∑ 

ε

∫ 
ω ω �t (dω , ε)) / 

( q t+1 
q t 

(1 − δ) + 

r t+1 
q t 

)
and h̄ t ≡∑ 

ε

∫ 
ω ε f h,t (ω, ε)�t (dω, ε) ; and 

3. for all relevant Borel sets B , �t+1 (B, ε) = 

∑ 

˜ ε πε| ̃ ε
∫ 
ω : f k,t (ω , ̃ ε) 

(
q t+1 

q t 
(1 −δ)+ r t+1 

q t 

)
∈ B �t (dω, ̃  ε) . 

3.3. Adding a demand externality 

We now look at a simple extension whose main purpose is computational: to try to solve for an equilibrium where two

aggregate (price or quantity) sequences need to be guessed and iterated upon in order to solve for a transitional equilibrium

in response to an MIT shock away from steady state. 

Thus, assume that the aggregate production function reads 

y t = A t k 
α
t h 

1 −α
t , (15) 

where A t ≡ z t φ( c t ) is taken as given by firms but c t denotes aggregate consumption. The factor φ( c t ) thus captures the

externality; it is an increasing function and can perhaps be thought of as a “utilization” function driven by consumption

demand. 

Thus, the firm solves 

max 
k,h 

= A t k 
αh 

1 −α − r t k − w t h (16) 

at time t . 

Given this formulation, one can ask how a planner would wish to choose an allocation—in what way the market allo-

cation fails. However, that is not our aim here. Rather, let us note that if c t does not appear as an argument in TFP, i.e., if

there is no consumption externality, then knowing the capital-labor ratio, along with z t , one can compute the equilibrium

prices r t and w t . With an externality, however, the capital-labor ratio is not sufficient information: one needs to know both

this ratio and the level of consumption. Therefore, when solving for a transition equilibrium in response to an MIT shock,

one needs to guess on two sequences (either for r and w or for c and k / h ) in order to have enough information so that

the consumer’s problem is fully specified and can be solved. This is not a model virtue per se, of course; we merely add a

“complication” so that we can put our method to a slightly more demanding test. 

4. Numerical approach 

Here we describe some details of our computations. 

Representative-agent model. We solve the representative-agent model in Dynare. Dynare has a routine that solves for

a transition path nonlinearly, and we use this routine to find the transitional equilibrium. We start at a steady state and

consider a small increase in z 0 and a subsequent deterministic transition of z 1 , z 2 , and so on, back toward 1. We treat the

resulting transitional path for output (and any other aggregates of interest) as an impulse response—a numerical derivative

of output k periods hence in response to a shock to (the logarithm of) z at time 0—and then use this impulse response in

simulations to obtain realizations of the stochastic equilibrium based on which we then compute unconditional moments.

We then compute another transition path, this time for an innovation to (the logarithm of) q , and compute the deterministic

transition path. These paths are then employed to run simulations and compute unconditional moments—in the case of

output only, its autocorrelation function—that can be compared to those produced by the standard Dynare output based on

linearization. 

In carrying out these computations and comparisons, accuracy is improved by (i) choosing an appropriately small initial

shock (so as to approximate a numerical derivative as well as possible); (ii) setting a small enough tolerance level for

Dynare’s nonlinear routine; and (iii) allowing sufficiently many time periods in the impulse response. 

Heterogeneous-agent model, stationary equilibrium. For the heterogeneous-agent model the first step is to find a sta-

tionary equilibrium. We carry this task out using our own MATLAB code. The consumer’s problem is solved on a grid using

the endogenous grid point method of Carroll (2006) . 17 The individual income process is an AR(1) process and we use 7

grid points to discretize the process into a Markov chain using Rouwenhorst’s method ( Kopecky and Suen, 2010 ). For the

decision rules, the asset grid has 50 points, non-linearly spaced, and households can choose points off the grid by piecewise

cubic interpolation ( pchip in MATLAB). The dynamic programming problem is then solved by evaluating the value function

at the optimal decisions for consumption, hours, and savings. 

The steady state is solved for simultaneously with the calibration of the capital-output ratio and hours worked. Instead

of having nested loops—where one guesses on parameters, then conditional on those parameters solves for market clear-

ing prices, then checks if those prices are consistent with the calibration targets—there is only one loop where we use

parameters to clear markets at fixed prices (instead of using prices to clear markets at fixed parameters). The target for
17 The method involves guessing a policy rule for consumption of a function of assets and idiosyncratic productivity, setting a grid on tomorrow’s assets, 

then solving (in closed form) for today’s consumption using the Euler equation of the household. This then allows one to cover the implied grid for today’s 

assets consistently (hence giving the method its name) which is then used to update the consumption function. We do the updating by interpolating the 

consumption function between the exogenous and endogenous grids using piecewise cubic interpolation. 
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Table 1 

Correlations between variables — RA economy. 

z q y c i h r w 

Our method ( N = 500 ) 

1.0 0 0 −0.021 0.785 0.506 0.286 0.372 0.199 0.748 

−0.021 1.0 0 0 −0.533 0.324 −0.856 −0.911 0.156 −0.124 

0.785 −0.533 1.0 0 0 0.496 0.512 0.686 −0.257 0.867 

0.506 0.324 0.496 1.0 0 0 −0.492 −0.284 −0.614 0.863 

0.286 −0.856 0.512 −0.492 1.0 0 0 0.969 0.349 0.016 

0.372 −0.911 0.686 −0.284 0.969 1.0 0 0 0.137 0.236 

0.199 0.156 −0.257 −0.614 0.349 0.137 1.0 0 0 −0.502 

0.748 −0.124 0.867 0.863 0.016 0.236 −0.502 1.0 0 0 

Dynare 1st order 

1.0 0 0 −0.021 0.785 0.506 0.286 0.372 0.199 0.748 

−0.021 1.0 0 0 −0.533 0.324 −0.855 −0.911 0.156 −0.124 

0.785 −0.533 1.0 0 0 0.496 0.512 0.686 −0.257 0.867 

0.506 0.324 0.496 1.0 0 0 −0.492 −0.284 −0.614 0.863 

0.286 −0.855 0.512 −0.492 1.0 0 0 0.969 0.349 0.016 

0.372 −0.911 0.686 −0.284 0.969 1.0 0 0 0.136 0.236 

0.199 0.156 −0.257 −0.614 0.349 0.136 1.0 0 0 −0.502 

0.748 −0.124 0.867 0.863 0.016 0.236 −0.502 1.0 0 0 

Dynare 2nd order 

1.0 0 0 −0.021 0.784 0.505 0.287 0.368 0.200 0.746 

−0.021 1.0 0 0 −0.534 0.323 −0.855 −0.909 0.157 −0.125 

0.784 −0.534 1.0 0 0 0.496 0.512 0.681 −0.258 0.867 

0.505 0.323 0.496 1.0 0 0 −0.492 −0.287 −0.615 0.863 

0.287 −0.855 0.512 −0.492 1.0 0 0 0.967 0.350 0.016 

0.368 −0.909 0.681 −0.287 0.967 1.0 0 0 0.137 0.232 

0.200 0.157 −0.258 −0.615 0.350 0.137 1.0 0 0 −0.503 

0.746 −0.125 0.867 0.863 0.016 0.232 −0.503 1.0 0 0 

Table 2 

Correlations between variables — RA economy. 

z q y c i h r w 

Benchmark ( N = 500 ) 

1.0 0 0 −0.021 0.785 0.506 0.286 0.372 0.199 0.748 

−0.021 1.0 0 0 −0.533 0.324 −0.856 −0.911 0.156 −0.124 

0.785 −0.533 1.0 0 0 0.496 0.512 0.686 −0.257 0.867 

0.506 0.324 0.496 1.0 0 0 −0.492 −0.284 −0.614 0.863 

0.286 −0.856 0.512 −0.492 1.0 0 0 0.969 0.349 0.016 

0.372 −0.911 0.686 −0.284 0.969 1.0 0 0 0.137 0.236 

0.199 0.156 −0.257 −0.614 0.349 0.137 1.0 0 0 −0.502 

0.748 −0.124 0.867 0.863 0.016 0.236 −0.502 1.0 0 0 

N = 100 

1.0 0 0 −0.018 0.778 0.503 0.284 0.369 0.198 0.741 

−0.018 1.0 0 0 −0.540 0.312 −0.853 −0.911 0.174 −0.135 

0.778 −0.540 1.0 0 0 0.499 0.512 0.688 −0.271 0.868 

0.503 0.312 0.499 1.0 0 0 −0.489 −0.278 −0.616 0.863 

0.284 −0.853 0.512 −0.489 1.0 0 0 0.968 0.337 0.018 

0.369 −0.911 0.688 −0.278 0.968 1.0 0 0 0.120 0.241 

0.198 0.174 −0.271 −0.616 0.337 0.120 1.0 0 0 −0.511 

0.741 −0.135 0.868 0.863 0.018 0.241 −0.511 1.0 0 0 

N = 10 

1.0 0 0 0.007 0.784 0.420 0.329 0.345 0.808 0.924 

0.007 1.0 0 0 −0.599 0.819 −0.932 −0.934 −0.064 0.051 

0.784 −0.599 1.0 0 0 −0.108 0.804 0.828 0.593 0.751 

0.420 0.819 −0.108 1.0 0 0 −0.678 −0.644 0.050 0.576 

0.329 −0.932 0.804 −0.678 1.0 0 0 0.997 0.409 0.211 

0.345 −0.934 0.828 −0.644 0.997 1.0 0 0 0.381 0.253 

0.808 −0.064 0.593 0.050 0.409 0.381 1.0 0 0 0.521 

0.924 0.051 0.751 0.576 0.211 0.253 0.521 1.0 0 0 
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Fig. 1. Impulse responses to neutral (top) and investment-specific (bottom) technology shocks for the representative-agent economy. 

 

 

 

 

 

 

the capital-output ratio (10.26, quarterly) pins down the real rate and wages, and the target for hours (1/3) pins down the

level of aggregate capital. To find the steady state given these prices and quantities, one guesses on β and ψ , solves the

household problem and computes aggregate assets and labor supplied by the households. If either quantity is too high or

too low relative to the demand from firms, the guesses are updated. We use a MATLAB’s fsolve solver, which employs a

trust-region method to solve for the values of β = 0 . 985 and ψ = 8 . 024 that clear the markets. The stationary distribution

is solved for by approximating the distribution using a histogram over income and assets defined on a finer grid than the
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Fig. 2. Impulse response to neutral technology shock for the HA and RA economies. 

Table 3 

Correlations between variables — HA economy. 

z q y c i h r w HtM Gini 

HA model 

1.0 0 0 −0.021 0.807 0.537 0.370 0.263 0.229 0.772 −0.289 −0.337 

−0.021 1.0 0 0 −0.512 0.310 −0.908 −0.838 0.171 −0.131 0.426 0.500 

0.807 −0.512 1.0 0 0 0.526 0.671 0.467 −0.212 0.881 −0.709 −0.772 

0.537 0.310 0.526 1.0 0 0 −0.269 −0.506 −0.567 0.865 −0.669 −0.643 

0.370 −0.908 0.671 −0.269 1.0 0 0 0.958 0.145 0.247 −0.294 −0.386 

0.263 −0.838 0.467 −0.506 0.958 1.0 0 0 0.379 −0.006 −0.019 −0.111 

0.229 0.171 −0.212 −0.567 0.145 0.379 1.0 0 0 −0.443 0.805 0.771 

0.772 −0.131 0.881 0.865 0.247 −0.006 −0.443 1.0 0 0 −0.792 −0.814 

−0.289 0.426 −0.709 −0.669 −0.294 −0.019 0.805 −0.792 1.0 0 0 0.985 

−0.337 0.500 −0.772 −0.643 −0.386 −0.111 0.771 −0.814 0.985 1.0 0 0 

 

 

 

 

policy functions—1,0 0 0 points (also non-linearly spaced). We compute the transition matrix between individual states using

the policy functions of households and the Markov transition matrix for labor productivity. We recover the invariant distri-

bution by finding the eigenvector associated with the largest eigenvalue (1) of the transition matrix. Aggregate savings and

labor supply is then straightforwardly computed as the sum of savings over the invariant distribution. 

Heterogeneous-agent model, transitional equilibrium. To solve for a transitional equilibrium we also use a home-made

MATLAB code. The solution algorithm here is outlined as follows: 

Transitional equilibrium algorithm 

1. Choose a time T at which point we assume the economy has reached steady state. 

2. Guess a path for the capital-labor ratio, ({ K t H t } T t=0 
) 0 . 

3. Solve the value function (and policy functions) backwards from t = T − 1 , . . . 1 setting V T = V SS . 
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Fig. 3. Impulse response to investment-specific technology shock for the HA and RA economies. 

Fig. 4. Distributional impulse responses to the neutral shock (left) and investment-specific shock (right) for the HA economy. 

 
4. Starting from the steady state distribution, simulate the distribution forward from t = 1 , . . . , T using the policy func-

tions and idiosyncratic productivity Markov transition matrix. 

5. At each t , compute aggregate capital and labor supplied K 

S 
t , H 

S 
t using the distribution and policy functions. 

6. Compute the maximum difference between supply and demand ζ = max | K t H t − K 

S 
t H 

S 
t | . 

7. If ζ < 10 −5 min { εx, 0 , 1 } , STOP. 
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Fig. 5. Normalized impulse responses for small/large positive/negative neutral shocks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Update guess 18 ({ K t H t } T t=0 
) 1 = υ({ K t H t } T t=0 

) 0 + (1 − υ) { K 

S 
t H 

S 
t } T t=0 

and GO TO 2. 

The basic idea is that after some long amount of time (here T = 350 quarters) the economy will return to the original

steady state. Thus, we are guessing on a transition path back to the original steady state. In order to solve the households’

and firms’ problems we need to know the path of prices along the transition. The capital-labor ratio is sufficient to pin

down the prices, thus, by guessing a path for the capital-labor ratio we have all the prices that we need. 19 Thus, we can

take the original steady state value function as our terminal condition and solve the household problem backwards. We then

simulate the distribution over households forward starting with the steady state distribution. If the path of the capital output

ratio implied by the policy functions and distribution is sufficiently close to our guess, we’ve solved for the equilibrium and

we’re done. Otherwise, we update the guess by taking a convex combination between the guessed path and the path implied

by simulating forward. Despite the fact that the shooting method that we use for the transition path does not have well

established convergence properties, in practice we find that our algorithm achieves roughly first-order convergence when

beginning with an initial guess for the path of the capital-labor ratio obtained from the representative-agent model. Thus,

typically we can achieve our desired level of convergence in less than 15 iterations. 

The simulation of a stochastic equilibrium is identical to that used for the representative-agent model. 

5. Parameter selection 

5.1. Calibration 

Our calibration is straightforward. For the standard parameters we use α = 0 . 36 to match the capital share, δ = 0 . 025 to

match a real rate of 4% per year, and σ = 1 (logarithmic curvature) as a benchmark value used in the literature. We choose

a Frisch elasticity θ of 1, again as a standard in the literature. We use standard parameters for the technology shocks, a

serial correlation coefficient ρz for TFP of 0.95, and a ρq for the investment-specific shock of 0.9, with standard deviations

σ z for TFP of 0.007 and σ q for the investment-specific shock of 0.02. 

We calibrate the income process following Krueger et al. (2016) who estimate a process for disposable earnings after

taxes and transfers using the PSID. They estimate the quarterly persistence for innovations, ρy , to be 0.9923 and the standard

deviation, σ y , to be 0.0983. We treat their measured transitory shock as measurement error. 
18 The particular values we choose for υ are 0.8, when the deviation ζ is greater than 10 −4 , and 0.65 otherwise. 
19 We typically use the solution to the representative-agent model as the initial guess for solving the transition. 
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Fig. 6. Normalized impulse responses for small/large positive/negative investment-specific shocks. 

Fig. 7. Differential impulse responses for correlated shocks. 

 

 

 

 

 

 

5.2. Findings 

We begin with the representative-agent (RA) economy, where we can implement our method using only Dynare’s model

solution. We then display results for the benchmark heterogeneous-agent (HA) model, after which we produce checks on

the linearity assumption. We finally present results from the model with an externality and with policy. 

5.2.1. The RA case 

Fig. 1 displays the impulse response function for output and various aggregates for the RA economy. These results are

computed using Dynare’s nonlinear transition algorithm. Unless otherwise noted, we always select innovations of size εx, 0 =
0 . 01 . 

The figure reports impulse responses that have the expected shape and, by ocular inspection, look just like those obtained

from Dynare’s standard, linearization-based impulse response command (we omit showing the latter for brevity). What is
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Fig. 8. Wages in equilibrium vs. net of externalities, neutral shock. 

Fig. 9. Wages in equilibrium vs. net of externalities, investment-specific shock. 
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Fig. 10. Impulse response to neutral shock for the HA economy with and without deficit-financed transfers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

key here, however, is that we can now simulate the representative-agent economy with aggregate shocks based on these

impulse responses and compare its features to those generated by Dynare’s linearization-based algorithm, as well as for

its higher orders of perturbation. These results are contained in Table 1 . Our method produces nearly identical correlation

statistics to those using Dynare linearization and they are also very close to the values using second-order perturbation. 

For the benchmark simulation method we used 500 periods from the deterministic impulse response functions. It is

instructive to understand how the approximation varies with the length of the IRF used for the linearization. In Table 2 we

display the model correlations when we use our method with 10, 10 0, and 50 0 (benchmark) periods of the IRF for the

linearization. As the shocks are persistent, the approximations begin to differ when only using a truncated history of the

shocks, suggesting that a longer time horizon is necessary for an accurate approximation when using highly persistent

shocks. However, the 100-period simulation length still does a decent job under this scenario. 

5.2.2. The HA case 

Turning to the heterogeneous-agent economy, our impulse response functions for output and other aggregates are con-

tained in Figs. 2 and 3 below, where we include the IRFs from the representative-agent economy for comparison. 

The impulse response in the heterogeneous-agent model looks quite similar to that in the representative-agent setting in

the case of a neutral technology shock, though, there is a noticeable difference in the response of hours and the capital stock.

However, in response to the investment-specific shock we note significantly more propagation in the heterogeneous-agent

relative to the representative-agent economy, with all series noticeably different. 

Given this impulse response we then generate output for an economy with aggregate shocks based on treating the im-

pulse response above as a linear response. We simulate shocks for 10,500 periods and discard the first 500 periods of the

simulation. One of the advantages of our approximation procedure is that we are able to directly simulate interesting statis-

tics from the distribution. For example, in Table 3 we include the Gini coefficient of the wealth distribution and the fraction

of households that are borrowing constrained (the steady-state values are 0.77 for the Gini and 26% for the constrained).

We include the impulse responses for the Gini and fraction of hand-to-mouth (HtM) households in Fig. 4 . 

5.2.3. Are the responses linear? Some tests 

Next, we explore the appropriateness of the linearity and symmetry assumptions implicit in our methodology. For brevity,

we limit our tests to the HA economy, but similar results obtain in the RA case. First, we compute the impulse responses

for the z and q shocks of sizes for ± 0.01 and ± 2 standard deviations to investigate whether the deterministic IRFs exhibit

asymmetries or non-linearities. The normalized (by shock size) impulse responses for output to productivity are plotted

in Fig. 5 . The values are normalized by the size of the initial shock (i.e., in log deviations from steady-state consumption
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Fig. 11. Impulse response to investment-specific shock for the HA economy with and without deficit-financed transfers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

divided by the log of productivity, z 0 ). The solid and dotted lines correspond to the 0.01% and −0.01% impulse responses,

respectively. Note that there is a striking absence of asymmetry or non-linearity in the shocks. We plot the equivalent figure

for investment-specific shocks in Fig. 6 with virtually the same result, though here there is a visible deviation with a slightly

smaller response for the larger positive shock. 

Next, we assess the appropriateness of linearity in the number of shocks. We compute the perfect-foresight impulse

responses for both z and q shocks occurring at the same time, correlated either perfectly positively or perfectly negatively.

We can then compare the IRFs to those from taking the linear combination of the IRFs to the two shocks individually. 

Clearly, from inspecting Fig. 7 there is very little sign of departure from linearity here as well. 

5.2.4. Policy: Ricardian non-equivalence and demand-determined output 

In the model above, policy would have nontrivial effects relative to the corresponding representative-agent economy.

This is perhaps a surprise to some, as it is often claimed that the model in Krusell and Smith (1998) “shows” that the

distribution (almost) does not matter for outcomes. The quotation marks are used here because the opposite is in fact

shown in the same paper. In the case where all consumers have the same discount factor the distribution (almost) does

not matter for outcomes but in the case with discount-factor heterogeneity the distribution does matter. Moreover, the case

where it matters is the quantitatively reasonable case in the sense that it matches the empirical wealth distribution well,

whereas the case without discount-factor heterogeneity does not. The present model, though not featuring discount-factor

heterogeneity, also features significant wealth inequality and gives the distribution a more prominent role, largely because

the dynamic nature of idiosyncratic shocks is different here. 20 Thus it will give policy a nontrivial role. 

The purpose of the present section is to show that our method makes policy very straightforward to study—it does not

add numerical complication. In particular, we show how it is straightforward to compute equilibria where policy follows a

rule. The class of such rules is very large and we specify two very simple fiscal rules for illustration only. We also change

the model somewhat by introducing an externality: we allow for aggregate productivity to depend on contemporaneous

aggregate consumption. A key reason for this addition is that it makes the model more challenging to solve: it makes it

necessary to guess on two paths to solve for the transitional equilibrium. 21 We show that our method continues to work

very well. 

We specify the functional form for the demand externality φ( c ) as follows: 

φ(c) = (c − κc ) 
ϑ , 
20 An additional reason is that the utility function over consumption and hours employed here does not admit aggregation even under complete markets. 
21 The externality also gives policy an additional role, but that is not our focus here. 
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Table 4 

Correlations between variables — HA economy with externality. 

z q y c i h r w HtM Gini 

Laissez-faire 

1.0 0 0 −0.021 0.793 0.544 0.537 0.401 0.416 0.704 −0.332 −0.386 

−0.021 1.0 0 0 −0.237 0.258 −0.854 −0.830 0.269 0.0 0 0 0.365 0.412 

0.793 −0.237 1.0 0 0 0.823 0.595 0.269 −0.223 0.958 −0.813 −0.855 

0.544 0.258 0.823 1.0 0 0 0.041 −0.325 −0.387 0.951 −0.745 −0.746 

0.537 −0.854 0.595 0.041 1.0 0 0 0.920 0.014 0.345 −0.454 −0.523 

0.401 −0.830 0.269 −0.325 0.920 1.0 0 0 0.289 −0.018 −0.087 −0.155 

0.416 0.269 −0.223 −0.387 0.014 0.289 1.0 0 0 −0.318 0.681 0.655 

0.704 0.0 0 0 0.958 0.951 0.345 −0.018 −0.318 1.0 0 0 −0.818 −0.842 

−0.332 0.365 −0.813 −0.745 −0.454 −0.087 0.681 −0.818 1.0 0 0 0.987 

−0.386 0.412 −0.855 −0.746 −0.523 −0.155 0.655 −0.842 0.987 1.0 0 0 

Deficit-financed transfers 

1.0 0 0 −0.021 0.796 0.026 0.413 0.221 0.458 0.718 −0.657 −0.367 

−0.021 1.0 0 0 −0.311 0.400 −0.902 −0.835 0.286 −0.011 −0.282 0.029 

0.796 −0.311 1.0 0 0 0.289 0.523 0.188 −0.142 0.935 −0.635 −0.746 

0.026 0.400 0.289 1.0 0 0 −0.476 −0.717 −0.528 0.549 −0.528 −0.507 

0.413 −0.902 0.523 −0.476 1.0 0 0 0.921 0.059 0.192 0.063 −0.098 

0.221 −0.835 0.188 −0.717 0.921 1.0 0 0 0.274 −0.172 0.310 0.195 

0.458 0.286 −0.142 −0.528 0.059 0.274 1.0 0 0 −0.242 −0.041 0.418 

0.718 −0.011 0.935 0.549 0.192 −0.172 −0.242 1.0 0 0 −0.749 −0.818 

−0.657 −0.282 −0.635 −0.528 0.063 0.310 −0.041 −0.749 1.0 0 0 0.485 

−0.367 0.029 −0.746 −0.507 −0.098 0.195 0.418 −0.818 0.485 1.0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where we set ϑ = 0 . 2 and κc = 0 . 3 C ss . We think of this externality as a reduced form for the type of demand-determined

search productivity shocks modeled in, e.g., Bai et al. (2017) . In the present paper the externality leads to a market failure,

unlike in the Bai et al. paper, where the search process, which is competitive, leads to efficient outcomes. We conjecture

that undirected search would generate features similar to the economy we consider here. 

In this version of the model, knowing the capital-labor ratio is not sufficient for solving the household problem, because

we need to know, in addition, aggregate consumption to determine the factor prices that the households face. We therefore

need to shoot on an additional aggregate sequence and for this we choose aggregate consumption, c t . The algorithm for

computing transitions laid out in the section above is modified to update both the guess for the capital-labor ratio and

aggregate consumption, but is otherwise unchanged (i.e., conditional on those conjectured prices and the productivity shock,

we solve the household problem backwards, then simulate forward, check market clearing—for capital and hours, and hence

consumption—and update). 22 

We also consider a policy that stabilizes aggregate consumption. The government sets the lump-sum transfer according

to 

T = −c + 0 . 05 b, 

where c is aggregate consumption and b is the level of government debt (so negative values of b imply that the government

is saving). This formulation stabilizes aggregate consumption, but also ensures long-run budget balance by responding also

to the level of government debt. 

Before we display the results for our main endogenous variables, let us illustrate the sense in which shooting on two

sequences (the capital-labor ratio and consumption) is necessary in this economy. To this end, Figs. 8 and 9 compare equi-

librium wages over time to those that would have materialized without movements in the demand externality. Thus, for

each aggregate shock scenario, the difference between the curves is a measure of how much a consumer would go wrong

by predicting the wage solely based on the capital-labor ratio and the neutral productivity shock, hence ignoring the exter-

nality movements. We take some comfort in the fact that the gap is substantial and, thus, that in this version of the model

shooting on two, as opposed to only one, sequence, is not only necessary from a conceptual perspective but also important

in a quantitative sense. 

The impulse responses for the economy with and without the policy are plotted in Figs. 10 and 11 . 

We see that there is stabilization under the transfer policy. Note that the representative-agent version of the present

economy would make lump-sum transfers completely ineffective because of Ricardian Equivalence. Under incomplete mar- 

kets, transfers do influence aggregates as they involve redistribution across households with different mar ginal propensities

to consume and work. 
22 We find that the our algorithm converges quickly when beginning with the RA model path as an initial guess despite the fact that we are now guessing 

on two sequences. 
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In addition, we simulate the two versions of the model under recurring aggregate shocks using our method. The cor-

relation tables are reported in Table 4 . We find that under the deficit-financed transfer policy, aggregate consumption is

significantly stabilized relative to laissez-faire. 

6. Concluding remarks 

We first sum up by pointing to our main findings: we present a simple numerical linearization method for

heterogeneous-agent models with aggregate uncertainty and we find that it works very well in a standard RBC setting

with neutral and investment-specific AR(1) technology shocks. We also look at a model with a consumption externality and

government transfer policy, both illustrating how easy it is to examine the effects of economically relevant policy rules in

our economy and how the method works well also when there are nontrivial market-clearing conditions each period. The

tentative conclusion from our analysis here is that it would be entirely feasible to extend our methods to more complex

settings; an example of such a setting is the kind of model studied by Smets and Wouters (2003) , where there are frictions

in price and wage setting, some additional real features to those considered here (such as consumption habits), and seven

shocks. Given that one would solve for impulse responses to each shock individually, the inclusion of more shocks is not

cumbersome: computing impulse responses to seven shocks is not much more time-consuming to the case of two shocks

that we considered here. 

We must also remind the reader that the only nontrivial tool necessary for implementing our solution method is value-

function iteration. Value-function iteration is necessary for solving for the steady state and it is also the key tool in solving

for the transition equilibrium. When it comes to what particular value-function iteration to choose, we are agnostic. How-

ever, we should note that using the endogenous grid point method in the transitional equilibrium case does allow to avoid

any root finding or numerical optimization in the backsolve of the household decisions. One can also, alternatively, use

methods based on policy-function iteration: our basic approach is equally applicable to that case. 

It is obviously important to be able to solve for a transition path and it may be that there are settings for which this is

significantly more demanding. As the techniques used in solving for transition paths could probably developed further—be

made more stable as well as faster—we hope that this will not be a significant obstacle. Auclert and Rognlie (2017) propose

a quasi-Newton method for computing transitions in heterogenous-agent economies that offers a promising step in this

direction. 23 

Of course, our approach of using numerical linearization to solve for equilibria relies on nonlinearities not being im-

portant in the model at hand. Although this is a clear weakness, it is an integral part of the procedure we propose here to

examine to what extent the equilibrium is “scalable”, i.e., linear. Thus, if one finds that scalability is not satisfied, the model’s

behavior is fundamentally more non-linear and other methods will have to be used, such as those offered in Krusell and

Smith (1998) . Finding models that are not approximately linear may be challenging, however, as much as such models could

enhance our understanding of some real-world phenomena. Our scalability check seems a reasonable and challenging first

hurdle to pass in the hunt for such models. 

It should also be emphasized that our method, in placing MIT shocks and impulse-response analysis at center stage, is

sequential in nature, as opposed to recursive, like most other approaches. Sequentiality allows us to eliminate the compli-

cations introduced by infinite-dimensional (and typically uncountable) state vectors and functions of these state vectors by

replacing them by sequences that, in the numerical application, are finite. For example, when one goes from solving an

Aiyagari model for a steady state—in which no aggregate state variable is needed in the individual’s dynamic programming

problem—to solving for a transition path for the same economy, one only adds one state variable, namely, time. The se-

quential nature of impulse responses also lends itself to inspecting the intuitive mechanisms of the model. In models with

aggregate uncertainty and a discrete number of shocks, such as Krusell and Smith (1998) or Krusell et al. (2017) , impulse

responses are not a natural element of the mechanism inspection toolbox so it becomes harder to understand the model’s

conditional properties. 

Models based on analytical linearization tend to come with an analysis of the stability properties of the dynamic system

the model leads to (as in Blanchard and Kahn, 1980 ). In our case, no stability characterization is offered: we solve for a

transition path and we do not characterize its uniqueness nor whether there are local explosive paths. To the extent there

is an indeterminate set of stable paths, however, one would think that the iteration over price paths would have poor

convergence properties; in any case, determinacy issues must be left for future research. 24 

Compared to the methods in the literature for solving heterogeneous-agent models, a disadvantage of the present method

is that it does not offer a metric of fit. Instead it assumes that linearization works and proceeds based on this assumption.

The assumption, we argue, can be tested to some extent with scalability checks, and hopefully one is reassured at this

point that linearization offers a good approximation. In contrast, models based on recursive techniques, whether linear or

nonlinear, can, when they are simulated, offer a test in the form of a comparison between the simulated path of aggregate
23 In their application they compute an approximate Jacobian to the transitional system by solving a relaxed version of the household problem and then 

take Newton steps. They show that the their method is stable and efficient, and converges rapidly in their application. 
24 For a discussion of price-level determinacy in heterogenous-agent models in response to MIT shocks see Hagedorn et al. (2017) who apply the theo- 

retical results of Hagedorn (2017) to a heterogenous-agent New Keneysian model. 
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variables appearing in an individual’s decision problem and the perceptions of this behavior assumed in his decision prob-

lem. Thus a goodness-of-fit measure, such as an R 

2 , can be computed. 25 In sum, there are pros and cons with our approach

but we hope that it can be of value, mainly because of its simplicity and ties to impulse-response analysis, in a range of

interesting applications. 
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