load packages

packages <- c('tidyverse',     # data handling
              'lmerTest', 
              'modelr',
              'sjPlot',
              'kableExtra',
              'broom.mixed',
              'gridExtra',
              'brms',
              'bayesplot',
              'rstanarm',
              'performance',
              'tidybayes',
              'brant')    
# Install packages not yet installed
installed_packages <- packages %in% rownames(installed.packages())
if (any(installed_packages == FALSE)) {
  install.packages(packages[!installed_packages], repos = c(CRAN = "https://cran.rstudio.com"))
}
# Packages loading
invisible(lapply(packages, library, character.only = TRUE))

packv <- NULL
for (i in 1:length(packages)) {
  packv = rbind(packv, c(packages[i], as.character(packageVersion(packages[i]))))
}
colnames(packv) <- c("Package", "Version") 
packv %>% 
  as_tibble %>% 
  arrange(Package) %>% 
  kable(align = "l") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
Package Version
bayesplot 1.8.1
brant 0.3.0
brms 2.16.1
broom.mixed 0.2.7
gridExtra 2.3
kableExtra 1.3.4
lmerTest 3.1.3
modelr 0.1.8
performance 0.8.0
rstanarm 2.21.1
sjPlot 2.8.9
tidybayes 3.0.1
tidyverse 1.3.1

define aesthetics

palette <- c("#ED5C4D", "#57B5ED", "#FBBE4B") # control vs each
palette2 <- c("#ED5C4D", "#5a4491") # control vs combined

plot_aes <- theme_minimal() +
  theme(legend.position = "top",
        text = element_text(size = 14), #, family = "Helvetica"), does not work in Win
        axis.text = element_text(color = "black"),
        axis.line = element_line(colour = "black"),
        axis.ticks.y = element_blank())

functions

source('src/LMM_functions.R')
source('src/myround.R')

# 95% confidence intervals
ci95LL <- function(data){return(t.test(data, 
                                      conf.level = 0.95, 
                                      alternative = "two.sided")$conf.int[1])}
ci95UL <- function(data){return(t.test(data, 
                                      conf.level = 0.95, 
                                      alternative = "two.sided")$conf.int[2])}

set up directories

# directory with input EEG log files
dir_log <- 'data/log'
# directory with input EEG mean amp files
dir_meanamps <- 'data/mean_amps'

check file integrity

The experimental groups were VRET (virtual reality exposure treatment) and IVET (in vivo exposure treatment). Subject numbering started from 1 for the experimental group (without any knowledge of treatment). Thus, in the experimental group, each subject (fp in Swedish) has their unique number. However, subject numbering in the control group also started from 1. Thus, the same ID number (e.g., 1) in the experimental and control group refers to different people. The script handles this by adding 100 to the ID number of the control group. Thus, there is a unique code for each subject.

Below, session 1 refers to pre-treatment and session 2 to post-treatment.

experimental group

# according to subject notes
# vret codes for treatment: 1= vret, 0 = ivet
file <- 'data/VR_spider_EEG-EG_final.tsv'
listEGnotes <- read.csv(file, sep = '\t', header = T)
listEGnotes$sess1 <- 1
listEGnotes$sess1[listEGnotes$pre=='nope'] <- 0
listEGnotes$sess2 <- 1
listEGnotes$sess2[listEGnotes$post=='nope'] <- 0

# EG according to EEG log files
fps <- list.files(file.path(dir_log,'experimental'), pattern = 'fp')
listEGlog <- data.frame()
for (f in fps){ # f = fps[6]
  fp <- substring(f, first = 3)
  sess <- as.integer(substring(fp, first = regexpr('_',fp)[1]+1))
  fp <- as.integer(substring(fp, first = 1, last = regexpr('_',fp)[1]-1))
  listEGlog <- rbind(listEGlog, cbind(fp,sess))
}
rm(f,fp,fps,sess,file)

# EG according to EEG mean amps
fps <- list.files(file.path(dir_meanamps), pattern = 'fp')
listamps <- data.frame()
for (f in fps){ # f = fps[6]
  fp <- substring(f, first = 3, last = 11)
  sess <- as.integer(substring(fp, first = regexpr('_ses', fp)[1]+4))
  fp <- as.integer(substring(fp, first = 1, last = 3))
  listamps <- rbind(listamps, cbind(fp,sess))
}
listEGamps <- listamps %>% filter(fp < 100)
rm(f,fp,fps,sess)

# check subject match between EEG amps and log
# session 1
if (setequal(listEGamps$fp[listEGamps$sess==1], listEGlog$fp[listEGlog$sess==1])!=T){
  print('EG: Mismatch between EEG amps and log files: Session 1')
  print('Unique in EEG amps')
  print(setdiff(listEGamps$fp[listEGamps$sess==1], listEGlog$fp[listEGlog$sess==1]))
  print('Unique in EEG log')
  print(setdiff(listEGlog$fp[listEGlog$sess==1], listEGamps$fp[listEGamps$sess==1]))
  stop('EG: mismatch between EEG amps and log files: Session 1')
}
# session 2
if (setequal(listEGamps$fp[listEGamps$sess==2], listEGlog$fp[listEGlog$sess==2])!=T){
  print('EG: Mismatch between EEG amps and log files: Session 2')
  print('Unique in EEG amps')
  print(setdiff(listEGampsfp[listEGamps$sess==2], listEGlog$fp[listEGlog$sess==2]))
  print('Unique in EEG log')
  print(setdiff(listEGlog$fp[listEGlog$sess==2], listEGamps$fp[listEGamps$sess==2]))
  stop('EG: Mismatch between EEG amps and log files: Session 2')
}

# check subject match between notes and EEG log
# session 1
if (setequal(listEGnotes$fp[listEGnotes$sess1==1], listEGlog$fp[listEGlog$sess==1])!=T){
  print('EG: Mismatch between notes and EEG log files: Session 1')
  print('Unique in notes')
  print(setdiff(listEGnotes$fp[listEGnotes$sess1==1], listEGlog$fp[listEGlog$sess==1]))
  print('Unique in EEG log')
  print(setdiff(listEGlog$fp[listEGlog$sess==1], listEGnotes$fp[listEGnotes$sess1==1]))
  stop('EG: Mismatch between notes and EEG log files: Session 1')
}
# session 2
if (setequal(listEGnotes$fp[listEGnotes$sess2==1], listEGlog$fp[listEGlog$sess==2])!=T){
  print('EG: Mismatch between notes and EEG log files: Session 2')
  print('Unique in notes')
  print(setdiff(listEGnotes$fp[listEGnotes$sess2==1], listEGlog$fp[listEGlog$sess==2]))
  print('Unique in EEG log')
  print(setdiff(listEGlog$fp[listEGlog$sess==2], listEGnotes$fp[listEGnotes$sess2==1]))
  stop('EG: Mismatch between notes and EEG log files: Session 2')
}
# make notes list the gold standard----
rm(listEGlog, listEGamps)

control group

# The same ID number (e.g., 1) in the experimental and control group refers to different people. The script handles this by adding 100 to the ID number of the control group. Thus, there is a unique code for each subject.

# according to subject notes
file <- 'data/VR_spider_EEG-CG_final.tsv'
listCGnotes <- read.csv(file, sep = '\t', header = T)
listCGnotes$fp <- listCGnotes$fp + 100 # add 100 to create a unique code

# CG according to EEG log files
fps <- list.files(file.path(dir_log,'control'), pattern = 'fp')
listCGlog <-  data.frame()
for (f in fps){ # f = fps[6]
  fp <- as.integer(substring(f, first = 3))
  listCGlog <- rbind(listCGlog, cbind(fp))
}
listCGlog$fp <- listCGlog$fp + 100 # add 100 to create a unique code

# CG according to EEG mean amps
# (data already read in for EG above)
listCGamps <- listamps %>% 
  filter(fp >= 100) %>% 
  select(-sess)

# check subject match between EEG amps and log
if (setequal(listCGamps$fp, listCGlog$fp)!=T){
  print('CG: Mismatch between EEG amps and log files')
  print('Unique in EEG amps')
  print(setdiff(listCGamps$fp, listCGlog$fp))
  print('Unique in EEG log')
  print(setdiff(listCGlog$fp,listCGamps$fp))
  stop('CG: Mismatch between EEG amps and log files')
}

# check subject match between notes and EEG log
if (setequal(listCGnotes$fp, listCGlog$fp)!=T){
  print('CG: Mismatch between notes and EEG log files')
  print('Unique in notes')
  print(setdiff(listCGnotes$fp, listCGlog$fp))
  print('Unique in EEG log')
  print(setdiff(listCGlog$fp, listCGnotes$fp))
  stop('Mismatch between notes and EEG log files: Control group')
}

# make notes list the gold standard----
rm(listCGlog, listCGamps)

demographics

Demographics are in the data files only for the control group.

Mean (SD) of age = 25.9 (6.69).

listCGnotes %>% 
  count(gender) %>% 
  mutate(gender = case_when(gender == 'f' ~ 'female',
                            gender == 'm' ~ 'male')) %>% 

  kable(align = "c") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
gender n
female 30
male 22

Handedness:

listCGnotes %>% 
  count(handedness) %>% 
  mutate(handedness = case_when(handedness == 'l' ~ 'left',
                                handedness == 'r' ~ 'right')) %>% 
  kable(align = "c") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
handedness n
left 2
right 50

detection task: questionnaire

After the detection task (with EEG), subjects filled in a questionnaire.

Questions:
Q1) Task focus: ‘How much did you focus on the fixation cross? 1=never, 9=always
Q2) Flash visible: ’How easy to see the flash?’ 1=difficult, 9=easy
Q3) Spiders distract: ‘How distracted were you by spiders?’ 1=little, 9=lots
Q4) Nonspiders distract: ‘How distracted were you by nonspiders?’ 1=little, 9=lots
Q5) Task easy: ‘How easy was the task?’ 1=difficult, 9=easy

# experimental
file <- 'data/detection_que_experimental.tsv'
tmpque <- read.csv(file, skip = 0, sep = '\t', header = T)
# sess 1
tmp <- sort(intersect(listEGnotes$fp[listEGnotes$sess1==1],tmpque$fp[tmpque$sess==1]))
note1 <- paste0('EG Session 1: n = ', length(setdiff(listEGnotes$fp[listEGnotes$sess1==1], tmp)))
QueDetect <- tmpque[tmpque$fp %in% tmp & tmpque$sess == 1,]
# sess 2
tmp <- sort(intersect(listEGnotes$fp[listEGnotes$sess2==1],tmpque$fp[tmpque$sess==2]))
note2 <- paste0('EG Session 2: n = ', length(setdiff(listEGnotes$fp[listEGnotes$sess2==1], tmp)))
QueDetect <- rbind(QueDetect, tmpque[tmpque$fp %in% tmp & tmpque$sess == 2,])
QueDetect$treat <- 'IVET'
tmp <- listEGnotes$fp[listEGnotes$vret==1]
QueDetect$treat[QueDetect$fp %in% tmp] = 'VRET'

# control
file <- 'data/detection_que_control.tsv'
tmpque <- read.csv(file, skip = 0, sep = '\t', header = T) 
tmpque$fp <- tmpque$fp + 100 # add 100 to get unique ID codes
tmp = sort(intersect(listCGnotes$fp, tmpque$fp))
note3 = paste0('CG: n = ', length(setdiff(listCGnotes$fp, tmp)))
tmpque = tmpque[tmpque$fp %in% tmp,]
tmpque$treat = 'Control'
QueDetect = rbind(QueDetect, tmpque)
rownames(QueDetect) = NULL
QueDetect$sess = QueDetect$sess - 1 # recode to session 0 and 1
QueDetect$treat = factor(QueDetect$treat, levels=c('Control', 'IVET', 'VRET'))

dataque <- QueDetect %>%
    pivot_longer(cols = c(q1, q2, q3, q4, q5), names_to = 'que', values_to = 'dv') %>% 
    mutate(fp = as.character(fp))

# check that answers range between 1 and 9
dataque %>% 
  summarise(min_dv = min(dv),
            max_dv = max(dv), 
            .groups = 'drop') %>% 
  as.numeric() %>% 
  identical(c(1,9)) %>% 
  isFALSE() %>% 
  {if(.)(stop("Error: Answers min and max are not 1 and 9, respectively!"))}
write_tsv(dataque, file.path('results/dataque.tsv'))

sample size

Data are almost complete except that four subjects (not from one particular group) have missing questionnaire data. These subjects are from these groups:

  • EG Session 1: n = 1
  • EG Session 2: n = 2
  • CG: n = 1

The variable Both shows how many subjects participated in both sessions. So, these are not additional subjects.

tmptable <- dataque %>% 
  group_by(fp) %>% 
  slice(1) %>% 
  select(fp, treat) %>% 
  group_by(treat) %>% 
  summarise(N = n(), .groups = 'drop') %>% 
  rename("Treatment" = treat)
tmptable <- dataque %>%
  select(fp, sess, treat) %>%
  unique() %>%
  group_by(sess, treat) %>%
  mutate(sess = ifelse(sess==0, 'Pre', 'Post'),
         sess = factor(sess, levels = c('Pre', 'Post'))) %>% 
  summarise(n = n(), .groups = 'drop') %>% # grouping is dropped 
  pivot_wider(names_from = sess, values_from = n) %>%
  mutate_if(is.numeric, ~ ifelse(is.na(.), "--", .)) %>% 
  cbind(tmptable, .) %>% 
  select(-treat)
tmps1I <- dataque %>%
  filter(treat == 'IVET',
         sess == 0) %>%
  distinct(., fp) %>% 
  pull()
tmps1V <- dataque %>%
  filter(treat == 'VRET',
         sess == 0) %>%
  distinct(., fp) %>% 
  pull()
tmps2I <- dataque %>%
  filter(treat == 'IVET',
         sess == 1) %>%
  distinct(., fp) %>% 
  pull()
tmps2V <- dataque %>%
  filter(treat == 'VRET',
         sess == 1) %>%
  distinct(., fp) %>% 
  pull()
tmptable$'Both' = c('--', length(intersect(tmps1I, tmps2I)), length(intersect(tmps1V, tmps2V)))
tmptable %>%
  kable(align = "c") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
Treatment N Pre Post Both
Control 51 51
IVET 33 16 30 13
VRET 37 20 34 17
rm(tmptable, tmps1I, tmps1V, tmps2I, tmps2V)

descriptives

The table shows means (SD in parentheses).

dataque %>%
  mutate(sess = ifelse(sess==0, 'pre', 'post'),
         sess = factor(sess, levels = c('pre', 'post'))) %>% 
  group_by(sess, treat, que) %>%
  summarise(m_sd = sprintf("%.2f (%.2f)", mean(dv, na.rm = TRUE),
            sd(dv, na.rm = TRUE)), .groups = 'drop') %>%
  # grouping is dropped
  pivot_wider(names_from = que, values_from = m_sd) %>%
  rename("Treatment" = treat,
         "Session" = sess,
         "Task focus" = q1,
         "Flash visible" = q2,
         "Spiders distract" = q3,
         "Nonspiders distract" = q4,
         "Task easy" = q5) %>%
  arrange(Treatment, Session) %>%
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
Session Treatment Task focus Flash visible Spiders distract Nonspiders distract Task easy
pre Control 8.37 (0.63) 4.24 (1.53) 2.22 (1.47) 3.02 (1.45) 5.18 (1.74)
pre IVET 8.06 (0.85) 4.31 (1.89) 5.50 (2.07) 3.25 (1.88) 5.50 (2.48)
post IVET 8.37 (0.72) 3.50 (1.46) 3.77 (1.94) 3.03 (1.52) 5.83 (2.25)
pre VRET 8.05 (0.76) 3.60 (1.57) 5.55 (1.15) 3.25 (1.29) 5.00 (1.30)
post VRET 8.18 (0.90) 3.97 (1.68) 4.15 (2.00) 3.09 (1.44) 5.97 (1.80)

session 1 across treatments

  • standard regression model (no repeated measures)
  • use session 1 from all three groups
  • combine treatment groups
  • no plots because the comparison involves two means (treatment vs. control). The B in the table shows the mean difference.

Q1

Task focus: ’How much did you focus on the fixation cross? 1=never, 9=always

Note that the intercept shows the mean score for Controls in Session 1.

Result: The (combined) treatment group tended to be less focused on the cross. Makes sense because in Q3, they rated to be more distracted by spiders.

mylabels = c('treatment (Control)',
             'treatment (VRET/IVET)')
model_name = "quedetect_q1_acrosstreatment"
model_formula = formula("dv ~ 1 + treat")
# fp is not included because each subject contributes one data point
data <- dataque %>%
  filter(sess == 0) %>%
  filter(que == 'q1') %>%
  mutate(treat = ifelse(treat == 'Control', 'Control', 'VRET/IVET'),   
         treat = factor(treat, levels = c("Control", "VRET/IVET")))
assign(get("model_name"), lm(model_formula, data = data))
table_model(get(model_name),
           dv_labels = "Task focus",
           pred_labels = mylabels)
  Task focus
Parameter B 95% CI SE t p
treatment (Control) 8.37 8.18 – 8.57 0.10 85.25 <0.001
treatment (VRET/IVET) -0.32 -0.62 – -0.01 0.15 -2.08 0.041
Observations 87
R2 / R2 adjusted 0.048 / 0.037

Q2

Flash visible: ‘How easy to see the flash?’ 1=difficult, 9=easy

model_name = "quedetect_q2_acrosstreatment"
model_formula = formula("dv ~ 1 + treat")
data <- dataque %>%
  filter(sess == 0) %>%
  filter(que == 'q2') %>%
  mutate(treat = ifelse(treat == 'Control', 'Control', 'VRET/IVET'),   
         treat = factor(treat, levels = c("Control", "VRET/IVET")))
assign(get("model_name"), lm(model_formula, data = data))
table_model(get(model_name),
           dv_labels = "Flash visible",
           pred_labels = mylabels)
  Flash visible
Parameter B 95% CI SE t p
treatment (Control) 4.24 3.79 – 4.69 0.23 18.72 <0.001
treatment (VRET/IVET) -0.32 -1.02 – 0.38 0.35 -0.91 0.368
Observations 87
R2 / R2 adjusted 0.010 / -0.002

Q3

Spiders distract: ‘How distracted were you by spiders?’ 1=little, 9=lots

Result: The treatment group rated to be much more distracted by spiders.

model_name = "quedetect_q3_acrosstreatment"
model_formula = formula("dv ~ 1 + treat")
data <- dataque %>%
  filter(sess == 0) %>%
  filter(que == 'q3') %>%
  mutate(treat = ifelse(treat == 'Control', 'Control', 'VRET/IVET'),   
         treat = factor(treat, levels = c("Control", "VRET/IVET")))
assign(get("model_name"), lm(model_formula, data = data))
table_model(get(model_name),
           dv_labels = "Spiders distract",
           pred_labels = mylabels)
  Spiders distract
Parameter B 95% CI SE t p
treatment (Control) 2.22 1.79 – 2.64 0.21 10.38 <0.001
treatment (VRET/IVET) 3.31 2.65 – 3.97 0.33 9.98 <0.001
Observations 87
R2 / R2 adjusted 0.540 / 0.534

Q4

Nonspiders distract: ‘How distracted were you by nonspiders?’ 1=little, 9=lots

model_name = "quedetect_q4_acrosstreatment"
model_formula = formula("dv ~ 1 + treat")
data <- dataque %>%
  filter(sess == 0) %>%
  filter(que == 'q4') %>%
  mutate(treat = ifelse(treat == 'Control', 'Control', 'VRET/IVET'),   
         treat = factor(treat, levels = c("Control", "VRET/IVET")))
assign(get("model_name"), lm(model_formula, data = data))
table_model(get(model_name),
           dv_labels = "Nonspiders distract",
           pred_labels = mylabels)
  Nonspiders distract
Parameter B 95% CI SE t p
treatment (Control) 3.02 2.60 – 3.44 0.21 14.43 <0.001
treatment (VRET/IVET) 0.23 -0.42 – 0.88 0.33 0.71 0.481
Observations 87
R2 / R2 adjusted 0.006 / -0.006

Q3 vs Q4

Measure distraction by spiders versus nonspiders. That is, compute Q3 minus Q4 for each subject. Positive values mean that the subject reported being more distracted by spiders than nonspiders.

Result: Compared to controls, the treatment groups reported more distraction by spiders (vs. nonspiders) in session 1.

model_name = "quedetect_q34_acrosstreatment"
model_formula = formula("dv ~ 1 + treat")
data <- QueDetect %>%
  filter(sess == 0) %>%
  mutate(dv = q3 - q4) %>%
  select(fp, sess, treat, dv) %>%
  mutate(treat = ifelse(treat == 'Control', 'Control', 'VRET/IVET'),   
         treat = factor(treat, levels = c("Control", "VRET/IVET")))
assign(get("model_name"), lm(model_formula, data = data))
table_model(get(model_name),
           dv_labels = "Distract spiders minus nonspiders",
           pred_labels = mylabels)
  Distract spiders minus nonspiders
Parameter B 95% CI SE t p
treatment (Control) -0.80 -1.31 – -0.30 0.26 -3.14 0.002
treatment (VRET/IVET) 3.08 2.29 – 3.87 0.40 7.76 <0.001
Observations 87
R2 / R2 adjusted 0.414 / 0.407

Q5

Task easy: ‘How easy was the task?’ 1=difficult, 9=easy

model_name = "quedetect_q5_acrosstreatment"
model_formula = formula("dv ~ 1 + treat")
data <- dataque %>%
  filter(sess == 0) %>%
  filter(que == 'q5') %>%
  mutate(treat = ifelse(treat == 'Control', 'Control', 'VRET/IVET'),   
         treat = factor(treat, levels = c("Control", "VRET/IVET")))
assign(get("model_name"), lm(model_formula, data = data))
table_model(get(model_name),
           dv_labels = "Task easy",
           pred_labels = mylabels)
  Task easy
Parameter B 95% CI SE t p
treatment (Control) 5.18 4.67 – 5.68 0.25 20.45 <0.001
treatment (VRET/IVET) 0.05 -0.74 – 0.83 0.39 0.12 0.908
Observations 87
R2 / R2 adjusted 0.000 / -0.012

treatment comparison

  • MLM model
  • session 1 and session 2 (session 1 as reference)
  • include only treatment groups
  • IVET = -.5, VRET = .5

Q1

Task focus: ’How much did you focus on the fixation cross? 1=never, 9=always

model

mylabels = c('treatment (VRET/IVET) / session (1)',
             'treatment (VRET vs IVET) /  session (1)', 
             'treatment (VRET/IVET) / session (2)', 
             'treatment (VRET vs IVET) / session (2)')
model_name = "quedetect_q1_treatment"
model_formula = formula("dv ~ 1 + treat*sess + (1 | fp)")
data <- dataque %>%
  filter(!treat == 'Control') %>%
  filter(que == 'q1') %>%
  mutate(treat =  ifelse(as.character(treat) == "IVET", -.5, .5))
#recode treatment as -.5 and .5
assign(get("model_name"), lmerTest::lmer(model_formula,
                                         control = lmerControl(optimizer = "bobyqa",  
                                                               optCtrl = list(maxfun = 1e5)),
                                         data = data))
table_model(get(model_name),
            dv_labels = "Task focus",
            pred_labels = mylabels)
  Task focus
Parameter B 95% CI SE t p
treatment (VRET/IVET) / session (1) 8.14 7.88 – 8.39 0.13 63.47 <0.001
treatment (VRET vs IVET) / session (1) 0.00 -0.51 – 0.51 0.26 0.00 0.997
treatment (VRET/IVET) / session (2) 0.14 -0.13 – 0.42 0.14 1.05 0.300
treatment (VRET vs IVET) / session (2) -0.19 -0.74 – 0.36 0.27 -0.70 0.484
Random Effects
σ2 0.35
τ00 fp 0.29
ICC 0.45
N fp 70
Observations 100
Marginal R2 / Conditional R2 0.016 / 0.463

plot

ggeffects::ggpredict(get(model_name), c("treat", "sess")) %>%
  data.frame() %>%
  mutate(group = ifelse(group == 0, 'pre', 'post'),
         group = factor(group, levels = c('pre', 'post')),
         x = ifelse(x == -.5, "IVET", "VRET")) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  scale_color_manual(values = palette[2:3], name = "treatment") +
  labs(y = "predicted rating\n", x = "\nsession") +
  plot_aes

Q2

Flash visible: ‘How easy to see the flash?’ 1=difficult, 9=easy

Result: The interaction suggests that IVET rated the flash as more visible during session 1 than 2, whereas VRET rated the opposite. This effect does not seem meaningful.

model

model_name = "quedetect_q2_treatment"
model_formula = formula("dv ~ 1 + treat*sess + (1 | fp)")
data <- dataque %>%
  filter(!treat == 'Control') %>%
  filter(que == 'q2') %>%
  mutate(treat =  ifelse(as.character(treat) == "IVET", -.5, .5))
#recode treatment as -.5 and .5
assign(get("model_name"), lmerTest::lmer(model_formula,
                                         control = lmerControl(optimizer = "bobyqa",  
                                                               optCtrl = list(maxfun = 1e5)),
                                         data = data))
table_model(get(model_name),
            dv_labels = "Flash visible",
            pred_labels = mylabels)
  Flash visible
Parameter B 95% CI SE t p
treatment (VRET/IVET) / session (1) 3.93 3.43 – 4.42 0.25 15.75 <0.001
treatment (VRET vs IVET) / session (1) -0.78 -1.77 – 0.21 0.50 -1.57 0.119
treatment (VRET/IVET) / session (2) -0.21 -0.71 – 0.29 0.25 -0.86 0.395
treatment (VRET vs IVET) / session (2) 1.28 0.28 – 2.28 0.50 2.58 0.013
Random Effects
σ2 1.11
τ00 fp 1.49
ICC 0.57
N fp 70
Observations 100
Marginal R2 / Conditional R2 0.037 / 0.589

plot

ggeffects::ggpredict(get(model_name), c("treat", "sess")) %>%
  data.frame() %>%
  mutate(group = ifelse(group == 0, 'pre', 'post'),
         group = factor(group, levels = c('pre', 'post')),
         x = ifelse(x == -.5, "IVET", "VRET")) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  scale_color_manual(values = palette[2:3], name = "treatment") +
  labs(y = "predicted rating\n", x = "\nsession") +
  plot_aes

Q3

Spiders distract: ‘How distracted were you by spiders?’ 1=little, 9=lots

Result: The treatment groups rated less distraction by spiders in session 2 than 1.
See also the Q3 vs Q4 that uses the nonspiders as controls.

model

model_name = "quedetect_q3_treatment"
model_formula = formula("dv ~ 1 + treat*sess + (1 | fp)")
data <- dataque %>%
  filter(!treat == 'Control') %>%
  filter(que == 'q3') %>%
  mutate(treat =  ifelse(as.character(treat) == "IVET", -.5, .5))
#recode treatment as -.5 and .5
assign(get("model_name"), lmerTest::lmer(model_formula,
                                         control = lmerControl(optimizer = "bobyqa",  
                                                               optCtrl = list(maxfun = 1e5)),
                                         data = data))
table_model(get(model_name),
            dv_labels = "Spider distract",
            pred_labels = mylabels)
  Spider distract
Parameter B 95% CI SE t p
treatment (VRET/IVET) / session (1) 5.65 5.08 – 6.22 0.29 19.68 <0.001
treatment (VRET vs IVET) / session (1) 0.05 -1.09 – 1.19 0.57 0.09 0.932
treatment (VRET/IVET) / session (2) -1.65 -2.20 – -1.09 0.27 -6.06 <0.001
treatment (VRET vs IVET) / session (2) 0.20 -0.90 – 1.31 0.54 0.37 0.713
Random Effects
σ2 1.28
τ00 fp 2.35
ICC 0.65
N fp 70
Observations 100
Marginal R2 / Conditional R2 0.149 / 0.700

plot

ggeffects::ggpredict(get(model_name), c("treat", "sess")) %>%
  data.frame() %>%
  mutate(group = ifelse(group == 0, 'pre', 'post'),
         group = factor(group, levels = c('pre', 'post')),
         x = ifelse(x == -.5, "IVET", "VRET")) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  scale_color_manual(values = palette[2:3], name = "treatment") +
  labs(y = "predicted rating\n", x = "\nsession") +
  plot_aes

Q4

Nonspiders distract: ‘How distracted were you by nonspiders?’ 1=little, 9=lots

model

model_name = "quedetect_q4_treatment"
model_formula = formula("dv ~ 1 + treat*sess + (1 | fp)")
data <- dataque %>%
  filter(!treat == 'Control') %>%
  filter(que == 'q4') %>%
  mutate(treat =  ifelse(as.character(treat) == "IVET", -.5, .5))
#recode treatment as -.5 and .5
assign(get("model_name"), lmerTest::lmer(model_formula,
                                         control = lmerControl(optimizer = "bobyqa",  
                                                               optCtrl = list(maxfun = 1e5)),
                                         data = data))
table_model(get(model_name),
            dv_labels = "Nonspiders distract",
            pred_labels = mylabels)
  Nonspiders distract
Parameter B 95% CI SE t p
treatment (VRET/IVET) / session (1) 3.18 2.72 – 3.64 0.23 13.73 <0.001
treatment (VRET vs IVET) / session (1) 0.03 -0.89 – 0.95 0.46 0.07 0.942
treatment (VRET/IVET) / session (2) -0.10 -0.54 – 0.35 0.22 -0.43 0.669
treatment (VRET vs IVET) / session (2) -0.12 -1.02 – 0.77 0.44 -0.28 0.782
Random Effects
σ2 0.85
τ00 fp 1.49
ICC 0.64
N fp 70
Observations 100
Marginal R2 / Conditional R2 0.002 / 0.637

plot

ggeffects::ggpredict(get(model_name), c("treat", "sess")) %>%
  data.frame() %>%
  mutate(group = ifelse(group == 0, 'pre', 'post'),
         group = factor(group, levels = c('pre', 'post')),
         x = ifelse(x == -.5, "IVET", "VRET")) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  scale_color_manual(values = palette[2:3], name = "treatment") +
  labs(y = "predicted rating\n", x = "\nsession") +
  plot_aes

Q3 vs Q4

Measure distraction by spiders versus nonspiders. That is, compute Q3 minus Q4 for each subject.
Positive values mean that the subject reported being more distracted by spiders than nonspiders.

Result: The treatment groups rated less distraction by spiders (vs. nonspiders) in session 2 than 1.

model

model_name = "quedetect_q34_treatment"
model_formula = formula("dv ~ 1 + treat*sess + (1 | fp)")
data <- QueDetect %>%
  filter(!treat == 'Control') %>%
  mutate(dv = q3 - q4) %>%
  select(fp, sess, treat, dv) %>%
  mutate(treat =  as.numeric(ifelse(as.character(treat) == "IVET", -.5, .5)))
#recode treatment as -.5 and .5
assign(get("model_name"), lmerTest::lmer(model_formula,
                                         control = lmerControl(optimizer = "bobyqa",  
                                                               optCtrl = list(maxfun = 1e5)),
                                         data = data))
table_model(get(model_name),
            dv_labels = "Distract spiders minus nonspiders",
            pred_labels = mylabels)
  Distract spiders minus nonspiders
Parameter B 95% CI SE t p
treatment (VRET/IVET) / session (1) 2.44 1.87 – 3.01 0.29 8.47 <0.001
treatment (VRET vs IVET) / session (1) 0.02 -1.12 – 1.16 0.58 0.04 0.972
treatment (VRET/IVET) / session (2) -1.52 -2.12 – -0.93 0.29 -5.20 <0.001
treatment (VRET vs IVET) / session (2) 0.32 -0.87 – 1.50 0.59 0.54 0.590
Random Effects
σ2 1.56
τ00 fp 1.84
ICC 0.54
N fp 70
Observations 100
Marginal R2 / Conditional R2 0.140 / 0.605

plot

ggeffects::ggpredict(get(model_name), c("treat", "sess")) %>%
  data.frame() %>%
  mutate(group = ifelse(group == 0, 'pre', 'post'),
         group = factor(group, levels = c('pre', 'post')),
         x = ifelse(x == -.5, "IVET", "VRET")) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  scale_color_manual(values = palette[2:3], name = "treatment") +
  labs(y = "predicted rating\n", x = "\nsession") +
  plot_aes

Q5

Task easy: ‘How easy was the task?’ 1=difficult, 9=easy

Result: The treatment groups rated the task as easier during session 2 than 1.

model

model_name = "quedetect_q5_treatment"
model_formula = formula("dv ~ 1 + treat*sess + (1 | fp)")
data <- dataque %>%
  filter(!treat == 'Control') %>%
  filter(que == 'q5') %>%
  mutate(treat =  ifelse(as.character(treat) == "IVET", -.5, .5))
#recode treatment as -.5 and .5
assign(get("model_name"), lmerTest::lmer(model_formula,
                                         control = lmerControl(optimizer = "bobyqa",  
                                                               optCtrl = list(maxfun = 1e5)),
                                         data = data))
table_model(get(model_name),
            dv_labels = "Task easy",
            pred_labels = mylabels)
  Task easy
Parameter B 95% CI SE t p
treatment (VRET/IVET) / session (1) 5.20 4.67 – 5.73 0.27 19.34 <0.001
treatment (VRET vs IVET) / session (1) -0.31 -1.38 – 0.76 0.54 -0.58 0.565
treatment (VRET/IVET) / session (2) 0.76 0.40 – 1.12 0.18 4.34 <0.001
treatment (VRET vs IVET) / session (2) 0.27 -0.44 – 0.99 0.35 0.78 0.443
Random Effects
σ2 0.48
τ00 fp 3.63
ICC 0.88
N fp 70
Observations 100
Marginal R2 / Conditional R2 0.035 / 0.887

plot

ggeffects::ggpredict(get(model_name), c("treat", "sess")) %>%
  data.frame() %>%
  mutate(group = ifelse(group == 0, 'pre', 'post'),
         group = factor(group, levels = c('pre', 'post')),
         x = ifelse(x == -.5, "IVET", "VRET")) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  scale_color_manual(values = palette[2:3], name = "treatment") +
  labs(y = "predicted rating\n", x = "\nsession") +
  plot_aes

rm(list=ls(pattern='quedetect'))

sample size

Nall = sum(c(nrow(listCGnotes),listEGnotes$sess1,listEGnotes$sess2))

The total number of recordings is 155. A recording comprises data from two tasks of a single subject in a single session.

  • Detection task (with EEG): Subjects detected flashing of the central fixation cross.
  • Rating task: Subjects rated each picture on arousal and pleasantness. (Note that pleasantness is recoded below to unpleasantness.)

The table shows the number of subjects in the three groups.

The variable Both shows how many subjects participated in both sessions. So, these are not additional subjects.

tmptable <- listEGnotes %>%
  select(vret, sess1, sess2) %>%
  mutate(sess12 = ifelse(sess1==1 & sess2==1, 1, 0)) %>%
  group_by(vret, sess1, sess2, sess12) %>%
  summarise(n = n(), .groups = 'drop') # grouping is dropped 
tmpd = data.frame(Treatment = c('Control','IVET','VRET'),
                  N = c(nrow(listCGnotes), 
                        length(listEGnotes$fp[listEGnotes$vret==0]),
                        length(listEGnotes$fp[listEGnotes$vret==1])),
                  S1 = c(nrow(listCGnotes), 
                         tmptable$n[2]+tmptable$n[3], 
                         tmptable$n[5]+tmptable$n[6]),
                  S2 = c('--', 
                         tmptable$n[1]+tmptable$n[3], 
                         tmptable$n[4]+tmptable$n[6]),
                  Both = c('--', tmptable$n[3], tmptable$n[6]))
tmpd %>%
  rename("Pre" = `S1`,
         "Post" = `S2`) %>%
  kable(align = "c") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
Treatment N Pre Post Both
Control 52 52
IVET 33 16 31 14
VRET 37 21 35 19
rm(tmptable, tmpd)

read rating/EEG data

Read in the data from the detection task (with EEG) and the rating data from the rating task.

experimental group

# experimental group
fps <- c(listEGnotes$fp[listEGnotes$sess1==1], 
        listEGnotes$fp[listEGnotes$sess2==1])
ses <- as.integer(c(listEGnotes$sess1[listEGnotes$sess1==1], 
                   listEGnotes$sess2[listEGnotes$sess2==1]*2))
vr <- as.integer(c(listEGnotes$vret[listEGnotes$sess1==1],
                  listEGnotes$vret[listEGnotes$sess2==1]))
RawDetect<- data.frame()
RawRate <- data.frame()
for (f in 1:length(fps)){ # f = 3
  
  # read in detection behavioral data----
  file <- file.path(dir_log,'experimental',sprintf('fp%s_%s/DATA_SpVR_%s_%s.txt',
                                                  fps[f],ses[f],fps[f], ses[f]))
  if (file.exists(file)){
    tmp <- read.csv(file, skip = 10, sep = '\t', header = F)[,1:13]
    # header = T did not work because of an extra tab at the end of each row
    colnames(tmp) <-  c('Trial',    'Code', 'Targ', 'Gap',  'Emo',  'Pind', 'Pcode',
                       'PicOn', 'ProbeOn',  'NumResp',  'RespOn',   'Logcode',  'PPTcode')
    if (nrow(tmp) != 200){
      print(file)
      stop('Not 200 trials per session!')
    }
  }
  
  # read in detection EEG data----
  # Trial   fp  ses cond    EPN LPP bad
  file <- file.path(dir_meanamps,sprintf('fp%03.0f_ses%02.0f.tsv',
                                          fps[f],ses[f]))
  if (file.exists(file)){
    tmp2 <- read.csv(file, sep = '\t', header = T)
    
    if (identical(rep(fps[f],length(tmp2$fp)), as.integer(tmp2$fp)) == F){
      print(file)
      stop('Subject id does not match!')
    }
    if (identical(rep(ses[f],length(tmp2$fp)), as.integer(tmp2$ses)) == F){
      print(file)
      stop('Session number does not match!')
    }
    
    # Some subjects had a trial missing in EEG
    # apparently, no code was sent to the EEG
    # fix these data
    # Note: earlier file versions had trialonset as a variable
    #tmp2$diff[2:length(tmp2$trialonset)] = diff(tmp2$trialonset, lag = 1)
    # I used the timing difference to find which trial was missing
    if (fps[f] == 13 & ses[f] == 1){
      # trial 172 is missing; skip this trial
      tmp2$Trial[172:199] <- 173:200
      tmp2 <- rbind(tmp2, c(172,13,1,'pos/notarget',NA,NA,NA,NA,NA,NA,NA,NA,1))
      tmp2 <- tmp2[order(as.numeric(tmp2$Trial)),]
    }
    if (fps[f] == 15 & ses[f] == 2){
      # trial 140 is missing; skip this trial
      tmp2$Trial[140:199] <- 141:200
      tmp2 <- rbind(tmp2, c(140,15,1,'pos/notarget',NA,NA,NA,NA,NA,NA,NA,NA,1))
      tmp2 <- tmp2[order(as.numeric(tmp2$Trial)),]
    }
    if (fps[f] == 71 & ses[f] == 1){
      # trial 30 is missing; skip this trial
      tmp2$Trial[30:199] <- 31:200
      tmp2 <- rbind(tmp2, c(30,71,1,'neg/notarget',NA,NA,NA,NA,NA,NA,NA,NA,1))
      tmp2 <- tmp2[order(as.numeric(tmp2$Trial)),]
    }
    
    # Emo: 1=spi, 2=unpleasant, 3=neutral, 4=pleasant
    tmp2$Emo <- NA
    tmp2$Emo[grepl('spi', tmp2$cond)] <- 1
    tmp2$Emo[grepl('neg', tmp2$cond)] <- 2
    tmp2$Emo[grepl('neu', tmp2$cond)] <- 3
    tmp2$Emo[grepl('pos', tmp2$cond)] <- 4
    
    tmp2$Targ <- 0
    tmp2$Targ[grepl('/target', tmp2$cond)] <- 1
    
    if (nrow(tmp2) != 200){
      print(file)
      stop('Not 200 trials per session!')
    }
    if (identical(tmp$Emo, as.integer(tmp2$Emo)) == F){
      print(file)
      stop('Emotion codes do not match!')
    }
    if (identical(tmp$Targ, as.integer(tmp2$Targ)) == F){
      print(file)
      stop('Target trials do not match!')
    }
    
    # copy mean amps
    tmp$EPN <- as.numeric(tmp2$EPN_average)
    tmp$LPP <- as.numeric(tmp2$LPP_average)
    tmp$bad <- as.numeric(tmp2$bad)
    
    tmp$fp <- fps[f]
    tmp$sess <- ses[f]-1 # code session as 0 and 1
    tmp$treat <- ifelse(vr[f] == 1, 'VRET', 'IVET')
    
    RawDetect <- rbind(RawDetect, tmp)
    rm(tmp, tmp2)
  }
  
  # read in rating data----
  file <- file.path(dir_log,'experimental',sprintf('fp%s_%s/DATA_SpVRrate_%s_%s.txt',
                                                  fps[f],ses[f],fps[f],ses[f]))
  if (file.exists(file)){
    tmp <- read.csv(file, skip = 5, sep = '\t', header = T)[-c(1:4),]
    # delete practice rows
    if (nrow(tmp) != 40){
      print(file)
      stop('Not 40 trials per session!')
    }
    tmp$fp <- fps[f]
    tmp$sess <- ses[f]-1
    tmp$treat <- ifelse(vr[f] == 1, 'VRET', 'IVET')
    RawRate <- rbind(RawRate, tmp)
  }
}
rm(fps,tmp,file,f,ses,vr)

control group

# control group
fps <- listCGnotes$fp
for (f in 1:length(fps)){ # f = 1
  
  # read in detection data----
  file <- file.path(dir_log,'control',sprintf('fp%s/DATA_SpVR_%s_1.txt',fps[f]-100,fps[f]-100))
  # for log, fp number starts from 1
  if (file.exists(file)){
    tmp <- read.csv(file, skip = 10, sep = '\t', header = F)[,1:13]
    # header = T did not work because of an extra tab at the end of each row
    colnames(tmp) <-  c('Trial',    'Code', 'Targ', 'Gap',  'Emo',  'Pind', 'Pcode',
                       'PicOn', 'ProbeOn',  'NumResp',  'RespOn',   'Logcode',  'PPTcode')
    if (nrow(tmp) != 200){
      print(file)
      stop('Not 200 trials per session!')
    }
  }
  
  # read in detection EEG data----
  file <- file.path(dir_meanamps,sprintf('fp%03.0f_ses01.tsv',
                                          fps[f])) # fp numbers already starts from 100

  if (file.exists(file)){
    tmp2 <- read.csv(file, sep = '\t', header = T, )
    
    if (identical(as.integer(rep(fps[f],length(tmp2$fp))), tmp2$fp) == F){
      print(file)
      stop('Subject id does not match!')
    }
    
    # Emo: 1=spi, 2=unpleasant, 3=neutral, 4=pleasant
    tmp2$Emo <- NA
    tmp2$Emo[grepl('spi', tmp2$cond)] <- 1
    tmp2$Emo[grepl('neg', tmp2$cond)] <- 2
    tmp2$Emo[grepl('neu', tmp2$cond)] <- 3
    tmp2$Emo[grepl('pos', tmp2$cond)] <- 4
    
    tmp2$Targ <- 0
    tmp2$Targ[grepl('/target', tmp2$cond)] <- 1
    
    if (nrow(tmp2) != 200){
      print(file)
      stop('Not 200 trials per session!')
    }
    if (identical(tmp$Emo, as.integer(tmp2$Emo)) == F){
      print(file)
      stop('Emotion codes do not match!')
    }
    if (identical(tmp$Targ, as.integer(tmp2$Targ)) == F){
      print(file)
      stop('Target trials do not match!')
    }
    
    # copy mean amps
    tmp$EPN <- as.numeric(tmp2$EPN_average)
    tmp$LPP <- as.numeric(tmp2$LPP_average)
    tmp$bad <- as.numeric(tmp2$bad)
    
    tmp$fp <- fps[f]
    tmp$sess <- 0 # code session as 0 and 1
    tmp$treat <- 'Control'
    
    RawDetect <- rbind(RawDetect, tmp)
    rm(tmp, tmp2)
  }
  
  # read in rating data----
  file <- file.path(dir_log,'control',sprintf('fp%s/DATA_SpVRrate_%s_1.txt',fps[f]-100,fps[f]-100))
  # for rating, fp number starts from 1
  if (file.exists(file)){
    tmp <- read.csv(file, skip = 5, sep = '\t', header = T)[-c(1:4),]
    # delete practice rows
    if (nrow(tmp) != 40){
      print(file)
      stop('Not 40 trials per session!')
    }
    tmp$fp <- fps[f]
    tmp$sess <- 0 # code session as 0 and 1
    tmp$treat <- 'Control'
    RawRate <- rbind(RawRate, tmp)
  }
}
rm(fps,tmp,file,f)

recode variables

  • Subject ID (fp) as character (for an unknown reason, fp as factor messes up predicted())
  • Control group as reference category
  • Emotion categories: neutral, spider, negative, positive (in this order)
RawDetect <- RawDetect %>%
  mutate(fp = as.character(fp),
         treat = factor(treat, levels = c("Control", "IVET", "VRET")), 
         # relevel so control is the reference
         Emo = recode(Emo, "1" = "spider", "2" = "negative", "3" = "neutral", "4" = "positive"), 
         # recode emotion categories
         Emo = factor(Emo, levels = c("neutral", "spider", "negative", "positive"))) 
# relevel so that neutral is the reference
RawRate <- RawRate %>%
  mutate(fp = as.character(fp),
         treat = factor(treat, levels = c("Control", "IVET", "VRET")), 
         # relevel so control is the reference
         Emo = recode(Emo, "1" = "spider", "2" = "negative", "3" = "neutral", "4" = "positive"), 
         # recode emotion categories
         Emo = factor(Emo, levels = c("neutral", "spider", "negative", "positive")))
write_tsv(RawDetect, file.path('results/datadetect.tsv'))
write_tsv(RawRate, file.path('results/datarate.tsv'))

detection task performance

Process the performance data (false alarms, hit rate, reaction time to hits) from the detection task.

false alarms

In the plot, subject refers to the data from a subject in a single session (N = 155). Most subjects made very few false alarms with a couple of exceptions. However, these subjects were in the control group. So, ignore false alarms and focus on hits.

# false alarm
tmp <- RawDetect %>% 
  mutate(fals = ifelse(Targ==0 & NumResp>0, 1, 0)) %>%
  group_by(fp, sess) %>%
  summarise(sumfals = sum(fals), .groups = 'drop') %>% 
  pull(sumfals) %>% 
  mean()
RawDetect %>% 
  mutate(fals = ifelse(Targ==0 & NumResp>0, 1, 0)) %>%
  group_by(fp, sess) %>%
  summarise(sumfals = sum(fals), .groups = 'drop') %>% 
  ggplot(aes(sumfals)) +
     geom_density() +
     theme_bw() +
     labs(title = paste0('Number of false alarms (mean = ', myround(tmp,1),')'), 
          x = 'Number of false alarms per subject (possible max = 160)') +
    geom_vline(xintercept = tmp, linetype = 'longdash')

rm(tmp)

hit rate

Hits are trials in which the flashing of the fixation cross was detected and reaction time (RT) > 200 ms.

plot

In the plot, subject refers to the data from a subject in a single session (N = 160).
Hit rate varied across subjects.

# hits
RawDetect <- RawDetect %>% 
  mutate(hit = ifelse(Targ == 1 & NumResp > 0 & RespOn - ProbeOn > 200, 1, 0))
tmp <- RawDetect %>% 
  filter(Targ == 1) %>% 
  group_by(fp, sess) %>%
  summarise(mhit = mean(hit)*100, .groups = 'drop') %>% 
  pull(mhit) %>% 
  mean()
RawDetect %>% 
  filter(Targ == 1) %>% 
  group_by(fp, sess) %>%
  summarise(mhit = mean(hit)*100, .groups = 'drop') %>% 
  ggplot(aes(mhit)) +
     geom_density() +
     theme_bw() +
     labs(title = paste0('Hit rate (mean = ', myround(tmp,1),')'), 
          x = 'Hit rate (%) per subject') +
     geom_vline(xintercept = tmp, linetype = 'longdash')

rm(tmp)

session 1 across treatments

  • use session 1 from all three groups
  • combine treatment groups
  • compute mean hit rate
  • nonspiders (i.e., positive, neutral, negative) are combined
  • compare spiders versus nonspiders
  • intercept is control/nonspiders

Result: In Session 1, the combined treatment groups (vs controls) tended to have lower hit rates for spiders (vs nonspiders).

model

mylabels <- c('treatment (Control) / emotion (nonspiders)',
             'treatment (VRET/IVET) /  emotion (nonspiders)', 
             'treatment (Control) / emotion (spiders)', 
             'treatment (VRET/IVET) / emotion (spiders)')
model_name <- "perfdetect_acrosstreatment"
model_formula <- formula("mhit ~ 1 + treat*Emo + (1 | fp)")
data <- RawDetect %>%
  filter(sess == 0 & Targ == 1) %>%
  mutate(Emo = ifelse(Emo == 'spider', 'spider', 'nonspider'),   
         Emo = factor(Emo, levels = c("nonspider", "spider"))) %>%
  group_by(fp, Emo) %>%
  summarise(mhit = mean(hit)*100, .groups = 'drop') %>%
  mutate(treat = ifelse(as.numeric(as.character(fp)) > 100,'Control', 'VRET/IVET'),   
         treat = factor(treat, levels = c("Control", "VRET/IVET")))
assign(get("model_name"), lmerTest::lmer(model_formula,
                                         control = lmerControl(optimizer = "bobyqa",  
                                                               optCtrl = list(maxfun = 1e5)),
                                         data = data))
table_model(get(model_name),
            dv_labels = "Mean Hit rate (%)",
            pred_labels = mylabels)
  Mean Hit rate (%)
Parameter B 95% CI SE t p
treatment (Control) / emotion (nonspiders) 80.77 75.20 – 86.34 2.81 28.74 <0.001
treatment (VRET/IVET) / emotion (nonspiders) -1.76 -10.39 – 6.87 4.36 -0.40 0.687
treatment (Control) / emotion (spiders) 0.38 -3.90 – 4.67 2.16 0.18 0.859
treatment (VRET/IVET) / emotion (spiders) -6.42 -13.06 – 0.22 3.34 -1.92 0.058
Random Effects
σ2 120.75
τ00 fp 289.99
ICC 0.71
N fp 89
Observations 178
Marginal R2 / Conditional R2 0.023 / 0.713

plot

ggeffects::ggpredict(get(model_name), c("treat", "Emo")) %>%
  data.frame() %>%
  mutate(group = factor(group, levels = c("nonspider", "spider"))) %>%
  ggplot(aes(group, predicted, color = x)) +
  #geom_line(data = fits, aes(x = sess, y = predicted_re, color = treat, group = fp), alpha = .3, size = .2) +
  # plotting individual lines is not meaningful because slopes are fixed in model
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  scale_color_manual(values = palette2, name = "treatment") +
  labs(y = "predicted hit rate\n", x = "\nemotion") +
  plot_aes

treatment comparison

  • session 1 and session 2 (session 1 as reference)
  • include only treatment groups
  • IVET = -.5, VRET = .5
  • compute mean hit rate
  • nonspiders (i.e., positive, neutral, negative) are combined
  • compare spiders versus nonspiders
  • intercept is session 1/nonspiders

Results do not suggest that the treatment groups differed. However, across treatment groups, there were two effects:

  • Performance was lower to spiders than nonspiders in Session 1.
  • The performance difference between spiders vs nonspiders decreased from Session 1 to Session 2.

model

mylabels <- c('treatment (VRET/IVET) / session (1) / emotion (nonspider)',
             'treatment (VRET vs IVET) /  session (1) / emotion (nonspider)', 
             'treatment (VRET/IVET) / session (2) / emotion (nonspider)', 
             'treatment (VRET/IVET) / session (1) / emotion (spider)',
             'treatment (VRET vs IVET) / session (2) / emotion (nonspider)',
             'treatment (VRET vs IVET) /  session (1) / emotion (spider)', 
             'treatment (VRET/IVET) /  session (2) / emotion (spider)', 
             'treatment (VRET vs IVET) /  session (2) / emotion (spider)')
model_name <- "perfdetect_treatment"
model_formula <- formula("mhit ~ 1 + treat*sess*Emo + (1 | fp)")
data <- RawDetect %>%
  filter(!treat == 'Control' & Targ == 1) %>%
  mutate(Emo = ifelse(Emo == 'spider', 'spider', 'nonspider'),   
         Emo = factor(Emo, levels = c("nonspider", "spider")),
         treat =  ifelse(as.character(treat) == "IVET", -.5, .5)) %>%
  #recode treatment as -.5 and .5
  group_by(treat, fp, sess, Emo) %>%
  summarise(mhit = mean(hit)*100, .groups = 'drop') 
assign(get("model_name"), lmerTest::lmer(model_formula,
                                         control = lmerControl(optimizer = "bobyqa",  
                                                               optCtrl = list(maxfun = 1e5)),
                                         data = data))
table_model(get(model_name),
            dv_labels = "Mean Hit rate",
            pred_labels = mylabels)
  Mean Hit rate
Parameter B 95% CI SE t p
treatment (VRET/IVET) / session (1) / emotion (nonspider) 79.26 73.57 – 84.94 2.88 27.54 <0.001
treatment (VRET vs IVET) / session (1) / emotion (nonspider) -3.98 -15.35 – 7.39 5.76 -0.69 0.490
treatment (VRET/IVET) / session (2) / emotion (nonspider) -2.77 -7.71 – 2.17 2.50 -1.11 0.270
treatment (VRET/IVET) / session (1) / emotion (spider) -5.79 -10.96 – -0.62 2.61 -2.21 0.029
treatment (VRET vs IVET) / session (2) / emotion (nonspider) 4.38 -5.51 – 14.26 5.00 0.88 0.383
treatment (VRET vs IVET) / session (1) / emotion (spider) -3.66 -14.00 – 6.68 5.23 -0.70 0.485
treatment (VRET/IVET) / session (2) / emotion (spider) 7.85 1.40 – 14.29 3.26 2.41 0.017
treatment (VRET vs IVET) / session (2) / emotion (spider) 4.12 -8.77 – 17.01 6.52 0.63 0.528
Random Effects
σ2 124.16
τ00 fp 287.89
ICC 0.70
N fp 70
Observations 206
Marginal R2 / Conditional R2 0.019 / 0.704

plot

ggeffects::ggpredict(get(model_name), c("treat", "sess", "Emo")) %>%
  data.frame() %>%
  mutate(group = ifelse(group == 0, 'pre', 'post'),
         group = factor(group, levels = c('pre', 'post')),
         x = ifelse(x == -.5, "IVET", "VRET")) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  facet_grid(~facet) +
  scale_color_manual(values = palette[2:3], name = "treatment") +
  labs(y = "predicted hit rate\n", x = "\nsession") +
  plot_aes

hits RT (ms)

session 1 across treatments

  • use session 1 from all three groups
  • combine treatment groups
  • compute mean hit RT (ms)
  • nonspiders (i.e., positive, neutral, negative) are combined
  • compare spiders versus nonspiders
  • intercept is control/nonspiders

Results do not suggest differences in Session 1.

model

mylabels <- c('treatment (Control) / emotion (nonspiders)',
             'treatment (VRET/IVET) /  emotion (nonspiders)', 
             'treatment (Control) / emotion (spiders)', 
             'treatment (VRET/IVET) / emotion (spiders)')
model_name <- "perfdetectRT_acrosstreatment"
model_formula <- formula("mhitRT ~ 1 + treat*Emo + (1 | fp)")
data <- RawDetect %>%
  filter(sess == 0,
         hit == 1) %>%
  mutate(hitRT = RespOn - ProbeOn,
         Emo = ifelse(Emo == 'spider', 'spider', 'nonspider'),   
         Emo = factor(Emo, levels = c("nonspider", "spider"))) %>%
  group_by(fp, Emo) %>%
  summarise(mhitRT = mean(hitRT), .groups = 'drop') %>%
  mutate(treat = ifelse(as.numeric(fp) < 100,'Control', 'VRET/IVET'),   
         treat = factor(treat, levels = c("Control", "VRET/IVET")))
assign(get("model_name"), lmerTest::lmer(model_formula,
                                         control = lmerControl(optimizer = "bobyqa",  
                                                               optCtrl = list(maxfun = 1e5)),
                                         data = data))
table_model(get(model_name),
            dv_labels = "Mean Hit RT (ms)",
            pred_labels = mylabels)
  Mean Hit RT (ms)
Parameter B 95% CI SE t p
treatment (Control) / emotion (nonspiders) 521.59 494.68 – 548.50 13.57 38.43 <0.001
treatment (VRET/IVET) / emotion (nonspiders) -24.56 -59.77 – 10.65 17.75 -1.38 0.170
treatment (Control) / emotion (spiders) 9.44 -9.67 – 28.56 9.61 0.98 0.329
treatment (VRET/IVET) / emotion (spiders) -7.55 -32.31 – 17.21 12.44 -0.61 0.546
Random Effects
σ2 1625.32
τ00 fp 5188.81
ICC 0.76
N fp 89
Observations 176
Marginal R2 / Conditional R2 0.029 / 0.768

plot

ggeffects::ggpredict(get(model_name), c("treat", "Emo")) %>%
  data.frame() %>%
  mutate(group = factor(group, levels = c("nonspider", "spider"))) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  scale_color_manual(values = palette2, name = "treatment") +
  labs(y = "predicted hit RT (ms)\n", x = "\nemotion") +
  plot_aes

treatment comparison

  • session 1 and session 2 (session 1 as reference)
  • include only treatment groups
  • IVET = -.5, VRET = .5
  • compute mean hit RT (ms)
  • nonspiders (i.e., positive, neutral, negative) are combined
  • compare spiders versus nonspiders
  • intercept is session 1/nonspiders

Results suggest no differences.

model

mylabels <- c('treatment (VRET/IVET) / session (1) / emotion (nonspider)',
             'treatment (VRET vs IVET) /  session (1) / emotion (nonspider)', 
             'treatment (VRET/IVET) / session (2) / emotion (nonspider)', 
             'treatment (VRET/IVET) / session (1) / emotion (spider)',
             'treatment (VRET vs IVET) / session (2) / emotion (nonspider)',
             'treatment (VRET vs IVET) /  session (1) / emotion (spider)', 
             'treatment (VRET/IVET) /  session (2) / emotion (spider)', 
             'treatment (VRET vs IVET) /  session (2) / emotion (spider)')
model_name <- "perfdetectRT_treatment"
model_formula <- formula("mhitRT ~ 1 + treat*sess*Emo + (1 | fp)")
data <- RawDetect %>%
  filter(!treat == 'Control',
         hit == 1) %>%
  mutate(hitRT = RespOn - ProbeOn,
         Emo = ifelse(Emo == 'spider', 'spider', 'nonspider'),   
         Emo = factor(Emo, levels = c("nonspider", "spider")),
         treat =  ifelse(as.character(treat) == "IVET", -.5, .5)) %>%
  #recode treatment as -.5 and .5
  group_by(treat, fp, sess, Emo) %>%
  summarise(mhitRT = mean(hitRT), .groups = 'drop') 
assign(get("model_name"), lmerTest::lmer(model_formula,
                                         control = lmerControl(optimizer = "bobyqa",  
                                                               optCtrl = list(maxfun = 1e5)),
                                         data = data))
table_model(get(model_name),
            dv_labels = "Mean Hit RT (ms)",
            pred_labels = mylabels)
  Mean Hit RT (ms)
Parameter B 95% CI SE t p
treatment (VRET/IVET) / session (1) / emotion (nonspider) 526.53 504.52 – 548.55 11.14 47.26 <0.001
treatment (VRET vs IVET) / session (1) / emotion (nonspider) 13.04 -30.98 – 57.07 22.28 0.59 0.559
treatment (VRET/IVET) / session (2) / emotion (nonspider) -7.88 -27.75 – 12.00 10.05 -0.78 0.435
treatment (VRET/IVET) / session (1) / emotion (spider) 5.67 -15.38 – 26.73 10.63 0.53 0.595
treatment (VRET vs IVET) / session (2) / emotion (nonspider) -24.73 -64.48 – 15.03 20.10 -1.23 0.221
treatment (VRET vs IVET) / session (1) / emotion (spider) 26.94 -15.17 – 69.04 21.27 1.27 0.208
treatment (VRET/IVET) / session (2) / emotion (spider) -12.13 -38.24 – 13.98 13.19 -0.92 0.359
treatment (VRET vs IVET) / session (2) / emotion (spider) -19.37 -71.58 – 32.84 26.37 -0.73 0.464
Random Effects
σ2 1964.18
τ00 fp 4062.38
ICC 0.67
N fp 70
Observations 202
Marginal R2 / Conditional R2 0.026 / 0.682

plot

ggeffects::ggpredict(get(model_name), c("treat", "sess", "Emo")) %>%
  data.frame() %>%
  mutate(group = ifelse(group == 0, 'pre', 'post'),
         group = factor(group, levels = c('pre', 'post')),
         x = ifelse(x == -.5, "IVET", "VRET")) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  facet_grid(~facet) +
  scale_color_manual(values = palette[2:3], name = "treatment") +
  labs(y = "predicted hit RT (ms)\n", x = "\nsession") +
  plot_aes

prepare rating/EEG subsets

emotion rating

Self-reported ratings of arousal and pleasantness during the rating task.

# check min=1 and max=9
RawRate %>% 
  summarise(min_aro = min(Aro),
            max_aro = max(Aro),
            min_uple = min(Ple),
            max_uple = max(Ple), .groups = 'drop') %>% 
  as.numeric() %>% 
  identical(c(1,9,1,9)) %>% 
  isFALSE() %>% 
  {if(.)(stop("Error: Rating min and max are not 1 and 9, respectively!"))}

rate <- RawRate

# arousal and pleasantness separately
# ====================================
# subset baseline data
rate_baseline <- rate %>%
  filter(sess == 0) %>%
  pivot_longer(cols = c(Ple, Aro), names_to = 'rating_type', values_to = 'rating') %>%
  mutate(rating_type = factor(rating_type, levels = c("Aro", "Ple")))

# combine treatments
# (IVET and VRET have different fp, ie subject ids)
rate_baseline_acrosstreatment <- rate_baseline %>%
  mutate(treat = ifelse(treat == "Control", "Control", "IVET/VRET"), 
         treat = factor(treat, levels = c("Control", "IVET/VRET")))

# pivot_longer rating types and filter out control
rate_only_treat <- rate %>%
  filter(!treat == "Control") %>%
  pivot_longer(cols = c(Ple, Aro), names_to = 'rating_type', values_to = 'rating') 

# recode treatment
rate_only_treat_recode <- rate_only_treat %>%
  mutate(treat =  ifelse(as.character(treat) == "IVET", -.5, .5))
         #recode treatment as -.5 and .5

# subtract the average across neutral pictures from each trial
neutral_rate <- rate %>%
  filter(Emo == "neutral") %>%
  group_by(fp, sess) %>%
  summarise(neutral_avg_Aro = mean(Aro, na.rm = TRUE),
            neutral_avg_Ple = mean(Ple, na.rm = TRUE),
            .groups = 'drop') # grouping is dropped

rate_diffneutral <- rate %>%
  filter(!Emo == "neutral") %>%
  left_join(., neutral_rate, by = c("fp", "sess")) %>%
  mutate(Aro_diff  = Aro - neutral_avg_Aro,
         Ple_diff = Ple - neutral_avg_Ple,
         Emo = factor(Emo, levels = c("spider", "negative", "positive")),
         treat = factor(treat))

detection task (EEG)

  • remove bad trials from the EEG data
  • remove outliers
  • remove target trials from the EEG data (20% target trials)
  • remove false alarms

all trials

Number of trials = 31000.

RawDetect %>% 
  pivot_longer(cols = c(EPN,LPP), names_to = 'ERP_type', values_to = 'amp' ) %>% 
  ggplot() +
  geom_violin(aes(x = ERP_type, y = amp)) +
  theme_bw() +
  labs(title = paste0('Mean amplitude (µV) per trial (N = ', nrow(RawDetect),')'), 
       x = 'ERP interval')

remove bad trials

Below, the bad trials were removed. These were marked during the initial data preparation.

Number of trials = 30483. Percentage of remaining trials = 98.3.

The figure suggests that some outliers remained. The figure suggests that +/-25 µV is a reasonable cut off for these outliers.

RawDetect %>% 
  filter(bad == 0) %>% # remove bad EEG trials
  pivot_longer(cols = c(EPN,LPP), names_to = 'ERP_type', values_to = 'amp' ) %>% 
  ggplot() +
  geom_violin(aes(x = ERP_type, y = amp)) +
  geom_hline(aes(yintercept = 25), linetype = 'longdash') +
  geom_hline(aes(yintercept = -25), linetype = 'longdash') +
  theme_bw() +
  labs(title = paste0('Mean amplitude (µV) per trial (N = ', nrow(RawDetect %>% filter(bad == 0)),')'), 
       x = 'ERP interval')

# remove outliers
tmp <- nrow(RawDetect %>% filter(bad == 0))
RawDetect <- RawDetect %>% 
  mutate(bad = ifelse(abs(EPN) > 25 | abs(LPP) > 25 | is.na(EPN) | is.na(LPP), 1, bad))
tmp2 <- nrow(RawDetect %>% filter(bad == 0))

remove outliers

The outliers were identified with the previous violin plot. Number of trials that were excluded: 66.
Number of remaining trials = 30417. Percentage of remaining trials = 98.1.

rm(tmp, tmp2)
RawDetect %>% 
  filter(bad == 0) %>% # remove bad trials and outliers
  pivot_longer(cols = c(EPN,LPP), names_to = 'ERP_type', values_to = 'amp' ) %>% 
  ggplot() +
  geom_violin(aes(x = ERP_type, y = amp)) +
  geom_hline(aes(yintercept = 25), linetype = 'longdash') +
  geom_hline(aes(yintercept = -25), linetype = 'longdash') +
  theme_bw() +
  labs(title = paste0('Mean amplitude (µV) per trial (N = ', nrow(RawDetect %>% filter(bad == 0)),')'), 
       x = 'ERP interval')

check distribution

Check how bad trials are distributed between spider and nonspiders. The expected percentages for bad spider trials is 25% (1 of 4 picture categories).

RawDetect %>% 
  mutate(Treatment = ifelse(treat == 'Control', 'Control', 'IVET/VRET'),
         spider = ifelse(Emo == 'spider', 'spider', 'nonspider')) %>% 
  group_by(Treatment, spider) %>% 
  summarize(bad = sum(bad), .groups = 'drop') %>% 
  pivot_wider(names_from = 'spider', values_from = 'bad') %>% 
  mutate(bad_percent = spider/(spider+nonspider)*100) %>% 
  kable(align = "c") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
Treatment nonspider spider bad_percent
Control 205 62 23.22097
IVET/VRET 241 75 23.73418

N trials

Percentage of good EEG trials per recording.

RawDetect %>% 
  group_by(treat, sess, fp) %>% 
  summarize(good = (1-sum(bad)/n())*100,.groups = 'drop') %>% 
  pull(good) %>% 
  summary()
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   73.50   98.00   99.50   98.12  100.00  100.00

N trials by group

Percentage of good EEG trials per participant and group.

RawDetect %>% 
  group_by(treat, sess, fp) %>% 
  summarize(good = (1-sum(bad)/n())*100,.groups = 'drop') %>% 
  mutate(sess = ifelse(sess == 0, 'pre', 'post')) %>% 
  unite(Condition, treat, sess, sep = " ") %>% 
  mutate(Condition = ifelse(Condition == 'Control pre', 'Control', Condition)) %>% 
  mutate(Condition = factor(Condition, levels=unique(as.character(Condition)))) %>% 
  group_by(Condition) %>% 
  summarize(N = n(),
            Mean = myround(mean(good),2),
            SD = myround(sd(good),2),
            .groups = 'drop') %>% 
  kable(align = "c") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
Condition N Mean SD
Control 52 97.43 4.81
IVET pre 16 97.06 6.60
IVET post 31 98.68 2.87
VRET pre 21 98.12 2.96
VRET post 35 99.13 1.75

N trials per block

RawDetect %>% 
  filter(bad == 0) %>% # remove bad trials and outliers
  mutate(block = case_when(
          Trial < 51 ~ 1,
          Trial < 101 ~ 2,
          Trial < 151 ~ 3,
          Trial < 201 ~ 4)) %>%  
  group_by(treat, sess, fp, Emo, block) %>% 
  summarize(ntrial = n(), .groups = 'drop') %>% 
  mutate(sess = ifelse(sess == 0, 'pre', 'post')) %>% 
  unite(Condition, treat, sess, sep = " ") %>% 
  mutate(Condition = ifelse(Condition == 'Control pre', 'Control', Condition)) %>% 
  group_by(Condition, Emo, block) %>% 
  summarise(N = paste0('(n=',n(),')'),
            Mean = mean(ntrial),
            .groups = 'drop') %>% 
  unite(Condition, Condition, N, sep = " ") %>% 
  ggplot(aes(x=block, y=Mean, by=Condition, color=Emo)) + 
  geom_line() +
  theme_bw() + # get rid of background
  facet_grid(~Condition) + 
  ylim(c(11, 13)) +
  labs(title = "Mean N valid EEG trials",
       y = "N trials")

write_tsv(RawDetect, file.path('results/datadetect_clean.tsv'))

prepare files

detect <- RawDetect %>%
  filter(bad == 0) #%>% # remove bad EEG trials and outliers
 # # target trials
 # filter(Targ == 0) %>%
 # # false alarms
 # mutate(fals = ifelse(Targ==0 & NumResp>0, 1, 0)) %>%
 # filter(fals == 0) %>%
 # select(-fals)

# subset baseline data
detect_baseline <- detect %>%
  filter(sess == 0)

# combine treatments
# (IVET and VRET have different fp, ie subject ids)
detect_baseline_acrosstreatment <- detect_baseline %>%
  mutate(treat = ifelse(treat == "Control", "Control", "IVET/VRET"), 
         treat = factor(treat, levels = c("Control", "IVET/VRET")))

# filter out control
detect_only_treat <- detect %>%
  filter(!treat == "Control") %>%
  mutate(treat = factor(treat))

# recode treatment as -.5 and .5
detect_only_treat_recode <- detect_only_treat %>%
  mutate(treat =  ifelse(as.character(treat) == "IVET", -.5, .5)) #recode rating_type as -.5 and .5

# subtract the average across neutral pictures from each trial and re-reference
neutral_ERP <- detect %>%
  filter(Emo == "neutral") %>%
  group_by(fp, sess) %>%
  summarise(neutral_avg_LPP = mean(LPP, na.rm = TRUE),
            neutral_avg_EPN = mean(EPN, na.rm = TRUE),
            .groups = 'drop') # grouping is dropped

detect_diffneutral <- detect %>%
  filter(!Emo == "neutral") %>%
  left_join(., neutral_ERP, by = c("fp", "sess")) %>%
  mutate(LPP_diff = LPP - neutral_avg_LPP,
         EPN_diff = EPN - neutral_avg_EPN,
         Emo = factor(Emo, levels = c("spider", "negative", "positive")),
         treat = factor(treat))

detect_diffneutralEG <- detect_diffneutral %>%
  filter(!treat == "Control") %>%
  mutate(treat =  ifelse(as.character(treat) == "IVET", -.5, .5))

descriptives with figures

emotion ratings

means

The table shows means (SD in parentheses).

rate %>%
  pivot_longer(cols = c(Ple, Aro), names_to = 'rating_type', values_to = 'rating') %>%
  group_by(fp, sess, treat, Emo, rating_type) %>%
  summarise(mean = mean(rating, na.rm = TRUE), .groups = 'drop') %>% 
  # grouping is dropped 
  mutate(rating_type = ifelse(rating_type == "Aro", "arousal", "pleasantness")) %>%
  ungroup() %>%
  mutate(sess = ifelse(sess == 0, "pre", "post"),
         sess = factor(sess, levels = c('pre', 'post'))) %>%
  unite(emo_rating, rating_type, Emo, sep = " ") %>%
  group_by(sess, treat, emo_rating) %>%
  summarise(N = n(),
            m_sd = sprintf("%.2f (%.2f)", mean(mean, na.rm = TRUE), 
                           sd(mean, na.rm = TRUE)), .groups = 'drop') %>%
  # grouping is dropped
  pivot_wider(names_from = emo_rating, values_from = m_sd) %>%
  rename("Treatment" = treat,
         "Session" = sess) %>%
  arrange(Treatment) %>%
  kable() %>%
  kable_styling()
Session Treatment N arousal negative arousal neutral arousal positive arousal spider pleasantness negative pleasantness neutral pleasantness positive pleasantness spider
pre Control 52 5.45 (1.49) 3.98 (1.26) 4.74 (1.50) 5.09 (1.69) 3.30 (0.86) 5.15 (0.38) 6.80 (0.83) 4.25 (1.23)
pre IVET 16 5.86 (0.83) 4.50 (1.00) 4.21 (1.13) 7.16 (1.37) 3.29 (0.97) 5.22 (0.20) 7.24 (0.84) 2.24 (0.94)
post IVET 31 6.11 (1.02) 4.54 (1.03) 4.79 (1.26) 6.30 (1.11) 3.21 (0.99) 5.11 (0.18) 6.91 (0.80) 3.24 (1.07)
pre VRET 21 5.45 (1.18) 4.27 (1.03) 4.13 (1.00) 7.48 (0.70) 3.47 (0.72) 5.30 (0.35) 6.84 (0.77) 2.21 (0.97)
post VRET 35 5.51 (1.17) 4.45 (1.12) 4.12 (1.33) 6.33 (1.38) 3.61 (0.87) 5.10 (0.27) 6.44 (0.84) 3.41 (1.32)

change scores

Compute difference scores relative to neutral pictures. For example, spider = spider - neutral.

rate_diffneutral %>%
  pivot_longer(cols = c(Aro_diff, Ple_diff), names_to = 'rating_type', values_to = 'rating') %>% 
  group_by(fp, sess, treat, Emo, rating_type) %>%
  summarise(rating = mean(rating, na.rm = TRUE), .groups = 'drop') %>% 
  # grouping is dropped 
  mutate(sess = ifelse(sess == 0, "pre", "post"),
         sess = factor(sess, levels = c('pre', 'post'))) %>% 
  group_by(sess, treat, Emo, rating_type) %>%
  summarise(N = n(),
            Mean = mean(rating),
            LL = ci95LL(rating),
            UL = ci95UL(rating),
           .groups = 'drop') %>% 
  relocate(rating_type) %>% 
  arrange(rating_type, Emo, treat, sess) %>%
  rename("Rating" = rating_type,
         "Treatment" = treat,
         "Session" = sess, 
         "Category" = Emo) %>%
  kable() %>%
  kable_styling()
Rating Session Treatment Category N Mean LL UL
Aro_diff pre Control spider 52 1.1173077 0.7802942 1.4543212
Aro_diff pre IVET spider 16 2.6562500 2.0754646 3.2370354
Aro_diff post IVET spider 31 1.7580645 1.2091026 2.3070265
Aro_diff pre VRET spider 21 3.2142857 2.5979574 3.8306140
Aro_diff post VRET spider 35 1.8771429 1.3850908 2.3691949
Aro_diff pre Control negative 52 1.4692308 1.1752932 1.7631683
Aro_diff pre IVET negative 16 1.3625000 0.5818066 2.1431934
Aro_diff post IVET negative 31 1.5677419 1.0868348 2.0486491
Aro_diff pre VRET negative 21 1.1809524 0.8095797 1.5523250
Aro_diff post VRET negative 35 1.0600000 0.7413093 1.3786907
Aro_diff pre Control positive 52 0.7653846 0.4364422 1.0943270
Aro_diff pre IVET positive 16 -0.2937500 -1.0663009 0.4788009
Aro_diff post IVET positive 31 0.2516129 -0.1549565 0.6581823
Aro_diff pre VRET positive 21 -0.1380952 -0.5038055 0.2276150
Aro_diff post VRET positive 35 -0.3342857 -0.6166870 -0.0518844
Ple_diff pre Control spider 52 -0.8961538 -1.2405823 -0.5517254
Ple_diff pre IVET spider 16 -2.9812500 -3.4347443 -2.5277557
Ple_diff post IVET spider 31 -1.8741935 -2.2920880 -1.4562991
Ple_diff pre VRET spider 21 -3.0904762 -3.6273173 -2.5536351
Ple_diff post VRET spider 35 -1.6885714 -2.1545913 -1.2225516
Ple_diff pre Control negative 52 -1.8461538 -2.1124729 -1.5798348
Ple_diff pre IVET negative 16 -1.9312500 -2.4561375 -1.4063625
Ple_diff post IVET negative 31 -1.9032258 -2.2905442 -1.5159074
Ple_diff pre VRET negative 21 -1.8333333 -2.1806958 -1.4859709
Ple_diff post VRET negative 35 -1.4914286 -1.8420773 -1.1407798
Ple_diff pre Control positive 52 1.6500000 1.4080789 1.8919211
Ple_diff pre IVET positive 16 2.0250000 1.5485920 2.5014080
Ple_diff post IVET positive 31 1.8000000 1.5065576 2.0934424
Ple_diff pre VRET positive 21 1.5380952 1.2295431 1.8466474
Ple_diff post VRET positive 35 1.3371429 1.0666502 1.6076355

plot

Plot change scores for spiders

fig_rating <- rate_diffneutral %>%
  filter(Emo == "spider") %>% 
  pivot_longer(cols = c(Aro_diff, Ple_diff), names_to = 'rating_type', values_to = 'rating') %>% 
  group_by(fp, sess, treat, Emo, rating_type) %>%
  summarise(rating = mean(rating, na.rm = TRUE), .groups = 'drop') %>% 
  # grouping is dropped 
  mutate(sess = ifelse(sess == 0, "pre", "post"),
         sess = factor(sess, levels = c('pre', 'post')),
         rating_type = 
           ifelse(rating_type == "Aro_diff", "Arousal", "Pleasantness")) %>% 
  group_by(sess, treat, rating_type) %>%
  summarise(N = paste0('(n=',n(),')'),
            Mean = mean(rating),
            LL = ci95LL(rating),
            UL = ci95UL(rating),
           .groups = 'drop') %>% 
  relocate(rating_type) %>% 
  arrange(rating_type, treat, sess) %>%
  unite(Condition, treat, sess, sep = "-") %>% 
  mutate(Condition = ifelse(Condition == 'Control-pre', 'Control', Condition)) %>% 
  unite(Condition, Condition, N, sep = "\n") %>% 
  mutate(Condition = factor(Condition, levels=unique(as.character(Condition)))) %>% 
  ggplot(aes(x=Condition, y=Mean)) + 
  geom_bar(stat="identity"
          ,fill="gray"
          ,color="black" # add black border to each bar
          ,position=position_dodge()) + # separate bars
  theme_bw() + # get rid of background
  geom_errorbar(position=position_dodge(.9), width=.25, 
                aes(ymin=LL, ymax=UL)) +
  facet_wrap(~rating_type, nrow = 1) +
  labs(title = "Picture ratings") +
  # theme(axis.text.x = element_text(angle = 90, hjust = 1))+
  labs(x = "Group by session") +
  labs(y = "Rating difference (spiders-neutral)") 
fig_rating

ggsave('results/figures/fig_rating.png')

mean amplitudes (EEG)

means

The table shows means (SD in parentheses).

detect %>%
  pivot_longer(cols = c(EPN, LPP), names_to = 'erp_type', values_to = 'value') %>%
  group_by(fp, sess, treat, Emo, erp_type) %>%
  summarise(mean = mean(value, na.rm = TRUE), .groups = 'drop') %>% 
  # grouping is dropped
  mutate(sess = ifelse(sess == 0, "pre", "post"),
         sess = factor(sess, levels = c('pre', 'post'))) %>%
  unite(emo_rating, erp_type, Emo, sep = " ") %>%
  group_by(sess, treat, emo_rating) %>%
  summarise(N = n(),
            m_sd = sprintf("%.2f (%.2f)", 
                           mean(mean, na.rm = TRUE), 
                           sd(mean, na.rm = TRUE)), 
                           .groups = 'drop') %>% 
  # grouping is dropped
  pivot_wider(names_from = emo_rating, values_from = m_sd) %>%
  rename("Treatment" = treat,
         "Session" = sess) %>%
  arrange(Treatment) %>%
  kable() %>%
  kable_styling()
Session Treatment N EPN negative EPN neutral EPN positive EPN spider LPP negative LPP neutral LPP positive LPP spider
pre Control 52 3.42 (3.15) 4.88 (2.99) 4.69 (3.18) 4.37 (2.90) -0.09 (1.08) -0.51 (1.11) -0.33 (1.29) 0.14 (1.40)
pre IVET 16 3.62 (2.41) 5.31 (2.69) 4.71 (2.48) 2.24 (2.27) 0.17 (1.00) -0.12 (0.95) -0.17 (1.39) 1.33 (1.99)
post IVET 31 3.57 (2.50) 5.42 (2.90) 4.75 (2.79) 2.76 (2.73) -0.14 (1.00) -0.72 (0.98) -0.26 (1.01) 0.99 (1.31)
pre VRET 21 3.53 (3.64) 5.28 (3.75) 4.74 (3.74) 2.59 (3.83) 0.16 (1.07) -0.34 (0.93) -0.01 (1.05) 1.26 (1.32)
post VRET 35 2.53 (4.04) 4.16 (3.91) 3.59 (3.99) 1.32 (3.52) -0.06 (0.96) -0.39 (0.87) -0.16 (0.98) 1.31 (1.35)

change scores

Compute difference scores relative to neutral pictures. For example, spider = spider - neutral. Thus, the dependent variables capture EPN and LPP.

detect_diffneutral %>%
  group_by(fp, sess, treat, Emo) %>%
  summarise(EPN = mean(EPN_diff, na.rm = TRUE),
            LPP = mean(LPP_diff, na.rm = TRUE), .groups = 'drop') %>% # grouping is dropped 
  mutate(sess = ifelse(sess == 0, "pre", "post"),
         sess = factor(sess, levels = c('pre', 'post'))) %>% 
  group_by(sess, treat, Emo) %>%
  summarise(N = n(),
            EPN_Mean = mean(EPN),
            EPN_LL = ci95LL(EPN),
            EPN_UL = ci95UL(EPN),
            LPP_Mean = mean(LPP),
            LPP_LL = ci95LL(LPP),
            LPP_UL = ci95UL(LPP),
            .groups = 'drop') %>% 
  arrange(Emo, sess, treat) %>%
  rename("Treatment" = treat,
         "Session" = sess, 
         "Category" = Emo) %>%
  kable() %>%
  kable_styling()
Session Treatment Category N EPN_Mean EPN_LL EPN_UL LPP_Mean LPP_LL LPP_UL
pre Control spider 52 -0.5105621 -0.9121374 -0.1089869 0.6452043 0.3010131 0.9893955
pre IVET spider 16 -3.0702025 -4.0378043 -2.1026008 1.4504460 0.6518747 2.2490172
pre VRET spider 21 -2.6944667 -3.4631441 -1.9257892 1.5945418 0.9555568 2.2335268
post IVET spider 31 -2.6572096 -3.2292855 -2.0851336 1.7068249 1.1757293 2.2379205
post VRET spider 35 -2.8390888 -3.5471182 -2.1310593 1.6979680 1.2859630 2.1099729
pre Control negative 52 -1.4579606 -1.8017130 -1.1142082 0.4192847 0.1542869 0.6842825
pre IVET negative 16 -1.6912858 -2.5005630 -0.8820087 0.2891053 -0.1935955 0.7718061
pre VRET negative 21 -1.7509105 -2.3881818 -1.1136391 0.4931391 -0.1226002 1.1088784
post IVET negative 31 -1.8442587 -2.4537657 -1.2347516 0.5818346 0.2558763 0.9077928
post VRET negative 35 -1.6259855 -2.0677187 -1.1842523 0.3289925 0.0445736 0.6134114
pre Control positive 52 -0.1871015 -0.5504205 0.1762176 0.1824647 -0.0569791 0.4219085
pre IVET positive 16 -0.6044790 -1.1840888 -0.0248692 -0.0453356 -0.6917610 0.6010898
pre VRET positive 21 -0.5358424 -1.1293595 0.0576747 0.3219523 -0.1526197 0.7965243
post IVET positive 31 -0.6674684 -1.1803651 -0.1545717 0.4578520 0.1738761 0.7418280
post VRET positive 35 -0.5713032 -0.8877868 -0.2548196 0.2290457 0.0106751 0.4474163

plot

Plot change scores for spiders

tmpdata <- detect_diffneutral %>%
  filter(Emo == 'spider') %>% 
  pivot_longer(cols = c(EPN_diff, LPP_diff), names_to = 'erp_type', 
               values_to = 'value') %>%
  mutate(erp_type = ifelse(erp_type == 'EPN_diff','EPN','LPP')) %>% 
  group_by(fp, sess, treat, erp_type) %>%
  summarise(value = mean(value, na.rm = TRUE), .groups = 'drop') %>% 
  # grouping is dropped
  mutate(sess = ifelse(sess == 0, "pre", "post"),
         sess = factor(sess, levels = c('pre', 'post'))) %>% 
  group_by(sess, treat, erp_type) %>%
  summarise(N = paste0('(n=',n(),')'),
            Mean = mean(value),
            LL = ci95LL(value),
            UL = ci95UL(value),
            .groups = 'drop') %>% 
  arrange(treat, sess) %>% 
  unite(Condition, treat, sess, sep = " ") %>% 
  mutate(Condition = ifelse(Condition == 'Control pre', 'Control', Condition)) %>% 
  unite(Condition, Condition, N, sep = " ") %>% 
  mutate(Condition = factor(Condition, levels=unique(as.character(Condition))))
fig_epn <- tmpdata %>% 
  filter(erp_type == 'EPN') %>% 
  ggplot(aes(x=Condition, y=Mean)) + 
  geom_bar(stat="identity"
          ,fill="gray"
          ,color="black" # add black border to each bar
          ,position=position_dodge()) + # separate bars
  theme_bw() + # get rid of background
  geom_errorbar(position=position_dodge(.9), width=.25, 
                aes(ymin=LL, ymax=UL)) +
  labs(title = "EPN to spiders (vs neutral)") +
    theme(plot.title = element_text(hjust = 0.5)) +
  labs(x = "Group by session") +
  labs(y = "Mean amplitude (µV)")
fig_epn

ggsave('results/figures/fig_meanamps_EPN.png', plot = fig_epn)
fig_lpp <- tmpdata %>% 
  filter(erp_type == 'LPP') %>% 
  ggplot(aes(x=Condition, y=Mean)) + 
  geom_bar(stat="identity"
          ,fill="gray"
          ,color="black" # add black border to each bar
          ,position=position_dodge()) + # separate bars
  theme_bw() + # get rid of background
  geom_errorbar(position=position_dodge(.9), width=.25, 
                aes(ymin=LL, ymax=UL)) +
  labs(title = "LPP to spiders (vs neutral)") +
    theme(plot.title = element_text(hjust = 0.5)) +
  labs(x = "Group by session") +
  labs(y = "Mean amplitude (µV)")
fig_lpp

ggsave('results/figures/fig_meanamps_LPP.png', plot = fig_lpp)
#fig_amp <- grid.arrange(fig_epn, fig_lpp, ncol = 2)

save EPN and LPP

detect %>%
  group_by(fp, sess, treat, Emo) %>%
  summarise(EPN = mean(EPN, na.rm = TRUE),
            LPP = mean(LPP, na.rm = TRUE), .groups = 'drop') %>% # grouping is dropped 
  write_tsv(file.path('results/datameanamps.tsv'))

arousal ratings

Self-reported ratings of arousal during the rating task.

session 1 three groups

  • use session 1 from all three groups
  • examine if IVET and VRET differ from controls in spider (vs neutral) ratings in session 1
  • compare IVET and VRET separately to the control group
  • does not test whether the treatments differ from each other
  • use neutral pictures as reference emotion
  • save the model to save time
model_name <- "session_pre_all_groups_rating_arousal"
model_formula <- formula("rating ~ 1 + treat*Emo + (1 + Emo | fp)")
data <- rate_baseline %>% 
  filter(rating_type == "Aro")
if (file.exists(sprintf("results/models/model_%s.RDS", model_name))) {
  assign(get("model_name"), readRDS(sprintf("results/models/model_%s.RDS", model_name)))
} else {
  assign(get("model_name"), lmerTest::lmer(model_formula,
                                           control = lmerControl(optimizer = "bobyqa",
                                                                 optCtrl = list(maxfun = 1e5)),
                                           data = data))
  saveRDS(eval(parse(text = model_name)), sprintf("results/models/model_%s.RDS", model_name))
}

plots

all categories

fits <- data %>%
  modelr::data_grid(treat, Emo, fp) %>%
  mutate(predicted_re = predict(get(model_name), .),
         fp_treat = sprintf("%s_%s", fp, treat)) %>%
  filter(fp_treat %in% sprintf("%s_%s", data$fp, data$treat))
ggeffects::ggpredict(get(model_name), c("treat", "Emo")) %>%
  data.frame() %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(data = fits, aes(x = Emo, y = predicted_re, color = treat,
                             group = interaction(fp, treat)), alpha = .3, size = .2) +
  geom_line(aes(group = x), position = position_dodge(width = .15), size = 1) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .15), size = .5) +
  scale_color_manual(values = palette, name = "treatment") +
  labs(y = "predicted arousal\n", x = "\nemotion") +
  plot_aes

ggsave('results/figures/fig_rating_arousal_pre.png', plot = last_plot())

summarize model

summary(get(model_name))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: model_formula
##    Data: data
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000))
## 
## REML criterion at convergence: 12243.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.0020 -0.4716  0.0277  0.4886  4.4734 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr             
##  fp       (Intercept) 1.2084   1.0993                    
##           Emospider   1.2074   1.0988   -0.18            
##           Emonegative 0.8951   0.9461   -0.24  0.28      
##           Emopositive 1.0494   1.0244   -0.27 -0.06  0.13
##  Residual             1.4759   1.2149                    
## Number of obs: 3560, groups:  fp, 89
## 
## Fixed effects:
##                       Estimate Std. Error      df t value             Pr(>|t|)
## (Intercept)             3.9769     0.1615 85.9999  24.627 < 0.0000000000000002
## treatIVET               0.5231     0.3329 85.9999   1.571              0.11980
## treatVRET               0.2897     0.3011 85.9999   0.962              0.33858
## Emospider               1.1173     0.1700 85.9999   6.573  0.00000000363590090
## Emonegative             1.4692     0.1513 86.0000   9.711  0.00000000000000176
## Emopositive             0.7654     0.1608 86.0001   4.760  0.00000776364640558
## treatIVET:Emospider     1.5389     0.3504 85.9999   4.392  0.00003190160536559
## treatVRET:Emospider     2.0970     0.3169 85.9999   6.617  0.00000000299190059
## treatIVET:Emonegative  -0.1067     0.3119 86.0000  -0.342              0.73304
## treatVRET:Emonegative  -0.2883     0.2821 86.0000  -1.022              0.30965
## treatIVET:Emopositive  -1.0591     0.3315 86.0001  -3.195              0.00196
## treatVRET:Emopositive  -0.9035     0.2998 86.0001  -3.013              0.00339
##                          
## (Intercept)           ***
## treatIVET                
## treatVRET                
## Emospider             ***
## Emonegative           ***
## Emopositive           ***
## treatIVET:Emospider   ***
## treatVRET:Emospider   ***
## treatIVET:Emonegative    
## treatVRET:Emonegative    
## treatIVET:Emopositive ** 
## treatVRET:Emopositive ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trIVET trVRET Emspdr Emngtv Empstv trtIVET:Ems trtVRET:Ems
## treatIVET   -0.485                                                           
## treatVRET   -0.536  0.260                                                    
## Emospider   -0.253  0.123  0.136                                             
## Emonegative -0.312  0.152  0.168  0.330                                      
## Emopositive -0.335  0.162  0.179  0.055  0.217                               
## trtIVET:Ems  0.123 -0.253 -0.066 -0.485 -0.160 -0.027                        
## trtVRET:Ems  0.136 -0.066 -0.253 -0.536 -0.177 -0.030  0.260                 
## trtIVET:Emn  0.152 -0.312 -0.081 -0.160 -0.485 -0.105  0.330       0.086     
## trtVRET:Emn  0.168 -0.081 -0.312 -0.177 -0.536 -0.116  0.086       0.330     
## trtIVET:Emp  0.162 -0.335 -0.087 -0.027 -0.105 -0.485  0.055       0.014     
## trtVRET:Emp  0.179 -0.087 -0.335 -0.030 -0.116 -0.536  0.014       0.055     
##             trtIVET:Emn trtVRET:Emn trtIVET:Emp
## treatIVET                                      
## treatVRET                                      
## Emospider                                      
## Emonegative                                    
## Emopositive                                    
## trtIVET:Ems                                    
## trtVRET:Ems                                    
## trtIVET:Emn                                    
## trtVRET:Emn  0.260                             
## trtIVET:Emp  0.217       0.056                 
## trtVRET:Emp  0.056       0.217       0.260
tidied_model <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

model table

table of labels

effectlbls <- data.frame(
  num = as.character(seq(1:12)), 
  original = tidied_model$term[1:12],
  standard = c("intercept (control, neutral)", 
               "treatment (IVET)", 
               "treatment (VRET)", 
               "emotion (spider)", 
               "emotion (negative)", 
               "emotion (positive)",
               "treatment (IVET) x emotion (spider)",
               "treatment (VRET) x emotion (spider)",
               "treatment (IVET) x emotion (negative)", 
               "treatment (VRET) x emotion (negative)",
               "treatment (IVET) x emotion (positive)", 
               "treatment (VRET) x emotion (positive)"),
  condition =  c("treatment (control) / emotion (neutral)", 
                 "treatment (IVET) / emotion (neutral)", 
                 "treatment (VRET) / emotion (neutral)", 
                 "treatment (control) / emotion (spider)", 
                 "treatment (control) / emotion (negative)", 
                 "treatment (control) / emotion (positive)",
                 "treatment (IVET) / emotion (spider)", 
                 "treatment (VRET) / emotion (spider)",
                 "treatment (IVET) / emotion (negative)", 
                 "treatment (VRET) / emotion (negative)",
                 "treatment (IVET) / emotion (positive)", 
                 "treatment (VRET) / emotion (positive)"),
  stringsAsFactors = F)
effectlbls %>%
  kable() %>%
  kable_styling()
num original standard condition
1 (Intercept) intercept (control, neutral) treatment (control) / emotion (neutral)
2 treatIVET treatment (IVET) treatment (IVET) / emotion (neutral)
3 treatVRET treatment (VRET) treatment (VRET) / emotion (neutral)
4 Emospider emotion (spider) treatment (control) / emotion (spider)
5 Emonegative emotion (negative) treatment (control) / emotion (negative)
6 Emopositive emotion (positive) treatment (control) / emotion (positive)
7 treatIVET:Emospider treatment (IVET) x emotion (spider) treatment (IVET) / emotion (spider)
8 treatVRET:Emospider treatment (VRET) x emotion (spider) treatment (VRET) / emotion (spider)
9 treatIVET:Emonegative treatment (IVET) x emotion (negative) treatment (IVET) / emotion (negative)
10 treatVRET:Emonegative treatment (VRET) x emotion (negative) treatment (VRET) / emotion (negative)
11 treatIVET:Emopositive treatment (IVET) x emotion (positive) treatment (IVET) / emotion (positive)
12 treatVRET:Emopositive treatment (VRET) x emotion (positive) treatment (VRET) / emotion (positive)

standard labels

table_model(get(model_name), 
            dv_labels = "session 1",
            pred_labels = paste(effectlbls[,1], effectlbls[,3]))
  session 1
Parameter B 95% CI SE t p
1 intercept (control, neutral) 3.98 3.66 – 4.30 0.16 24.63 <0.001
2 treatment (IVET) 0.52 -0.14 – 1.18 0.33 1.57 0.120
3 treatment (VRET) 0.29 -0.31 – 0.89 0.30 0.96 0.339
4 emotion (spider) 1.12 0.78 – 1.46 0.17 6.57 <0.001
5 emotion (negative) 1.47 1.17 – 1.77 0.15 9.71 <0.001
6 emotion (positive) 0.77 0.45 – 1.09 0.16 4.76 <0.001
7 treatment (IVET) x emotion (spider) 1.54 0.84 – 2.24 0.35 4.39 <0.001
8 treatment (VRET) x emotion (spider) 2.10 1.47 – 2.73 0.32 6.62 <0.001
9 treatment (IVET) x emotion (negative) -0.11 -0.73 – 0.51 0.31 -0.34 0.733
10 treatment (VRET) x emotion (negative) -0.29 -0.85 – 0.27 0.28 -1.02 0.310
11 treatment (IVET) x emotion (positive) -1.06 -1.72 – -0.40 0.33 -3.19 0.002
12 treatment (VRET) x emotion (positive) -0.90 -1.50 – -0.31 0.30 -3.01 0.003
Random Effects
σ2 1.48
τ00 fp 1.21
τ11 fp.Emospider 1.21
τ11 fp.Emonegative 0.90
τ11 fp.Emopositive 1.05
ρ01 -0.18
-0.24
-0.27
ICC 0.52
N fp 89
Observations 3560
Marginal R2 / Conditional R2 0.230 / 0.632

condition labels

table_model(get(model_name), 
            dv_labels = "session 1",
            pred_labels = paste(effectlbls[,1], effectlbls[,4]))
  session 1
Parameter B 95% CI SE t p
1 treatment (control) / emotion (neutral) 3.98 3.66 – 4.30 0.16 24.63 <0.001
2 treatment (IVET) / emotion (neutral) 0.52 -0.14 – 1.18 0.33 1.57 0.120
3 treatment (VRET) / emotion (neutral) 0.29 -0.31 – 0.89 0.30 0.96 0.339
4 treatment (control) / emotion (spider) 1.12 0.78 – 1.46 0.17 6.57 <0.001
5 treatment (control) / emotion (negative) 1.47 1.17 – 1.77 0.15 9.71 <0.001
6 treatment (control) / emotion (positive) 0.77 0.45 – 1.09 0.16 4.76 <0.001
7 treatment (IVET) / emotion (spider) 1.54 0.84 – 2.24 0.35 4.39 <0.001
8 treatment (VRET) / emotion (spider) 2.10 1.47 – 2.73 0.32 6.62 <0.001
9 treatment (IVET) / emotion (negative) -0.11 -0.73 – 0.51 0.31 -0.34 0.733
10 treatment (VRET) / emotion (negative) -0.29 -0.85 – 0.27 0.28 -1.02 0.310
11 treatment (IVET) / emotion (positive) -1.06 -1.72 – -0.40 0.33 -3.19 0.002
12 treatment (VRET) / emotion (positive) -0.90 -1.50 – -0.31 0.30 -3.01 0.003
Random Effects
σ2 1.48
τ00 fp 1.21
τ11 fp.Emospider 1.21
τ11 fp.Emonegative 0.90
τ11 fp.Emopositive 1.05
ρ01 -0.18
-0.24
-0.27
ICC 0.52
N fp 89
Observations 3560
Marginal R2 / Conditional R2 0.230 / 0.632

interpretation

tm <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

The goal is to examine whether IVET and VRET differ from controls in spider (vs neutral) ratings in the first session (but not in any other picture category). The analysis compares IVET and VRET separately to the control group and does not test whether the treatments differ from each other.

The formula was rating ~ 1 + treat * Emo + (1 + Emo | fp).
Up to Emo as random effects: This means that the emo effect can differ between subjects.

Intercept = treatment(control) / emotion(neutral).

The effect for the intercept = 3.98. This is the mean rating for the intercept that contains treatment(control) and emotion(neutral) and is thus the marginal mean for the control group for neutral pictures.

The effect of the interaction is added to this together with lower-order terms to get the marginal mean. An interaction parameter is how much it differs from the lower order terms and the t-test is for the null hypothesis that the difference between these parameters is 0. When testing higher effects, the lower effects are removed. That is, the higher effects test for something over and above the lower effects. Accordingly, the estimated marginal means are the intercept + lower effects + estimate for higher effect.

We want to see whether IVET and VRET differ from controls in their spider ratings. Because the intercept contains treatment(control) and emotion(neutral), we are interested in these tests:

For IVET:

treatIVET:Emospider
In the model table with condition labels, this is number 7.

treatment (IVET) / emotion (spider).
- estimate: 1.54
- p value: 3.1902e-05
This is the interaction of treatment(IVET vs control) x emotion (spider vs neutral) across ratings.

For VRET (same test as for IVET):

treatVRET:Emospider
In the model table with condition labels, this is number 8.

treatment (VRET) / emotion (spider).
- estimate: 2.10
- p value: 2.9919e-09
This is the interaction of treatment(VRET vs control) x emotion (spider vs neutral) across ratings.

estimated means

mmeans1 <- data %>%
  modelr::data_grid(treat, Emo) %>%
  mutate(marginal_mean = predict(get(model_name), ., re.form = NA)) %>%
  pivot_wider(names_from = Emo, values_from = marginal_mean)
mmeans1 %>%
  kable(digits = 2) %>%
  kable_styling()
treat neutral spider negative positive
Control 3.98 5.09 5.45 4.74
IVET 4.50 7.16 5.86 4.21
VRET 4.27 7.48 5.45 4.13

session 1 across treatments

  • use session 1 from all three groups
  • combine treatment groups
  • use neutral pictures as reference emotion
  • save the model to save time
model_name <- "session_pre_across_treat_rating_arousal"
model_formula <- formula("rating ~ 1 + treat*Emo + (1 + Emo | fp)")
data <- rate_baseline_acrosstreatment %>% 
  filter(rating_type == "Aro")
if (file.exists(sprintf("results/models/model_%s.RDS", model_name))) {
  assign(get("model_name"), readRDS(sprintf("results/models/model_%s.RDS", model_name)))
} else {
  assign(get("model_name"), lmerTest::lmer(model_formula,
                                           control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e5)),
                                           data = data))
  saveRDS(eval(parse(text = model_name)), sprintf("results/models/model_%s.RDS", model_name))
}

plots

fits <- data %>%
  modelr::data_grid(treat, Emo, fp) %>%
  mutate(predicted_re = predict(get(model_name), .),
         fp_treat = sprintf("%s_%s", fp, treat)) %>%
  filter(fp_treat %in% sprintf("%s_%s", data$fp, data$treat))
ggeffects::ggpredict(get(model_name), c("treat", "Emo")) %>%
  data.frame() %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(data = fits, aes(x = Emo, y = predicted_re, color = treat,
                             group = interaction(fp, treat)), alpha = .3, size = .2) +
  geom_line(aes(group = x), position = position_dodge(width = .15), size = 1) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .15), size = .5) +
  scale_color_manual(values = palette2, name = "treatment") +
  labs(y = "predicted arousal\n", x = "\nemotion") +
  plot_aes

### summarize model

summary(get(model_name))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: model_formula
##    Data: data
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000))
## 
## REML criterion at convergence: 12245.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.9774 -0.4741  0.0258  0.4828  4.4714 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr             
##  fp       (Intercept) 1.1985   1.0948                    
##           Emospider   1.2226   1.1057   -0.18            
##           Emonegative 0.8848   0.9407   -0.23  0.27      
##           Emopositive 1.0365   1.0181   -0.27 -0.05  0.13
##  Residual             1.4759   1.2149                    
## Number of obs: 3560, groups:  fp, 89
## 
## Fixed effects:
##                            Estimate Std. Error      df t value
## (Intercept)                  3.9769     0.1609 87.0000  24.718
## treatIVET/VRET               0.3906     0.2495 87.0000   1.565
## Emospider                    1.1173     0.1708 87.0000   6.540
## Emonegative                  1.4692     0.1506 86.9999   9.753
## Emopositive                  0.7654     0.1600 86.9999   4.783
## treatIVET/VRET:Emospider     1.8557     0.2650 87.0000   7.003
## treatIVET/VRET:Emonegative  -0.2098     0.2336 86.9999  -0.898
## treatIVET/VRET:Emopositive  -0.9708     0.2482 86.9999  -3.911
##                                        Pr(>|t|)    
## (Intercept)                < 0.0000000000000002 ***
## treatIVET/VRET                         0.121102    
## Emospider                   0.00000000406015918 ***
## Emonegative                 0.00000000000000129 ***
## Emopositive                 0.00000699448394209 ***
## treatIVET/VRET:Emospider    0.00000000049883419 ***
## treatIVET/VRET:Emonegative             0.371734    
## treatIVET/VRET:Emopositive             0.000181 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                  (Intr) trIVET/VRET Emspdr Emngtv Empstv trtIVET/VRET:Ems
## trIVET/VRET      -0.645                                                  
## Emospider        -0.259  0.167                                           
## Emonegative      -0.308  0.198       0.318                               
## Emopositive      -0.336  0.217       0.061  0.214                        
## trtIVET/VRET:Ems  0.167 -0.259      -0.645 -0.205 -0.039                 
## trtIVET/VRET:Emn  0.198 -0.308      -0.205 -0.645 -0.138  0.318          
## trtIVET/VRET:Emp  0.217 -0.336      -0.039 -0.138 -0.645  0.061          
##                  trtIVET/VRET:Emn
## trIVET/VRET                      
## Emospider                        
## Emonegative                      
## Emopositive                      
## trtIVET/VRET:Ems                 
## trtIVET/VRET:Emn                 
## trtIVET/VRET:Emp  0.214
tidied_model <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

model table

table of labels

effectlbls <- data.frame(
  num = as.character(seq(1:8)), 
  original = tidied_model$term[1:8],
  standard = c("intercept (control, neutral)", 
               "treatment (IVET/VRET)", 
               "emotion (spider)", 
               "emotion (negative)", 
               "emotion (positive)",
               "treatment (IVET/VRET) x emotion (spider)",
               "treatment (IVET/VRET) x emotion (negative)", 
               "treatment (IVET/VRET) x emotion (positive)"), 
  condition =  c("treatment (control) / emotion (neutral)", 
                 "treatment (IVET/VRET) / emotion (neutral)", 
                 "treatment (control) / emotion (spider)", 
                 "treatment (control) / emotion (negative)", 
                 "treatment (control) / emotion (positive)",
                 "treatment (IVET/VRET) / emotion (spider)", 
                 "treatment (IVET/VRET) / emotion (negative)", 
                 "treatment (IVET/VRET) / emotion (positive)"),
  stringsAsFactors = F)
effectlbls %>%
  kable() %>%
  kable_styling()
num original standard condition
1 (Intercept) intercept (control, neutral) treatment (control) / emotion (neutral)
2 treatIVET/VRET treatment (IVET/VRET) treatment (IVET/VRET) / emotion (neutral)
3 Emospider emotion (spider) treatment (control) / emotion (spider)
4 Emonegative emotion (negative) treatment (control) / emotion (negative)
5 Emopositive emotion (positive) treatment (control) / emotion (positive)
6 treatIVET/VRET:Emospider treatment (IVET/VRET) x emotion (spider) treatment (IVET/VRET) / emotion (spider)
7 treatIVET/VRET:Emonegative treatment (IVET/VRET) x emotion (negative) treatment (IVET/VRET) / emotion (negative)
8 treatIVET/VRET:Emopositive treatment (IVET/VRET) x emotion (positive) treatment (IVET/VRET) / emotion (positive)

standard labels

table_model(get(model_name), 
            dv_labels = "session 1",
            pred_labels = paste(effectlbls[,1], effectlbls[,3]))
  session 1
Parameter B 95% CI SE t p
1 intercept (control, neutral) 3.98 3.66 – 4.30 0.16 24.72 <0.001
2 treatment (IVET/VRET) 0.39 -0.11 – 0.89 0.25 1.57 0.121
3 emotion (spider) 1.12 0.78 – 1.46 0.17 6.54 <0.001
4 emotion (negative) 1.47 1.17 – 1.77 0.15 9.75 <0.001
5 emotion (positive) 0.77 0.45 – 1.08 0.16 4.78 <0.001
6 treatment (IVET/VRET) x emotion (spider) 1.86 1.33 – 2.38 0.26 7.00 <0.001
7 treatment (IVET/VRET) x emotion (negative) -0.21 -0.67 – 0.25 0.23 -0.90 0.372
8 treatment (IVET/VRET) x emotion (positive) -0.97 -1.46 – -0.48 0.25 -3.91 <0.001
Random Effects
σ2 1.48
τ00 fp 1.20
τ11 fp.Emospider 1.22
τ11 fp.Emonegative 0.88
τ11 fp.Emopositive 1.04
ρ01 -0.18
-0.23
-0.27
ICC 0.52
N fp 89
Observations 3560
Marginal R2 / Conditional R2 0.229 / 0.630

condition labels

table_model(get(model_name), 
            dv_labels = "session 1",
            pred_labels = paste(effectlbls[,1], effectlbls[,4]))
  session 1
Parameter B 95% CI SE t p
1 treatment (control) / emotion (neutral) 3.98 3.66 – 4.30 0.16 24.72 <0.001
2 treatment (IVET/VRET) / emotion (neutral) 0.39 -0.11 – 0.89 0.25 1.57 0.121
3 treatment (control) / emotion (spider) 1.12 0.78 – 1.46 0.17 6.54 <0.001
4 treatment (control) / emotion (negative) 1.47 1.17 – 1.77 0.15 9.75 <0.001
5 treatment (control) / emotion (positive) 0.77 0.45 – 1.08 0.16 4.78 <0.001
6 treatment (IVET/VRET) / emotion (spider) 1.86 1.33 – 2.38 0.26 7.00 <0.001
7 treatment (IVET/VRET) / emotion (negative) -0.21 -0.67 – 0.25 0.23 -0.90 0.372
8 treatment (IVET/VRET) / emotion (positive) -0.97 -1.46 – -0.48 0.25 -3.91 <0.001
Random Effects
σ2 1.48
τ00 fp 1.20
τ11 fp.Emospider 1.22
τ11 fp.Emonegative 0.88
τ11 fp.Emopositive 1.04
ρ01 -0.18
-0.23
-0.27
ICC 0.52
N fp 89
Observations 3560
Marginal R2 / Conditional R2 0.229 / 0.630

interpretation

tm <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

The goal is to examine whether the combined treatment groups (IVET and VRET) differ from controls in spider (vs neutral) ratings in the first session (but not in any other picture category). The analysis compares the combined IVET and VRET to the control group and does not test whether the treatments differ from each other.

The formula was rating ~ 1 + treat * Emo + (1 + Emo | fp).
Up to Emo as random effects: This means that the emo effect can differ between subjects.

Intercept = treatment(control) / emotion(neutral).

The effect for the intercept = 3.98. This is the mean rating for the intercept that contains treatment(control) and emotion(neutral) and is thus the marginal mean for the control group for neutral pictures.

The effect of the interaction is added to this together with lower-order terms to get the marginal mean. An interaction parameter is how much it differs from the lower order terms and the t-test is for the null hypothesis that the difference between these parameters is 0. When testing higher effects, the lower effects are removed. That is, the higher effects test for something over and above the lower effects. Accordingly, the estimated marginal means are the intercept + lower effects + estimate for higher effect.

We want to see whether the combined treatment groups (IVET and VRET) differ from controls in their spider ratings. Because the intercept contains treatment(control) and emotion(neutral), we are interested in these tests:

treatIVET/VRET:Emospider
In the model table with condition labels, this is number 6.

treatment (IVET/VRET) / emotion (spider).
- estimate: 1.86
- p value: 4.9883e-10
This is the interaction of treatment(IVET/VRET vs control) x emotion (spider vs neutral) across ratings.

estimated means

data %>%
  modelr::data_grid(treat, Emo) %>%
  mutate(marginal_mean = predict(get(model_name), ., re.form = NA)) %>%
  pivot_wider(names_from = Emo, values_from = marginal_mean) %>%
  kable(digits = 2) %>%
  kable_styling()
treat neutral spider negative positive
Control 3.98 5.09 5.45 4.74
IVET/VRET 4.37 7.34 5.63 4.16

Bayes

ordinal model

ratings_arousal_sess1 <- rate_baseline_acrosstreatment %>%
  filter(rating_type == "Aro") %>% 
  filter(Emo %in% c('spider', 'neutral')) %>%
  mutate(fp = as.factor(fp))
# Ordinal Regression Model.
ratings_arousal.sess1.model <- brm(rating ~ 1 + treat*Emo + (1 + Emo | fp),
                             family = cumulative("probit"),
                             data = na.omit(ratings_arousal_sess1),
                             prior = c(prior(normal(0, 4), class = Intercept),
                                       prior(normal(0, 4), class = b)),
                             chains = 4,
                             file = "results/models/ratings_arousal.sess1.model", 
                             # file to save/reuse model
                             cores = 4,
                             iter = 3000,
                             warmup = 1000,
                             init_r = 0.5,
                             save_pars = save_pars(all = TRUE))
# Model Summary.
summary(ratings_arousal.sess1.model)
##  Family: cumulative 
##   Links: mu = probit; disc = identity 
## Formula: rating ~ 1 + treat * Emo + (1 + Emo | fp) 
##    Data: na.omit(ratings_arousal_sess1) (Number of observations: 1780) 
##   Draws: 4 chains, each with iter = 3000; warmup = 1000; thin = 1;
##          total post-warmup draws = 8000
## 
## Group-Level Effects: 
## ~fp (Number of levels: 89) 
##                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)                0.97      0.09     0.80     1.17 1.00     3028
## sd(Emospider)                1.24      0.12     1.04     1.48 1.00     2683
## cor(Intercept,Emospider)    -0.10      0.12    -0.34     0.13 1.00     1851
##                          Tail_ESS
## sd(Intercept)                4867
## sd(Emospider)                4584
## cor(Intercept,Emospider)     3982
## 
## Population-Level Effects: 
##                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept[1]                -1.57      0.15    -1.88    -1.28 1.00     2294
## Intercept[2]                -1.02      0.15    -1.31    -0.73 1.00     2308
## Intercept[3]                -0.43      0.15    -0.71    -0.14 1.00     2289
## Intercept[4]                -0.13      0.14    -0.41     0.16 1.00     2267
## Intercept[5]                 1.72      0.15     1.43     2.02 1.00     2597
## Intercept[6]                 2.54      0.16     2.23     2.85 1.00     2808
## Intercept[7]                 3.93      0.17     3.60     4.27 1.00     3323
## Intercept[8]                 4.90      0.19     4.53     5.27 1.00     3905
## treatIVETDVRET               0.28      0.22    -0.16     0.70 1.00     2043
## Emospider                    1.23      0.18     0.88     1.59 1.00     2000
## treatIVETDVRET:Emospider     2.21      0.29     1.65     2.81 1.00     2061
##                          Tail_ESS
## Intercept[1]                 4173
## Intercept[2]                 4321
## Intercept[3]                 4297
## Intercept[4]                 3910
## Intercept[5]                 4392
## Intercept[6]                 4650
## Intercept[7]                 4580
## Intercept[8]                 5407
## treatIVETDVRET               3606
## Emospider                    3927
## treatIVETDVRET:Emospider     3533
## 
## Family Specific Parameters: 
##      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## disc     1.00      0.00     1.00     1.00   NA       NA       NA
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Bayes factor

only spider and neutral

computations

null_arousal.sess1.model <- brm(rating ~ 1 + (1 + Emo | fp),
                          family = cumulative("probit"),
                          data = ratings_arousal_sess1,
                          prior = prior(normal(0, 4), class = Intercept),
                          chains = 4,
                          file = "results/models/rating_arousal.sess1.null", 
                          # Specify file to save/reuse model
                          cores = 4, 
                          iter = 3000,
                          warmup = 1000,
                          init_r = 0.5,
                          save_pars = save_pars(all = TRUE))
emo_arousal.sess1.model <- brm(rating ~ 1 + Emo + (1 + Emo | fp),
                         family = cumulative("probit"),
                         data = ratings_arousal_sess1,
                         prior = c(prior(normal(0, 4), class = Intercept),
                                   prior(normal(0, 4), class = b)),
                         chains = 4,
                         file = "results/models/rating_arousal.sess1.emo", 
                         # Specify file to save/reuse model
                         cores = 4, 
                         iter = 3000,
                         warmup = 1000,
                         init_r = 0.5,
                         save_pars = save_pars(all = TRUE))
treat_arousal.sess1.model <- brm(rating ~ 1 + treat + (1 + Emo | fp),
                           family = cumulative("probit"),
                           data = ratings_arousal_sess1,
                           prior = c(prior(normal(0, 4), class = Intercept),
                                     prior(normal(0, 4), class = b)),
                           chains = 4,
                           file = "results/models/rating_arousal.sess1.treat", 
                           # Specify file to save/reuse model
                           cores = 4, 
                           iter = 3000,
                           warmup = 1000,
                           init_r = 0.5,
                           save_pars = save_pars(all = TRUE))

Compute bayes factor approximations (via bridge sampling)

# Bayes factor comparisons are in favor of alternative hypothesis.
full_arousal.sess1.bayes <- bayes_factor(ratings_arousal.sess1.model, null_arousal.sess1.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
treat_arousal.sess1.bayes <- bayes_factor(treat_arousal.sess1.model, null_arousal.sess1.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
emo_arousal.sess1.bayes <- bayes_factor(emo_arousal.sess1.model, null_arousal.sess1.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
full_arousal.sess1.bayes
## Estimated Bayes factor in favor of ratings_arousal.sess1.model over null_arousal.sess1.model: 50736408845223268900244688.00000
treat_arousal.sess1.bayes
## Estimated Bayes factor in favor of treat_arousal.sess1.model over null_arousal.sess1.model: 0.45199
emo_arousal.sess1.bayes
## Estimated Bayes factor in favor of emo_arousal.sess1.model over null_arousal.sess1.model: 80109640794898480.00000

compare with null

tibble(model = c("TreatxEmo", "Treat", "Emo"),
       Compared_To_Null = format(c(full_arousal.sess1.bayes$bf, 
                                   treat_arousal.sess1.bayes$bf, 
                                   emo_arousal.sess1.bayes$bf), scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Null
TreatxEmo 5.073641e+25
Treat 4.519939e-01
Emo 8.010964e+16

compare with Emo

tibble(model = c("TreatxEmo", "Treat", "Emo"),
       Compared_To_Emo =  
         format(c(full_arousal.sess1.bayes$bf/emo_arousal.sess1.bayes$bf, 
         treat_arousal.sess1.bayes$bf/emo_arousal.sess1.bayes$bf,
         emo_arousal.sess1.bayes$bf/emo_arousal.sess1.bayes$bf), 
                                scientific = TRUE),
       BF01 = 
         format(c(emo_arousal.sess1.bayes$bf/full_arousal.sess1.bayes$bf, 
         emo_arousal.sess1.bayes$bf/treat_arousal.sess1.bayes$bf,
         emo_arousal.sess1.bayes$bf/emo_arousal.sess1.bayes$bf), 
                                scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Emo BF01
TreatxEmo 6.333371e+08 1.578938e-09
Treat 5.642191e-18 1.772361e+17
Emo 1.000000e+00 1.000000e+00

check assumptions

An ordinal regression has four assumptions:

  1. The dependent variables are ordered.
  2. One or more of the independent variables are either continuous, categorical, or ordinal.
  3. No multi-collinearity.
  4. Proportional odds.

Check vif and tolerance (multicollinearity)

check_collinearity(ratings_arousal.sess1.model)

treatment comparison

  • session 1 and session 2 (session 1 as reference)
  • include only treatment groups
  • IVET = -.5, VRET = .5
  • use neutral pictures as reference emotion
model_name <- "only_treat_rating_arousal"
model_formula <- formula("rating ~ 1 + treat*sess*Emo + (1 + sess*Emo | fp)")
data <- rate_only_treat_recode %>% 
  filter(rating_type == "Aro")
if (file.exists(sprintf("results/models/model_%s.RDS", model_name))) {
  assign(get("model_name"), readRDS(sprintf("results/models/model_%s.RDS", model_name)))
} else {
  assign(get("model_name"), lmerTest::lmer(model_formula,
                                           control = lmerControl(optimizer = "nloptwrap",
                                                                 optCtrl = list(maxfun = 1e7),
                                                                 calc.derivs = FALSE),
                                           data = data))
  saveRDS(eval(parse(text = model_name)), sprintf("results/models/model_%s.RDS", model_name))
}

plots

all categories

fits <- data %>%
  modelr::data_grid(treat, sess, Emo, fp) %>%
  mutate(predicted_re = predict(get(model_name), .),
         fp_treat = sprintf("%s_%s", fp, treat)) %>%
  filter(fp_treat %in% sprintf("%s_%s", data$fp, data$treat)) %>%
  mutate(sess = ifelse(sess == 0, 'pre', 'post'),
         sess = factor(sess, levels = c('pre', 'post')),
         treat = ifelse(treat == -.5, "IVET", "VRET"))
ggeffects::ggpredict(get(model_name), c("treat", "sess", "Emo")) %>%
  data.frame() %>%
  mutate(group = ifelse(group == 0, 'pre', 'post'),
         group = factor(group, levels = c('pre', 'post')),
         x = ifelse(x == -.5, "IVET", "VRET"),
         Emo = facet) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(data = fits, aes(x = sess, y = predicted_re, color = treat,
                             group = interaction(fp, treat, Emo)), alpha = .3, size = .2) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  facet_grid(~Emo) +
  scale_color_manual(values = palette[2:3], name = "treatment") +
  labs(y = "predicted arousal\n", x = "\nsession") +
  plot_aes

spider and neutral ratings

fits <- data %>%
  modelr::data_grid(treat, sess, Emo, fp) %>%
  mutate(predicted_re = predict(get(model_name), .),
         fp_treat = sprintf("%s_%s", fp, treat)) %>%
  filter(fp_treat %in% sprintf("%s_%s", data$fp, data$treat)) %>%
  filter(Emo %in% c("neutral", "spider")) %>%
  mutate(sess = ifelse(sess == 0, 'pre', 'post'),
         sess = factor(sess, levels = c('pre', 'post')),
         treat = ifelse(treat == -.5, "IVET", "VRET"))
ggeffects::ggpredict(get(model_name), c("treat", "sess", "Emo")) %>%
  data.frame() %>%
  filter(facet %in% c("neutral", "spider")) %>%
  mutate(group = ifelse(group == 0, 'pre', 'post'),
         group = factor(group, levels = c('pre', 'post')),
         x = ifelse(x == -.5, "IVET", "VRET"),
         Emo = facet) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(data = fits, aes(x = sess, y = predicted_re, color = treat,
                             group = interaction(fp, treat, Emo)), alpha = .3, size = .2) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  facet_grid(~Emo) +
  scale_color_manual(values = palette[2:3], name = "treatment") +
  labs(y = "predicted arousal\n", x = "\nsession") +
  plot_aes

ggsave('results/figures/fig_rating_arousal_treat.png', plot = last_plot())

summarize model

summary(get(model_name))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: model_formula
##    Data: data
## Control: 
## lmerControl(optimizer = "nloptwrap", optCtrl = list(maxfun = 10000000),  
##     calc.derivs = FALSE)
## 
## REML criterion at convergence: 13882.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.4152 -0.4432  0.0625  0.4479  5.1629 
## 
## Random effects:
##  Groups   Name             Variance Std.Dev. Corr                         
##  fp       (Intercept)      0.9239   0.9612                                
##           sess             2.1379   1.4622   -0.73                        
##           Emospider        1.4393   1.1997   -0.58  0.38                  
##           Emonegative      1.0299   1.0149   -0.49  0.26  0.07            
##           Emopositive      1.0415   1.0205   -0.51  0.77 -0.04  0.22      
##           sess:Emospider   3.2076   1.7910    0.62 -0.67 -0.66 -0.15 -0.38
##           sess:Emonegative 2.0364   1.4270    0.26 -0.35  0.37 -0.73 -0.38
##           sess:Emopositive 0.8907   0.9438    0.43 -0.81 -0.06 -0.25 -0.67
##  Residual                  1.4150   1.1895                                
##             
##             
##             
##             
##             
##             
##             
##   0.09      
##   0.30  0.49
##             
## Number of obs: 4120, groups:  fp, 70
## 
## Fixed effects:
##                        Estimate Std. Error       df t value
## (Intercept)             4.38305    0.16541 36.77252  26.498
## treat                  -0.13144    0.33082 36.77252  -0.397
## sess                    0.12285    0.21765 51.51200   0.564
## Emospider               2.97970    0.19591 39.06190  15.209
## Emonegative             1.25053    0.18832 35.32527   6.640
## Emopositive            -0.19180    0.16642 45.45112  -1.153
## treat:sess              0.02591    0.43531 51.51200   0.060
## treat:Emospider         0.46925    0.39182 39.06190   1.198
## treat:Emonegative      -0.17542    0.37664 35.32527  -0.466
## treat:Emopositive      -0.10744    0.33284 45.45112  -0.323
## sess:Emospider         -1.16133    0.26296 57.50945  -4.416
## sess:Emonegative        0.05705    0.23373 45.14238   0.244
## sess:Emopositive        0.15380    0.17481 54.83402   0.880
## treat:sess:Emospider   -0.35006    0.52592 57.50945  -0.666
## treat:sess:Emonegative -0.34256    0.46746 45.14238  -0.733
## treat:sess:Emopositive -0.48085    0.34961 54.83402  -1.375
##                                    Pr(>|t|)    
## (Intercept)            < 0.0000000000000002 ***
## treat                                 0.693    
## sess                                  0.575    
## Emospider              < 0.0000000000000002 ***
## Emonegative                     0.000000107 ***
## Emopositive                           0.255    
## treat:sess                            0.953    
## treat:Emospider                       0.238    
## treat:Emonegative                     0.644    
## treat:Emopositive                     0.748    
## sess:Emospider                  0.000044878 ***
## sess:Emonegative                      0.808    
## sess:Emopositive                      0.383    
## treat:sess:Emospider                  0.508    
## treat:sess:Emonegative                0.467    
## treat:sess:Emopositive                0.175    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tidied_model <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

model table

table of labels

effectlbls <- data.frame(
  num = as.character(seq(1:16)), 
  original = tidied_model$term[1:16],
  standard = c("intercept (avr_treat, session (1), neutral)",
               "treatment (VRET vs IVET)",
               "session (2)",
               "emotion (spider)",
               "emotion (negative)",
               "emotion (positive)",
               "treatment (VRET vs IVET) x session",
               "treatment (VRET vs IVET) x emotion (spider)",
               "treatment (VRET vs IVET) x emotion (negative)",
               "treatment (VRET vs IVET) x emotion (positive)",
               "session x emotion (spider)",
               "session x emotion (negative)",
               "session x emotion (positive)",
               "treatment (VRET vs IVET) x session x emotion (spider)",
               "treatment (VRET vs IVET) x session x emotion (negative)",
               "treatment (VRET vs IVET) x session x emotion (positive)"),
  condition = c("treatment (avr_treat) / session (1) / emotion (neutral)",
                "treatment (VRET vs IVET) / sess (1) / emotion (neutral)",
                "treatment (avr_treat) / sess (2) / emotion (neutral)",
                "treatment (avr_treat) / sess (1) / emotion (spider)",
                "treatment (avr_treat) / sess (1) / emotion (negative)",
                "treatment (avr_treat) / sess (1) / emotion (positive)",
                "treatment (VRET vs IVET) / sess (2) / emotion (neutral)",
                "treatment (VRET vs IVET) / sess (1) / emotion (spider)",
                "treatment (VRET vs IVET) / sess (1) / emotion (negative)",
                "treatment (VRET vs IVET) / sess (1) / emotion (positive)",
                "treatment (avr_treat) / sess (2) / emotion (spider)",
                "treatment (avr_treat) / sess (2) / emotion (negative)",
                "treatment (avr_treat) / sess (2) / emotion (positive)",
                "treatment (VRET vs IVET) / sess (2) / emotion (spider)",
                "treatment (VRET vs IVET) / sess (2) / emotion (negative)",
                "treatment (VRET vs IVET) / sess (2) / emotion (positive)"),
  stringsAsFactors = F)
effectlbls %>%
  kable() %>%
  kable_styling()
num original standard condition
1 (Intercept) intercept (avr_treat, session (1), neutral) treatment (avr_treat) / session (1) / emotion (neutral)
2 treat treatment (VRET vs IVET) treatment (VRET vs IVET) / sess (1) / emotion (neutral)
3 sess session (2) treatment (avr_treat) / sess (2) / emotion (neutral)
4 Emospider emotion (spider) treatment (avr_treat) / sess (1) / emotion (spider)
5 Emonegative emotion (negative) treatment (avr_treat) / sess (1) / emotion (negative)
6 Emopositive emotion (positive) treatment (avr_treat) / sess (1) / emotion (positive)
7 treat:sess treatment (VRET vs IVET) x session treatment (VRET vs IVET) / sess (2) / emotion (neutral)
8 treat:Emospider treatment (VRET vs IVET) x emotion (spider) treatment (VRET vs IVET) / sess (1) / emotion (spider)
9 treat:Emonegative treatment (VRET vs IVET) x emotion (negative) treatment (VRET vs IVET) / sess (1) / emotion (negative)
10 treat:Emopositive treatment (VRET vs IVET) x emotion (positive) treatment (VRET vs IVET) / sess (1) / emotion (positive)
11 sess:Emospider session x emotion (spider) treatment (avr_treat) / sess (2) / emotion (spider)
12 sess:Emonegative session x emotion (negative) treatment (avr_treat) / sess (2) / emotion (negative)
13 sess:Emopositive session x emotion (positive) treatment (avr_treat) / sess (2) / emotion (positive)
14 treat:sess:Emospider treatment (VRET vs IVET) x session x emotion (spider) treatment (VRET vs IVET) / sess (2) / emotion (spider)
15 treat:sess:Emonegative treatment (VRET vs IVET) x session x emotion (negative) treatment (VRET vs IVET) / sess (2) / emotion (negative)
16 treat:sess:Emopositive treatment (VRET vs IVET) x session x emotion (positive) treatment (VRET vs IVET) / sess (2) / emotion (positive)

standard labels

table_model(get(model_name), 
            dv_labels = "only treat model",
            pred_labels = paste(effectlbls[,1], effectlbls[,3]))
  only treat model
Parameter B 95% CI SE t p
1 intercept (avr_treat, session (1), neutral) 4.38 4.05 – 4.72 0.17 26.50 <0.001
2 treatment (VRET vs IVET) -0.13 -0.80 – 0.54 0.33 -0.40 0.693
3 session (2) 0.12 -0.31 – 0.56 0.22 0.56 0.575
4 emotion (spider) 2.98 2.58 – 3.38 0.20 15.21 <0.001
5 emotion (negative) 1.25 0.87 – 1.63 0.19 6.64 <0.001
6 emotion (positive) -0.19 -0.53 – 0.14 0.17 -1.15 0.255
7 treatment (VRET vs IVET) x session 0.03 -0.85 – 0.90 0.44 0.06 0.953
8 treatment (VRET vs IVET) x emotion (spider) 0.47 -0.32 – 1.26 0.39 1.20 0.238
9 treatment (VRET vs IVET) x emotion (negative) -0.18 -0.94 – 0.59 0.38 -0.47 0.644
10 treatment (VRET vs IVET) x emotion (positive) -0.11 -0.78 – 0.56 0.33 -0.32 0.748
11 session x emotion (spider) -1.16 -1.69 – -0.63 0.26 -4.42 <0.001
12 session x emotion (negative) 0.06 -0.41 – 0.53 0.23 0.24 0.808
13 session x emotion (positive) 0.15 -0.20 – 0.50 0.17 0.88 0.383
14 treatment (VRET vs IVET) x session x emotion (spider) -0.35 -1.40 – 0.70 0.53 -0.67 0.508
15 treatment (VRET vs IVET) x session x emotion (negative) -0.34 -1.28 – 0.60 0.47 -0.73 0.467
16 treatment (VRET vs IVET) x session x emotion (positive) -0.48 -1.18 – 0.22 0.35 -1.38 0.175
Random Effects
σ2 1.42
τ00 fp 0.92
τ11 fp.sess 2.14
τ11 fp.Emospider 1.44
τ11 fp.Emonegative 1.03
τ11 fp.Emopositive 1.04
τ11 fp.sess:Emospider 3.21
τ11 fp.sess:Emonegative 2.04
τ11 fp.sess:Emopositive 0.89
ρ01 -0.73
-0.58
-0.49
-0.51
0.62
0.26
0.43
ICC 0.45
N fp 70
Observations 4120
Marginal R2 / Conditional R2 0.292 / 0.609

condition labels

table_model(get(model_name), 
            dv_labels = "only treat model",
            pred_labels = paste(effectlbls[,1], effectlbls[,4]))
  only treat model
Parameter B 95% CI SE t p
1 treatment (avr_treat) / session (1) / emotion (neutral) 4.38 4.05 – 4.72 0.17 26.50 <0.001
2 treatment (VRET vs IVET) / sess (1) / emotion (neutral) -0.13 -0.80 – 0.54 0.33 -0.40 0.693
3 treatment (avr_treat) / sess (2) / emotion (neutral) 0.12 -0.31 – 0.56 0.22 0.56 0.575
4 treatment (avr_treat) / sess (1) / emotion (spider) 2.98 2.58 – 3.38 0.20 15.21 <0.001
5 treatment (avr_treat) / sess (1) / emotion (negative) 1.25 0.87 – 1.63 0.19 6.64 <0.001
6 treatment (avr_treat) / sess (1) / emotion (positive) -0.19 -0.53 – 0.14 0.17 -1.15 0.255
7 treatment (VRET vs IVET) / sess (2) / emotion (neutral) 0.03 -0.85 – 0.90 0.44 0.06 0.953
8 treatment (VRET vs IVET) / sess (1) / emotion (spider) 0.47 -0.32 – 1.26 0.39 1.20 0.238
9 treatment (VRET vs IVET) / sess (1) / emotion (negative) -0.18 -0.94 – 0.59 0.38 -0.47 0.644
10 treatment (VRET vs IVET) / sess (1) / emotion (positive) -0.11 -0.78 – 0.56 0.33 -0.32 0.748
11 treatment (avr_treat) / sess (2) / emotion (spider) -1.16 -1.69 – -0.63 0.26 -4.42 <0.001
12 treatment (avr_treat) / sess (2) / emotion (negative) 0.06 -0.41 – 0.53 0.23 0.24 0.808
13 treatment (avr_treat) / sess (2) / emotion (positive) 0.15 -0.20 – 0.50 0.17 0.88 0.383
14 treatment (VRET vs IVET) / sess (2) / emotion (spider) -0.35 -1.40 – 0.70 0.53 -0.67 0.508
15 treatment (VRET vs IVET) / sess (2) / emotion (negative) -0.34 -1.28 – 0.60 0.47 -0.73 0.467
16 treatment (VRET vs IVET) / sess (2) / emotion (positive) -0.48 -1.18 – 0.22 0.35 -1.38 0.175
Random Effects
σ2 1.42
τ00 fp 0.92
τ11 fp.sess 2.14
τ11 fp.Emospider 1.44
τ11 fp.Emonegative 1.03
τ11 fp.Emopositive 1.04
τ11 fp.sess:Emospider 3.21
τ11 fp.sess:Emonegative 2.04
τ11 fp.sess:Emopositive 0.89
ρ01 -0.73
-0.58
-0.49
-0.51
0.62
0.26
0.43
ICC 0.45
N fp 70
Observations 4120
Marginal R2 / Conditional R2 0.292 / 0.609

interpretation

tm <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

The goal is to examine whether IVET and VRET differ from each other in spider (vs neutral) ratings in the first session and between the first and second session (but not in any other picture category).

The formula was rating ~ 1 + treat * sess * Emo + (1 + sess * Emo | fp).
Emo by sess as random effects: This means that emo, session, and the emo by session can differ between subjects.

Intercept = treatment(avr_treat) / session (1) / emotion (neutral).
avr_treat is the mean of IVET and VRET.

The effect for the intercept = 4.38. This is the mean rating for the intercept that contains the average across treatments in session 1 to neutral pictures.

The effect of the interaction is added to this together with lower-order terms to get the marginal mean. An interaction parameter is how much it differs from the lower order terms and the t-test is for the null hypothesis that the difference between these parameters is 0. When testing higher effects, the lower effects are removed. That is, the higher effects test for something over and above the lower effects. Accordingly, the estimated marginal means are the intercept + lower effects + estimate for higher effect.

We want to see whether the groups rated spiders differently from neutral pictures in session 1.

Emospider
In the model table with condition labels, this is number 4.

treatment (avr_treat) / sess (1) / emotion (spider).
- estimate: 2.98
- p value: 5.3068e-18
Indeed, spiders are rated more emotional.
(Note that the session 1 analysis with three groups tested each treatment compared to the control group.)

Did the groups differ in how they rated spiders from neutral pictures in session 1? The next analysis suggests: No. 

treat:Emospider
In the model table with condition labels, this is number 8.

treatment (VRET vs IVET) / sess (1) / emotion (spider).
- estimate: 0.47
- p value: 2.3829e-01
(Note that the session 1 analysis with three groups tested each treatment compared to the control group.)

Next, we examine whether the effect of spiders differed between sessions.

sess:Emospider
In the model table with condition labels, this is number 11.

treatment (avr_treat) / sess (2) / emotion (spider).
- estimate: -1.16
- p value: 4.4878e-05
Indeed, spiders (vs neutral) are rated less emotional in session 2 than session 1.

Critically, did this effect vary with treatment?

treat:sess:Emospider
In the model table with condition labels, this is number 14.

treatment (VRET vs IVET) / sess (2) / emotion (spider).
- estimate: -0.35
- p value: 5.0831e-01
No, it does not look like that the treatment groups differed.

All the other tests concern pictures other than spiders.

estimated means

data %>%
  modelr::data_grid(treat, Emo, sess) %>%
  mutate(marginal_mean = predict(get(model_name), ., re.form = NA),
         treat = ifelse(treat == -.5, "IVET", "VRET"),
         sess = ifelse(sess == 0, 'pre', 'post'),
         sess = factor(sess, levels = c('pre', 'post'))) %>%
  pivot_wider(names_from = Emo, values_from = marginal_mean) %>%
  kable(digits = 2) %>%
  kable_styling()
treat sess neutral spider negative positive
IVET pre 4.45 7.19 5.79 4.31
IVET post 4.56 6.32 6.13 4.81
VRET pre 4.32 7.53 5.48 4.07
VRET post 4.45 6.33 5.50 4.12

Bayes

ordinal model

ratings_arousal_treat <- rate_only_treat_recode %>% 
  filter(rating_type == "Aro") %>% 
  filter(Emo %in% c('spider', 'neutral')) %>% 
  mutate(fp = as.factor(fp))
# Ordinal Regression Model.
ratings_arousal.treat.model <- brm(rating ~ 1 + treat*sess*Emo + (1 + sess*Emo | fp), 
                             family = cumulative("probit"),
                             data = na.omit(ratings_arousal_treat),
                             prior = c(prior(normal(0, 4), class = Intercept),
                                       prior(normal(0, 4), class = b)),
                             chains = 4,
                             file = "results/models/ratings_arousal.treat.model", 
                             # file to save/reuse model
                             cores = 4, 
                             iter = 3000,
                             warmup = 1000,
                             init_r = 0.5,
                             save_pars = save_pars(all = TRUE))
# Model Summary.
summary(ratings_arousal.treat.model)
##  Family: cumulative 
##   Links: mu = probit; disc = identity 
## Formula: rating ~ 1 + treat * sess * Emo + (1 + sess * Emo | fp) 
##    Data: na.omit(ratings_arousal_treat) (Number of observations: 2060) 
##   Draws: 4 chains, each with iter = 3000; warmup = 1000; thin = 1;
##          total post-warmup draws = 8000
## 
## Group-Level Effects: 
## ~fp (Number of levels: 70) 
##                               Estimate Est.Error l-95% CI u-95% CI Rhat
## sd(Intercept)                     0.79      0.12     0.58     1.07 1.00
## sd(sess)                          1.21      0.16     0.92     1.55 1.00
## sd(Emospider)                     1.28      0.18     0.96     1.68 1.00
## sd(sess:Emospider)                1.74      0.24     1.33     2.25 1.00
## cor(Intercept,sess)              -0.61      0.12    -0.80    -0.35 1.00
## cor(Intercept,Emospider)         -0.29      0.17    -0.60     0.07 1.00
## cor(sess,Emospider)               0.02      0.18    -0.34     0.36 1.00
## cor(Intercept,sess:Emospider)     0.44      0.16     0.11     0.72 1.00
## cor(sess,sess:Emospider)         -0.42      0.14    -0.67    -0.11 1.00
## cor(Emospider,sess:Emospider)    -0.56      0.12    -0.77    -0.29 1.00
##                               Bulk_ESS Tail_ESS
## sd(Intercept)                     2959     4461
## sd(sess)                          1408     2883
## sd(Emospider)                     2604     3995
## sd(sess:Emospider)                1336     2586
## cor(Intercept,sess)               1341     2727
## cor(Intercept,Emospider)          2156     3793
## cor(sess,Emospider)               2222     3724
## cor(Intercept,sess:Emospider)     1548     2865
## cor(sess,sess:Emospider)          2139     3202
## cor(Emospider,sess:Emospider)     1357     2953
## 
## Population-Level Effects: 
##                      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept[1]            -1.66      0.16    -1.98    -1.36 1.00     2954
## Intercept[2]            -1.33      0.15    -1.63    -1.03 1.00     2790
## Intercept[3]            -0.92      0.15    -1.21    -0.63 1.00     2567
## Intercept[4]            -0.74      0.15    -1.02    -0.45 1.00     2533
## Intercept[5]             1.72      0.15     1.43     2.03 1.00     2626
## Intercept[6]             2.56      0.16     2.25     2.87 1.00     2784
## Intercept[7]             3.95      0.17     3.63     4.29 1.00     3171
## Intercept[8]             4.75      0.18     4.40     5.10 1.00     3429
## treat                   -0.18      0.29    -0.76     0.40 1.00     2514
## sess                     0.07      0.19    -0.31     0.43 1.00     2650
## Emospider                3.66      0.24     3.18     4.14 1.00     2513
## treat:sess               0.08      0.38    -0.68     0.82 1.00     2563
## treat:Emospider          0.65      0.46    -0.24     1.55 1.00     2456
## sess:Emospider          -1.27      0.28    -1.80    -0.71 1.00     2617
## treat:sess:Emospider    -0.47      0.56    -1.54     0.65 1.00     2650
##                      Tail_ESS
## Intercept[1]             4680
## Intercept[2]             4811
## Intercept[3]             4480
## Intercept[4]             4313
## Intercept[5]             4676
## Intercept[6]             5116
## Intercept[7]             5311
## Intercept[8]             5382
## treat                    3846
## sess                     4128
## Emospider                3836
## treat:sess               4244
## treat:Emospider          3808
## sess:Emospider           3673
## treat:sess:Emospider     4452
## 
## Family Specific Parameters: 
##      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## disc     1.00      0.00     1.00     1.00   NA       NA       NA
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Bayes factor

only spider and neutral

computations

null_arousal.treat.model <- brm(rating ~ 1 + (1 + sess*Emo | fp),
                          family = cumulative("probit"),
                          data = ratings_arousal_treat,
                          prior = prior(normal(0, 4), class = Intercept),
                          chains = 4,
                          file = "results/models/rating_arousal.treat.null", 
                          # Specify file to save/reuse model
                          cores = 4, 
                          iter = 3000,
                          warmup = 1000,
                          init_r = 0.5,
                          save_pars = save_pars(all = TRUE))
sess_emo.treat_arousal.model <- brm(rating ~ 1 + sess*Emo + (1 + sess*Emo | fp),
                              family = cumulative("probit"),
                              data = ratings_arousal_treat,
                              prior = c(prior(normal(0, 4), class = Intercept),
                                        prior(normal(0, 4), class = b)),
                              chains = 4,
                              file = "results/models/rating_arousal.treat.sess_emo", 
                              cores = 4, 
                              iter = 3000,
                              warmup = 1000,
                              save_pars = save_pars(all = TRUE))
emo.treat_arousal.model <- brm(rating ~ 1 + Emo + (1 + sess*Emo | fp),
                         family = cumulative("probit"),
                         data = ratings_arousal_treat,
                         prior = c(prior(normal(0, 4), class = Intercept),
                                   prior(normal(0, 4), class = b)),
                         chains = 4,
                         file = "results/models/rating_arousal.treat.emo", 
                         cores = 4, 
                         iter = 3000,
                         warmup = 1000,
                         save_pars = save_pars(all = TRUE))

Compute bayes factor approximations (via bridge sampling)

# Bayes factor comparisons are in favor of alternative hypothesis.
full.treat_arousal.bayes <- bayes_factor(ratings_arousal.treat.model, null_arousal.treat.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 892
## Iteration: 893
## Iteration: 894
## Iteration: 895
## Iteration: 896
## Iteration: 897
## Iteration: 898
## Iteration: 899
## Iteration: 900
## Iteration: 901
## Iteration: 902
## Iteration: 903
## Iteration: 904
## Iteration: 905
## Iteration: 906
## Iteration: 907
## Iteration: 908
## Iteration: 909
## Iteration: 910
## Iteration: 911
## Iteration: 912
## Iteration: 913
## Iteration: 914
## Iteration: 915
## Iteration: 916
## Iteration: 917
## Iteration: 918
## Iteration: 919
## Iteration: 920
## Iteration: 921
## Iteration: 922
## Iteration: 923
## Iteration: 924
## Iteration: 925
## Iteration: 926
## Iteration: 927
## Iteration: 928
## Iteration: 929
## Iteration: 930
## Iteration: 931
## Iteration: 932
## Iteration: 933
## Iteration: 934
## Iteration: 935
## Iteration: 936
## Iteration: 937
## Iteration: 938
## Iteration: 939
## Iteration: 940
## Iteration: 941
## Iteration: 942
## Iteration: 943
## Iteration: 944
## Iteration: 945
## Iteration: 946
## Iteration: 947
## Iteration: 948
## Iteration: 949
## Iteration: 950
## Iteration: 951
## Iteration: 952
## Iteration: 953
## Iteration: 954
## Iteration: 955
## Iteration: 956
## Iteration: 957
## Iteration: 958
## Iteration: 959
## Iteration: 960
## Iteration: 961
## Iteration: 962
## Iteration: 963
## Iteration: 964
## Iteration: 965
## Iteration: 966
## Iteration: 967
## Iteration: 968
## Iteration: 969
## Iteration: 970
## Iteration: 971
## Iteration: 972
## Iteration: 973
## Iteration: 974
## Iteration: 975
## Iteration: 976
## Iteration: 977
## Iteration: 978
## Iteration: 979
## Iteration: 980
## Iteration: 981
## Iteration: 982
## Iteration: 983
## Iteration: 984
## Iteration: 985
## Iteration: 986
## Iteration: 987
## Iteration: 988
## Iteration: 989
## Iteration: 990
## Iteration: 991
## Iteration: 992
## Iteration: 993
## Iteration: 994
## Iteration: 995
## Iteration: 996
## Iteration: 997
## Iteration: 998
## Iteration: 999
## Iteration: 1000
## Iteration: 1
sess_emo.treat_arousal.bayes <- bayes_factor(sess_emo.treat_arousal.model, null_arousal.treat.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 892
## Iteration: 893
## Iteration: 894
## Iteration: 895
## Iteration: 896
## Iteration: 897
## Iteration: 898
## Iteration: 899
## Iteration: 900
## Iteration: 901
## Iteration: 902
## Iteration: 903
## Iteration: 904
## Iteration: 905
## Iteration: 906
## Iteration: 907
## Iteration: 908
## Iteration: 909
## Iteration: 910
## Iteration: 911
## Iteration: 912
## Iteration: 913
## Iteration: 914
## Iteration: 915
## Iteration: 916
## Iteration: 917
## Iteration: 918
## Iteration: 919
## Iteration: 920
## Iteration: 921
## Iteration: 922
## Iteration: 923
## Iteration: 924
## Iteration: 925
## Iteration: 926
## Iteration: 927
## Iteration: 928
## Iteration: 929
## Iteration: 930
## Iteration: 931
## Iteration: 932
## Iteration: 933
## Iteration: 934
## Iteration: 935
## Iteration: 936
## Iteration: 937
## Iteration: 938
## Iteration: 939
## Iteration: 940
## Iteration: 941
## Iteration: 942
## Iteration: 943
## Iteration: 944
## Iteration: 945
## Iteration: 946
## Iteration: 947
## Iteration: 948
## Iteration: 949
## Iteration: 950
## Iteration: 951
## Iteration: 952
## Iteration: 953
## Iteration: 954
## Iteration: 955
## Iteration: 956
## Iteration: 957
## Iteration: 958
## Iteration: 959
## Iteration: 960
## Iteration: 961
## Iteration: 962
## Iteration: 963
## Iteration: 964
## Iteration: 965
## Iteration: 966
## Iteration: 967
## Iteration: 968
## Iteration: 969
## Iteration: 970
## Iteration: 971
## Iteration: 972
## Iteration: 973
## Iteration: 974
## Iteration: 975
## Iteration: 976
## Iteration: 977
## Iteration: 978
## Iteration: 979
## Iteration: 980
## Iteration: 981
## Iteration: 982
## Iteration: 983
## Iteration: 984
## Iteration: 985
## Iteration: 986
## Iteration: 987
## Iteration: 988
## Iteration: 989
## Iteration: 990
## Iteration: 991
## Iteration: 992
## Iteration: 993
## Iteration: 994
## Iteration: 995
## Iteration: 996
## Iteration: 997
## Iteration: 998
## Iteration: 999
## Iteration: 1000
## Iteration: 1
emo.treat_arousal.bayes <- bayes_factor(emo.treat_arousal.model, null_arousal.treat.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 892
## Iteration: 893
## Iteration: 894
## Iteration: 895
## Iteration: 896
## Iteration: 897
## Iteration: 898
## Iteration: 899
## Iteration: 900
## Iteration: 901
## Iteration: 902
## Iteration: 903
## Iteration: 904
## Iteration: 905
## Iteration: 906
## Iteration: 907
## Iteration: 908
## Iteration: 909
## Iteration: 910
## Iteration: 911
## Iteration: 912
## Iteration: 913
## Iteration: 914
## Iteration: 915
## Iteration: 916
## Iteration: 917
## Iteration: 918
## Iteration: 919
## Iteration: 920
## Iteration: 921
## Iteration: 922
## Iteration: 923
## Iteration: 924
## Iteration: 925
## Iteration: 926
## Iteration: 927
## Iteration: 928
## Iteration: 929
## Iteration: 930
## Iteration: 931
## Iteration: 932
## Iteration: 933
## Iteration: 934
## Iteration: 935
## Iteration: 936
## Iteration: 937
## Iteration: 938
## Iteration: 939
## Iteration: 940
## Iteration: 941
## Iteration: 942
## Iteration: 943
## Iteration: 944
## Iteration: 945
## Iteration: 946
## Iteration: 947
## Iteration: 948
## Iteration: 949
## Iteration: 950
## Iteration: 951
## Iteration: 952
## Iteration: 953
## Iteration: 954
## Iteration: 955
## Iteration: 956
## Iteration: 957
## Iteration: 958
## Iteration: 959
## Iteration: 960
## Iteration: 961
## Iteration: 962
## Iteration: 963
## Iteration: 964
## Iteration: 965
## Iteration: 966
## Iteration: 967
## Iteration: 968
## Iteration: 969
## Iteration: 970
## Iteration: 971
## Iteration: 972
## Iteration: 973
## Iteration: 974
## Iteration: 975
## Iteration: 976
## Iteration: 977
## Iteration: 978
## Iteration: 979
## Iteration: 980
## Iteration: 981
## Iteration: 982
## Iteration: 983
## Iteration: 984
## Iteration: 985
## Iteration: 986
## Iteration: 987
## Iteration: 988
## Iteration: 989
## Iteration: 990
## Iteration: 991
## Iteration: 992
## Iteration: 993
## Iteration: 994
## Iteration: 995
## Iteration: 996
## Iteration: 997
## Iteration: 998
## Iteration: 999
## Iteration: 1000
## Iteration: 1
full.treat_arousal.bayes
## Estimated Bayes factor in favor of ratings_arousal.treat.model over null_arousal.treat.model: 3270870518596406272.00000
sess_emo.treat_arousal.bayes
## Estimated Bayes factor in favor of sess_emo.treat_arousal.model over null_arousal.treat.model: 10402856073697644083200622.00000
emo.treat_arousal.bayes
## Estimated Bayes factor in favor of emo.treat_arousal.model over null_arousal.treat.model: 222024455502571757386002.00000

compare with null

tibble(model = c("TreatxSessxEmo", "SessxEmo", "Emo"),
       Compared_To_Null = format(c(full.treat_arousal.bayes$bf, 
                                   sess_emo.treat_arousal.bayes$bf, 
                                   emo.treat_arousal.bayes$bf), scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Null
TreatxSessxEmo 3.270871e+18
SessxEmo 1.040286e+25
Emo 2.220245e+23

compare with Sess x Emo

tibble(model = c("TreatxSessxEmo", "SessxEmo", "Emo"),
       Compared_To_SessxEmo =     
         format(c(full.treat_arousal.bayes$bf/sess_emo.treat_arousal.bayes$bf,
                  sess_emo.treat_arousal.bayes$bf/sess_emo.treat_arousal.bayes$bf,
                  emo.treat_arousal.bayes$bf/sess_emo.treat_arousal.bayes$bf),
                                               scientific = TRUE),
         BF01 =   format(c(sess_emo.treat_arousal.bayes$bf/full.treat_arousal.bayes$bf,
                  sess_emo.treat_arousal.bayes$bf/sess_emo.treat_arousal.bayes$bf,
                  sess_emo.treat_arousal.bayes$bf/emo.treat_arousal.bayes$bf))) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_SessxEmo BF01
TreatxSessxEmo 3.144204e-07 3180454.87113
SessxEmo 1.000000e+00 1.00000
Emo 2.134264e-02 46.85455

compare with Treat x Sess x Emo

tibble(model = c("TreatxSessxEmo", "SessxEmo", "Emo"),
       Compared_To_TreatxSessxEmo =   
         format(c(full.treat_arousal.bayes$bf/full.treat_arousal.bayes$bf,
                  sess_emo.treat_arousal.bayes$bf/full.treat_arousal.bayes$bf, 
                  emo.treat_arousal.bayes$bf/full.treat_arousal.bayes$bf),
                                               scientific = TRUE),
       BF01 =   format(c(full.treat_arousal.bayes$bf/full.treat_arousal.bayes$bf,
                  full.treat_arousal.bayes$bf/sess_emo.treat_arousal.bayes$bf, 
                  full.treat_arousal.bayes$bf/emo.treat_arousal.bayes$bf))) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_TreatxSessxEmo BF01
TreatxSessxEmo 1.000000e+00 1.0000000000000
SessxEmo 3.180455e+06 0.0000003144204
Emo 6.787932e+04 0.0000147320281

check assumptions

An ordinal regression has four assumptions:

  1. The dependent variables are ordered.
  2. One or more of the independent variables are either continuous, categorical, or ordinal.
  3. No multi-collinearity.
  4. Proportional odds.

Check vif and tolerance (multicollinearity)

check_collinearity(ratings_arousal.treat.model)

valence ratings

Self-reported ratings of valence during the rating task.

session 1 three groups

  • use session 1 from all three groups
  • examine if IVET and VRET differ from controls in spider (vs neutral) ratings in session 1
  • compare IVET and VRET separately to the control group
  • does not test whether the treatments differ from each other
  • use neutral pictures as reference emotion
  • save the model to save time
model_name <- "session_pre_all_groups_rating_valence"
model_formula <- formula("rating ~ 1 + treat*Emo + (1 + Emo | fp)")
data <- rate_baseline %>% 
  filter(rating_type == "Ple")
if (file.exists(sprintf("results/models/model_%s.RDS", model_name))) {
  assign(get("model_name"), readRDS(sprintf("results/models/model_%s.RDS", model_name)))
} else {
  assign(get("model_name"), lmerTest::lmer(model_formula,
                                           control = lmerControl(optimizer = "bobyqa",
                                                                 optCtrl = list(maxfun = 1e5)),
                                           data = data))
  saveRDS(eval(parse(text = model_name)), sprintf("results/models/model_%s.RDS", model_name))
}

plots

fits <- data %>%
  modelr::data_grid(treat, Emo, fp) %>%
  mutate(predicted_re = predict(get(model_name), .),
         fp_treat = sprintf("%s_%s", fp, treat)) %>%
  filter(fp_treat %in% sprintf("%s_%s", data$fp, data$treat))
ggeffects::ggpredict(get(model_name), c("treat", "Emo")) %>%
  data.frame() %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(data = fits, aes(x = Emo, y = predicted_re, color = treat,
                             group = interaction(fp, treat)), alpha = .3, size = .2) +
  geom_line(aes(group = x), position = position_dodge(width = .15), size = 1) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .15), size = .5) +
  scale_color_manual(values = palette, name = "treatment") +
  labs(y = "predicted valence\n", x = "\nemotion") +
  plot_aes

ggsave('results/figures/fig_rating_valence_pre.png', plot = last_plot())

summarize model

summary(get(model_name))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: model_formula
##    Data: data
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000))
## 
## REML criterion at convergence: 11263.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5512 -0.4786 -0.0902  0.5630  4.9347 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr             
##  fp       (Intercept) 0.006459 0.08037                   
##           Emospider   1.124151 1.06026   0.14            
##           Emonegative 0.614383 0.78383  -0.15  0.24      
##           Emopositive 0.462104 0.67978   0.79 -0.30 -0.66
##  Residual             1.199022 1.09500                   
## Number of obs: 3560, groups:  fp, 89
## 
## Fixed effects:
##                        Estimate Std. Error        df t value
## (Intercept)             5.14615    0.04930 563.07850 104.395
## treatIVET               0.07260    0.10162 563.07849   0.714
## treatVRET               0.15385    0.09191 563.07849   1.674
## Emospider              -0.89615    0.16196  86.76765  -5.533
## Emonegative            -1.84615    0.12817  88.21999 -14.404
## Emopositive             1.65000    0.11618  90.28325  14.202
## treatIVET:Emospider    -2.08510    0.33388  86.76765  -6.245
## treatVRET:Emospider    -2.19432    0.30196  86.76765  -7.267
## treatIVET:Emonegative  -0.08510    0.26422  88.22000  -0.322
## treatVRET:Emonegative   0.01282    0.23896  88.21999   0.054
## treatIVET:Emopositive   0.37500    0.23952  90.28325   1.566
## treatVRET:Emopositive  -0.11190    0.21662  90.28325  -0.517
##                                   Pr(>|t|)    
## (Intercept)           < 0.0000000000000002 ***
## treatIVET                           0.4753    
## treatVRET                           0.0947 .  
## Emospider                   0.000000328147 ***
## Emonegative           < 0.0000000000000002 ***
## Emopositive           < 0.0000000000000002 ***
## treatIVET:Emospider         0.000000015188 ***
## treatVRET:Emospider         0.000000000151 ***
## treatIVET:Emonegative               0.7482    
## treatVRET:Emonegative               0.9573    
## treatIVET:Emopositive               0.1209    
## treatVRET:Emopositive               0.6067    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trIVET trVRET Emspdr Emngtv Empstv trtIVET:Ems trtVRET:Ems
## treatIVET   -0.485                                                           
## treatVRET   -0.536  0.260                                                    
## Emospider   -0.259  0.126  0.139                                             
## Emonegative -0.393  0.191  0.211  0.298                                      
## Emopositive -0.258  0.125  0.138 -0.095 -0.299                               
## trtIVET:Ems  0.126 -0.259 -0.067 -0.485 -0.145  0.046                        
## trtVRET:Ems  0.139 -0.067 -0.259 -0.536 -0.160  0.051  0.260                 
## trtIVET:Emn  0.191 -0.393 -0.102 -0.145 -0.485  0.145  0.298       0.078     
## trtVRET:Emn  0.211 -0.102 -0.393 -0.160 -0.536  0.160  0.078       0.298     
## trtIVET:Emp  0.125 -0.258 -0.067  0.046  0.145 -0.485 -0.095      -0.025     
## trtVRET:Emp  0.138 -0.067 -0.258  0.051  0.160 -0.536 -0.025      -0.095     
##             trtIVET:Emn trtVRET:Emn trtIVET:Emp
## treatIVET                                      
## treatVRET                                      
## Emospider                                      
## Emonegative                                    
## Emopositive                                    
## trtIVET:Ems                                    
## trtVRET:Ems                                    
## trtIVET:Emn                                    
## trtVRET:Emn  0.260                             
## trtIVET:Emp -0.299      -0.078                 
## trtVRET:Emp -0.078      -0.299       0.260     
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
tidied_model <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

model table

table of labels

effectlbls <- data.frame(
  num = as.character(seq(1:12)), 
  original = tidied_model$term[1:12],
  standard = c("intercept (control, neutral)", 
               "treatment (IVET)", 
               "treatment (VRET)", 
               "emotion (spider)", 
               "emotion (negative)", 
               "emotion (positive)",
               "treatment (IVET) x emotion (spider)",
               "treatment (VRET) x emotion (spider)",
               "treatment (IVET) x emotion (negative)", 
               "treatment (VRET) x emotion (negative)",
               "treatment (IVET) x emotion (positive)", 
               "treatment (VRET) x emotion (positive)"),
  condition =  c("treatment (control) / emotion (neutral)", 
                 "treatment (IVET) / emotion (neutral)", 
                 "treatment (VRET) / emotion (neutral)", 
                 "treatment (control) / emotion (spider)", 
                 "treatment (control) / emotion (negative)", 
                 "treatment (control) / emotion (positive)",
                 "treatment (IVET) / emotion (spider)", 
                 "treatment (VRET) / emotion (spider)",
                 "treatment (IVET) / emotion (negative)", 
                 "treatment (VRET) / emotion (negative)",
                 "treatment (IVET) / emotion (positive)", 
                 "treatment (VRET) / emotion (positive)"),
  stringsAsFactors = F)
effectlbls %>%
  kable() %>%
  kable_styling()
num original standard condition
1 (Intercept) intercept (control, neutral) treatment (control) / emotion (neutral)
2 treatIVET treatment (IVET) treatment (IVET) / emotion (neutral)
3 treatVRET treatment (VRET) treatment (VRET) / emotion (neutral)
4 Emospider emotion (spider) treatment (control) / emotion (spider)
5 Emonegative emotion (negative) treatment (control) / emotion (negative)
6 Emopositive emotion (positive) treatment (control) / emotion (positive)
7 treatIVET:Emospider treatment (IVET) x emotion (spider) treatment (IVET) / emotion (spider)
8 treatVRET:Emospider treatment (VRET) x emotion (spider) treatment (VRET) / emotion (spider)
9 treatIVET:Emonegative treatment (IVET) x emotion (negative) treatment (IVET) / emotion (negative)
10 treatVRET:Emonegative treatment (VRET) x emotion (negative) treatment (VRET) / emotion (negative)
11 treatIVET:Emopositive treatment (IVET) x emotion (positive) treatment (IVET) / emotion (positive)
12 treatVRET:Emopositive treatment (VRET) x emotion (positive) treatment (VRET) / emotion (positive)

standard labels

table_model(get(model_name), 
            dv_labels = "session 1",
            pred_labels = paste(effectlbls[,1], effectlbls[,3]))
  session 1
Parameter B 95% CI SE t p
1 intercept (control, neutral) 5.15 5.05 – 5.24 0.05 104.39 <0.001
2 treatment (IVET) 0.07 -0.13 – 0.27 0.10 0.71 0.475
3 treatment (VRET) 0.15 -0.03 – 0.33 0.09 1.67 0.095
4 emotion (spider) -0.90 -1.22 – -0.57 0.16 -5.53 <0.001
5 emotion (negative) -1.85 -2.10 – -1.59 0.13 -14.40 <0.001
6 emotion (positive) 1.65 1.42 – 1.88 0.12 14.20 <0.001
7 treatment (IVET) x emotion (spider) -2.09 -2.75 – -1.42 0.33 -6.25 <0.001
8 treatment (VRET) x emotion (spider) -2.19 -2.79 – -1.59 0.30 -7.27 <0.001
9 treatment (IVET) x emotion (negative) -0.09 -0.61 – 0.44 0.26 -0.32 0.748
10 treatment (VRET) x emotion (negative) 0.01 -0.46 – 0.49 0.24 0.05 0.957
11 treatment (IVET) x emotion (positive) 0.37 -0.10 – 0.85 0.24 1.57 0.121
12 treatment (VRET) x emotion (positive) -0.11 -0.54 – 0.32 0.22 -0.52 0.607
Random Effects
σ2 1.20
τ00 fp 0.01
τ11 fp.Emospider 1.12
τ11 fp.Emonegative 0.61
τ11 fp.Emopositive 0.46
ρ01 0.14
-0.15
0.79
ICC 0.33
N fp 89
Observations 3560
Marginal R2 / Conditional R2 0.574 / 0.713

condition labels

table_model(get(model_name), 
            dv_labels = "session 1",
            pred_labels = paste(effectlbls[,1], effectlbls[,4]))
  session 1
Parameter B 95% CI SE t p
1 treatment (control) / emotion (neutral) 5.15 5.05 – 5.24 0.05 104.39 <0.001
2 treatment (IVET) / emotion (neutral) 0.07 -0.13 – 0.27 0.10 0.71 0.475
3 treatment (VRET) / emotion (neutral) 0.15 -0.03 – 0.33 0.09 1.67 0.095
4 treatment (control) / emotion (spider) -0.90 -1.22 – -0.57 0.16 -5.53 <0.001
5 treatment (control) / emotion (negative) -1.85 -2.10 – -1.59 0.13 -14.40 <0.001
6 treatment (control) / emotion (positive) 1.65 1.42 – 1.88 0.12 14.20 <0.001
7 treatment (IVET) / emotion (spider) -2.09 -2.75 – -1.42 0.33 -6.25 <0.001
8 treatment (VRET) / emotion (spider) -2.19 -2.79 – -1.59 0.30 -7.27 <0.001
9 treatment (IVET) / emotion (negative) -0.09 -0.61 – 0.44 0.26 -0.32 0.748
10 treatment (VRET) / emotion (negative) 0.01 -0.46 – 0.49 0.24 0.05 0.957
11 treatment (IVET) / emotion (positive) 0.37 -0.10 – 0.85 0.24 1.57 0.121
12 treatment (VRET) / emotion (positive) -0.11 -0.54 – 0.32 0.22 -0.52 0.607
Random Effects
σ2 1.20
τ00 fp 0.01
τ11 fp.Emospider 1.12
τ11 fp.Emonegative 0.61
τ11 fp.Emopositive 0.46
ρ01 0.14
-0.15
0.79
ICC 0.33
N fp 89
Observations 3560
Marginal R2 / Conditional R2 0.574 / 0.713

interpretation

tm <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

The goal is to examine whether IVET and VRET differ from controls in spider (vs neutral) ratings in the first session (but not in any other picture category). The analysis compares IVET and VRET separately to the control group and does not test whether the treatments differ from each other.

The formula was rating ~ 1 + treat * Emo + (1 + Emo | fp).
Up to Emo as random effects: This means that the emo effect can differ between subjects.

Intercept = treatment(control) / emotion(neutral).

The effect for the intercept = 5.15. This is the mean rating for the intercept that contains treatment(control) and emotion(neutral) and is thus the marginal mean for the control group for neutral pictures.

The effect of the interaction is added to this together with lower-order terms to get the marginal mean. An interaction parameter is how much it differs from the lower order terms and the t-test is for the null hypothesis that the difference between these parameters is 0. When testing higher effects, the lower effects are removed. That is, the higher effects test for something over and above the lower effects. Accordingly, the estimated marginal means are the intercept + lower effects + estimate for higher effect.

We want to see whether IVET and VRET differ from controls in their spider ratings. Because the intercept contains treatment(control) and emotion(neutral), we are interested in these tests:

For IVET:

treatIVET:Emospider
In the model table with condition labels, this is number 7.

treatment (IVET) / emotion (spider).
- estimate: -2.09
- p value: 1.5188e-08
This is the interaction of treatment(IVET vs control) x emotion (spider vs neutral) across ratings.

For VRET (same test as for IVET):

treatVRET:Emospider
In the model table with condition labels, this is number 8.

treatment (VRET) / emotion (spider).
- estimate: -2.19
- p value: 1.5072e-10
This is the interaction of treatment(VRET vs control) x emotion (spider vs neutral) across ratings.

estimated means

mmeans1 <- data %>%
  modelr::data_grid(treat, Emo) %>%
  mutate(marginal_mean = predict(get(model_name), ., re.form = NA)) %>%
  pivot_wider(names_from = Emo, values_from = marginal_mean)
mmeans1 %>%
  kable(digits = 2) %>%
  kable_styling()
treat neutral spider negative positive
Control 5.15 4.25 3.30 6.80
IVET 5.22 2.24 3.29 7.24
VRET 5.30 2.21 3.47 6.84

session 1 across treatments

  • use session 1 from all three groups
  • combine treatment groups
  • use neutral pictures as reference emotion
  • save the model to save time
model_name <- "session_pre_across_treat_rating_valence"
model_formula <- formula("rating ~ 1 + treat*Emo + (1 + Emo | fp)")
data <- rate_baseline_acrosstreatment %>% 
  filter(rating_type == "Ple")
if (file.exists(sprintf("results/models/model_%s.RDS", model_name))) {
  assign(get("model_name"), readRDS(sprintf("results/models/model_%s.RDS", model_name)))
} else {
  assign(get("model_name"), lmerTest::lmer(model_formula,
                                           control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e5)),
                                           data = data))
  saveRDS(eval(parse(text = model_name)), sprintf("results/models/model_%s.RDS", model_name))
}

plots

fits <- data %>%
  modelr::data_grid(treat, Emo, fp) %>%
  mutate(predicted_re = predict(get(model_name), .),
         fp_treat = sprintf("%s_%s", fp, treat)) %>%
  filter(fp_treat %in% sprintf("%s_%s", data$fp, data$treat))
ggeffects::ggpredict(get(model_name), c("treat", "Emo")) %>%
  data.frame() %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(data = fits, aes(x = Emo, y = predicted_re, color = treat,
                             group = interaction(fp, treat)), alpha = .3, size = .2) +
  geom_line(aes(group = x), position = position_dodge(width = .15), size = 1) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .15), size = .5) +
  scale_color_manual(values = palette2, name = "treatment") +
  labs(y = "predicted valence\n", x = "\nemotion") +
  plot_aes

### summarize model

summary(get(model_name))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: model_formula
##    Data: data
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000))
## 
## REML criterion at convergence: 11262.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5083 -0.4799 -0.0901  0.5618  4.9368 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr             
##  fp       (Intercept) 0.005582 0.07471                   
##           Emospider   1.109578 1.05336   0.16            
##           Emonegative 0.605433 0.77810  -0.12  0.24      
##           Emopositive 0.478508 0.69174   0.77 -0.28 -0.66
##  Residual             1.199056 1.09501                   
## Number of obs: 3560, groups:  fp, 89
## 
## Fixed effects:
##                             Estimate Std. Error        df t value
## (Intercept)                  5.14615    0.04912 633.02852 104.757
## treatIVET/VRET               0.11871    0.07619 633.02852   1.558
## Emospider                   -0.89615    0.16109  87.79048  -5.563
## Emonegative                 -1.84615    0.12749  89.29368 -14.480
## Emopositive                  1.65000    0.11753  91.00494  14.039
## treatIVET/VRET:Emospider    -2.14709    0.24984  87.79048  -8.594
## treatIVET/VRET:Emonegative  -0.02952    0.19773  89.29368  -0.149
## treatIVET/VRET:Emopositive   0.09865    0.18229  91.00494   0.541
##                                        Pr(>|t|)    
## (Intercept)                < 0.0000000000000002 ***
## treatIVET/VRET                            0.120    
## Emospider                     0.000000282864217 ***
## Emonegative                < 0.0000000000000002 ***
## Emopositive                < 0.0000000000000002 ***
## treatIVET/VRET:Emospider      0.000000000000286 ***
## treatIVET/VRET:Emonegative                0.882    
## treatIVET/VRET:Emopositive                0.590    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                  (Intr) trIVET/VRET Emspdr Emngtv Empstv trtIVET/VRET:Ems
## trIVET/VRET      -0.645                                                  
## Emospider        -0.261  0.168                                           
## Emonegative      -0.389  0.251       0.297                               
## Emopositive      -0.266  0.172      -0.088 -0.300                        
## trtIVET/VRET:Ems  0.168 -0.261      -0.645 -0.191  0.057                 
## trtIVET/VRET:Emn  0.251 -0.389      -0.191 -0.645  0.194  0.297          
## trtIVET/VRET:Emp  0.172 -0.266       0.057  0.194 -0.645 -0.088          
##                  trtIVET/VRET:Emn
## trIVET/VRET                      
## Emospider                        
## Emonegative                      
## Emopositive                      
## trtIVET/VRET:Ems                 
## trtIVET/VRET:Emn                 
## trtIVET/VRET:Emp -0.300          
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
tidied_model <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

model table

table of labels

effectlbls <- data.frame(
  num = as.character(seq(1:8)), 
  original = tidied_model$term[1:8],
  standard = c("intercept (control, neutral)", 
               "treatment (IVET/VRET)", 
               "emotion (spider)", 
               "emotion (negative)", 
               "emotion (positive)",
               "treatment (IVET/VRET) x emotion (spider)",
               "treatment (IVET/VRET) x emotion (negative)", 
               "treatment (IVET/VRET) x emotion (positive)"), 
  condition =  c("treatment (control) / emotion (neutral)", 
                 "treatment (IVET/VRET) / emotion (neutral)", 
                 "treatment (control) / emotion (spider)", 
                 "treatment (control) / emotion (negative)", 
                 "treatment (control) / emotion (positive)",
                 "treatment (IVET/VRET) / emotion (spider)", 
                 "treatment (IVET/VRET) / emotion (negative)", 
                 "treatment (IVET/VRET) / emotion (positive)"),
  stringsAsFactors = F)
effectlbls %>%
  kable() %>%
  kable_styling()
num original standard condition
1 (Intercept) intercept (control, neutral) treatment (control) / emotion (neutral)
2 treatIVET/VRET treatment (IVET/VRET) treatment (IVET/VRET) / emotion (neutral)
3 Emospider emotion (spider) treatment (control) / emotion (spider)
4 Emonegative emotion (negative) treatment (control) / emotion (negative)
5 Emopositive emotion (positive) treatment (control) / emotion (positive)
6 treatIVET/VRET:Emospider treatment (IVET/VRET) x emotion (spider) treatment (IVET/VRET) / emotion (spider)
7 treatIVET/VRET:Emonegative treatment (IVET/VRET) x emotion (negative) treatment (IVET/VRET) / emotion (negative)
8 treatIVET/VRET:Emopositive treatment (IVET/VRET) x emotion (positive) treatment (IVET/VRET) / emotion (positive)

standard labels

table_model(get(model_name), 
            dv_labels = "session 1",
            pred_labels = paste(effectlbls[,1], effectlbls[,3]))
  session 1
Parameter B 95% CI SE t p
1 intercept (control, neutral) 5.15 5.05 – 5.24 0.05 104.76 <0.001
2 treatment (IVET/VRET) 0.12 -0.03 – 0.27 0.08 1.56 0.120
3 emotion (spider) -0.90 -1.22 – -0.58 0.16 -5.56 <0.001
4 emotion (negative) -1.85 -2.10 – -1.59 0.13 -14.48 <0.001
5 emotion (positive) 1.65 1.42 – 1.88 0.12 14.04 <0.001
6 treatment (IVET/VRET) x emotion (spider) -2.15 -2.64 – -1.65 0.25 -8.59 <0.001
7 treatment (IVET/VRET) x emotion (negative) -0.03 -0.42 – 0.36 0.20 -0.15 0.882
8 treatment (IVET/VRET) x emotion (positive) 0.10 -0.26 – 0.46 0.18 0.54 0.590
Random Effects
σ2 1.20
τ00 fp 0.01
τ11 fp.Emospider 1.11
τ11 fp.Emonegative 0.61
τ11 fp.Emopositive 0.48
ρ01 0.16
-0.12
0.77
ICC 0.32
N fp 89
Observations 3560
Marginal R2 / Conditional R2 0.574 / 0.712

condition labels

table_model(get(model_name), 
            dv_labels = "session 1",
            pred_labels = paste(effectlbls[,1], effectlbls[,4]))
  session 1
Parameter B 95% CI SE t p
1 treatment (control) / emotion (neutral) 5.15 5.05 – 5.24 0.05 104.76 <0.001
2 treatment (IVET/VRET) / emotion (neutral) 0.12 -0.03 – 0.27 0.08 1.56 0.120
3 treatment (control) / emotion (spider) -0.90 -1.22 – -0.58 0.16 -5.56 <0.001
4 treatment (control) / emotion (negative) -1.85 -2.10 – -1.59 0.13 -14.48 <0.001
5 treatment (control) / emotion (positive) 1.65 1.42 – 1.88 0.12 14.04 <0.001
6 treatment (IVET/VRET) / emotion (spider) -2.15 -2.64 – -1.65 0.25 -8.59 <0.001
7 treatment (IVET/VRET) / emotion (negative) -0.03 -0.42 – 0.36 0.20 -0.15 0.882
8 treatment (IVET/VRET) / emotion (positive) 0.10 -0.26 – 0.46 0.18 0.54 0.590
Random Effects
σ2 1.20
τ00 fp 0.01
τ11 fp.Emospider 1.11
τ11 fp.Emonegative 0.61
τ11 fp.Emopositive 0.48
ρ01 0.16
-0.12
0.77
ICC 0.32
N fp 89
Observations 3560
Marginal R2 / Conditional R2 0.574 / 0.712

interpretation

tm <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

The goal is to examine whether the combined treatment groups (IVET and VRET) differ from controls in spider (vs neutral) ratings in the first session (but not in any other picture category). The analysis compares the combined IVET and VRET to the control group and does not test whether the treatments differ from each other.

The formula was rating ~ 1 + treat * Emo + (1 + Emo | fp).
Up to Emo as random effects: This means that the emo effect can differ between subjects.

Intercept = treatment(control) / emotion(neutral).

The effect for the intercept = 5.15. This is the mean rating for the intercept that contains treatment(control) and emotion(neutral) and is thus the marginal mean for the control group for neutral pictures.

The effect of the interaction is added to this together with lower-order terms to get the marginal mean. An interaction parameter is how much it differs from the lower order terms and the t-test is for the null hypothesis that the difference between these parameters is 0. When testing higher effects, the lower effects are removed. That is, the higher effects test for something over and above the lower effects. Accordingly, the estimated marginal means are the intercept + lower effects + estimate for higher effect.

We want to see whether the combined treatment groups (IVET and VRET) differ from controls in their spider ratings. Because the intercept contains treatment(control) and emotion(neutral), we are interested in these tests:

treatIVET/VRET:Emospider
In the model table with condition labels, this is number 6.

treatment (IVET/VRET) / emotion (spider).
- estimate: -2.15
- p value: 2.8589e-13
This is the interaction of treatment(IVET/VRET vs control) x emotion (spider vs neutral) across ratings.

estimated means

data %>%
  modelr::data_grid(treat, Emo) %>%
  mutate(marginal_mean = predict(get(model_name), ., re.form = NA)) %>%
  pivot_wider(names_from = Emo, values_from = marginal_mean) %>%
  kable(digits = 2) %>%
  kable_styling()
treat neutral spider negative positive
Control 5.15 4.25 3.30 6.80
IVET/VRET 5.26 2.22 3.39 7.01

Bayes

ordinal model

ratings_valence_sess1 <- rate_baseline_acrosstreatment %>%
  filter(rating_type == "Ple") %>% 
  filter(Emo %in% c('spider', 'neutral')) %>%
  mutate(fp = as.factor(fp))
# Ordinal Regression Model.
ratings_valence.sess1.model <- brm(rating ~ 1 + treat*Emo + (1 + Emo | fp),
                             family = cumulative("probit"),
                             data = na.omit(ratings_valence_sess1),
                             prior = c(prior(normal(0, 4), class = Intercept),
                                       prior(normal(0, 4), class = b)),
                             chains = 4,
                             file = "results/models/ratings_valence.sess1.model", 
                             # file to save/reuse model
                             cores = 4,
                             iter = 3000,
                             warmup = 1000,
                             init_r = 0.5,
                             save_pars = save_pars(all = TRUE))
# Model Summary.
summary(ratings_valence.sess1.model)
##  Family: cumulative 
##   Links: mu = probit; disc = identity 
## Formula: rating ~ 1 + treat * Emo + (1 + Emo | fp) 
##    Data: na.omit(ratings_valence_sess1) (Number of observations: 1780) 
##   Draws: 4 chains, each with iter = 3000; warmup = 1000; thin = 1;
##          total post-warmup draws = 8000
## 
## Group-Level Effects: 
## ~fp (Number of levels: 89) 
##                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)                0.19      0.09     0.02     0.34 1.01      640
## sd(Emospider)                1.43      0.13     1.20     1.72 1.00     1322
## cor(Intercept,Emospider)    -0.00      0.30    -0.52     0.72 1.04      126
##                          Tail_ESS
## sd(Intercept)                1173
## sd(Emospider)                3117
## cor(Intercept,Emospider)      287
## 
## Population-Level Effects: 
##                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept[1]                -4.17      0.13    -4.43    -3.92 1.00     7076
## Intercept[2]                -3.21      0.11    -3.43    -2.99 1.00     7800
## Intercept[3]                -2.00      0.08    -2.16    -1.83 1.00     7364
## Intercept[4]                -1.29      0.07    -1.44    -1.14 1.00     7997
## Intercept[5]                 1.03      0.07     0.90     1.16 1.00     7331
## Intercept[6]                 1.43      0.07     1.29     1.58 1.00     7921
## Intercept[7]                 2.10      0.10     1.92     2.29 1.00     7942
## Intercept[8]                 2.46      0.12     2.23     2.71 1.00     7436
## treatIVETDVRET               0.19      0.09     0.01     0.37 1.00     7553
## Emospider                   -1.17      0.21    -1.60    -0.77 1.00     1832
## treatIVETDVRET:Emospider    -2.71      0.33    -3.38    -2.06 1.00     1995
##                          Tail_ESS
## Intercept[1]                 5824
## Intercept[2]                 5732
## Intercept[3]                 6336
## Intercept[4]                 5945
## Intercept[5]                 6130
## Intercept[6]                 6392
## Intercept[7]                 5444
## Intercept[8]                 6237
## treatIVETDVRET               5807
## Emospider                    3338
## treatIVETDVRET:Emospider     3226
## 
## Family Specific Parameters: 
##      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## disc     1.00      0.00     1.00     1.00   NA       NA       NA
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Bayes factor

only spider and neutral

computations

null_valence.sess1.model <- brm(rating ~ 1 + (1 + Emo | fp),
                          family = cumulative("probit"),
                          data = ratings_valence_sess1,
                          prior = prior(normal(0, 4), class = Intercept),
                          chains = 4,
                          file = "results/models/rating_valence.sess1.null", 
                          # Specify file to save/reuse model
                          cores = 4, 
                          iter = 3000,
                          warmup = 1000,
                          init_r = 0.5,
                          save_pars = save_pars(all = TRUE))
emo_valence.sess1.model <- brm(rating ~ 1 + Emo + (1 + Emo | fp),
                         family = cumulative("probit"),
                         data = ratings_valence_sess1,
                         prior = c(prior(normal(0, 4), class = Intercept),
                                   prior(normal(0, 4), class = b)),
                         chains = 4,
                         file = "results/models/rating_valence.sess1.emo", 
                         # Specify file to save/reuse model
                         cores = 4, 
                         iter = 3000,
                         warmup = 1000,
                         init_r = 0.5,
                         save_pars = save_pars(all = TRUE))
treat_valence.sess1.model <- brm(rating ~ 1 + treat + (1 + Emo | fp),
                           family = cumulative("probit"),
                           data = ratings_valence_sess1,
                           prior = c(prior(normal(0, 4), class = Intercept),
                                     prior(normal(0, 4), class = b)),
                           chains = 4,
                           file = "results/models/rating_valence.sess1.treat", 
                           # Specify file to save/reuse model
                           cores = 4, 
                           iter = 3000,
                           warmup = 1000,
                           init_r = 0.5,
                           save_pars = save_pars(all = TRUE))

Compute bayes factor approximations (via bridge sampling)

# Bayes factor comparisons are in favor of alternative hypothesis.
full_valence.sess1.bayes <- bayes_factor(ratings_valence.sess1.model, null_valence.sess1.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 892
## Iteration: 893
## Iteration: 894
## Iteration: 895
## Iteration: 896
## Iteration: 897
## Iteration: 898
## Iteration: 899
## Iteration: 900
## Iteration: 901
## Iteration: 902
## Iteration: 903
## Iteration: 904
## Iteration: 905
## Iteration: 906
## Iteration: 907
## Iteration: 908
## Iteration: 909
## Iteration: 910
## Iteration: 911
## Iteration: 912
## Iteration: 913
## Iteration: 914
## Iteration: 915
## Iteration: 916
## Iteration: 917
## Iteration: 918
## Iteration: 919
## Iteration: 920
## Iteration: 921
## Iteration: 922
## Iteration: 923
## Iteration: 924
## Iteration: 925
## Iteration: 926
## Iteration: 927
## Iteration: 928
## Iteration: 929
## Iteration: 930
## Iteration: 931
## Iteration: 932
## Iteration: 933
## Iteration: 934
## Iteration: 935
## Iteration: 936
## Iteration: 937
## Iteration: 938
## Iteration: 939
## Iteration: 940
## Iteration: 941
## Iteration: 942
## Iteration: 943
## Iteration: 944
## Iteration: 945
## Iteration: 946
## Iteration: 947
## Iteration: 948
## Iteration: 949
## Iteration: 950
## Iteration: 951
## Iteration: 952
## Iteration: 953
## Iteration: 954
## Iteration: 955
## Iteration: 956
## Iteration: 957
## Iteration: 958
## Iteration: 959
## Iteration: 960
## Iteration: 961
## Iteration: 962
## Iteration: 963
## Iteration: 964
## Iteration: 965
## Iteration: 966
## Iteration: 967
## Iteration: 968
## Iteration: 969
## Iteration: 970
## Iteration: 971
## Iteration: 972
## Iteration: 973
## Iteration: 974
## Iteration: 975
## Iteration: 976
## Iteration: 977
## Iteration: 978
## Iteration: 979
## Iteration: 980
## Iteration: 981
## Iteration: 982
## Iteration: 983
## Iteration: 984
## Iteration: 985
## Iteration: 986
## Iteration: 987
## Iteration: 988
## Iteration: 989
## Iteration: 990
## Iteration: 991
## Iteration: 992
## Iteration: 993
## Iteration: 994
## Iteration: 995
## Iteration: 996
## Iteration: 997
## Iteration: 998
## Iteration: 999
## Iteration: 1000
## Iteration: 1
treat_valence.sess1.bayes <- bayes_factor(treat_valence.sess1.model, null_valence.sess1.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 892
## Iteration: 893
## Iteration: 894
## Iteration: 895
## Iteration: 896
## Iteration: 897
## Iteration: 898
## Iteration: 899
## Iteration: 900
## Iteration: 901
## Iteration: 902
## Iteration: 903
## Iteration: 904
## Iteration: 905
## Iteration: 906
## Iteration: 907
## Iteration: 908
## Iteration: 909
## Iteration: 910
## Iteration: 911
## Iteration: 912
## Iteration: 913
## Iteration: 914
## Iteration: 915
## Iteration: 916
## Iteration: 917
## Iteration: 918
## Iteration: 919
## Iteration: 920
## Iteration: 921
## Iteration: 922
## Iteration: 923
## Iteration: 924
## Iteration: 925
## Iteration: 926
## Iteration: 927
## Iteration: 928
## Iteration: 929
## Iteration: 930
## Iteration: 931
## Iteration: 932
## Iteration: 933
## Iteration: 934
## Iteration: 935
## Iteration: 936
## Iteration: 937
## Iteration: 938
## Iteration: 939
## Iteration: 940
## Iteration: 941
## Iteration: 942
## Iteration: 943
## Iteration: 944
## Iteration: 945
## Iteration: 946
## Iteration: 947
## Iteration: 948
## Iteration: 949
## Iteration: 950
## Iteration: 951
## Iteration: 952
## Iteration: 953
## Iteration: 954
## Iteration: 955
## Iteration: 956
## Iteration: 957
## Iteration: 958
## Iteration: 959
## Iteration: 960
## Iteration: 961
## Iteration: 962
## Iteration: 963
## Iteration: 964
## Iteration: 965
## Iteration: 966
## Iteration: 967
## Iteration: 968
## Iteration: 969
## Iteration: 970
## Iteration: 971
## Iteration: 972
## Iteration: 973
## Iteration: 974
## Iteration: 975
## Iteration: 976
## Iteration: 977
## Iteration: 978
## Iteration: 979
## Iteration: 980
## Iteration: 981
## Iteration: 982
## Iteration: 983
## Iteration: 984
## Iteration: 985
## Iteration: 986
## Iteration: 987
## Iteration: 988
## Iteration: 989
## Iteration: 990
## Iteration: 991
## Iteration: 992
## Iteration: 993
## Iteration: 994
## Iteration: 995
## Iteration: 996
## Iteration: 997
## Iteration: 998
## Iteration: 999
## Iteration: 1000
## Iteration: 1
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 892
## Iteration: 893
## Iteration: 894
## Iteration: 895
## Iteration: 896
## Iteration: 897
## Iteration: 898
## Iteration: 899
## Iteration: 900
## Iteration: 901
## Iteration: 902
## Iteration: 903
## Iteration: 904
## Iteration: 905
## Iteration: 906
## Iteration: 907
## Iteration: 908
## Iteration: 909
## Iteration: 910
## Iteration: 911
## Iteration: 912
## Iteration: 913
## Iteration: 914
## Iteration: 915
## Iteration: 916
## Iteration: 917
## Iteration: 918
## Iteration: 919
## Iteration: 920
## Iteration: 921
## Iteration: 922
## Iteration: 923
## Iteration: 924
## Iteration: 925
## Iteration: 926
## Iteration: 927
## Iteration: 928
## Iteration: 929
## Iteration: 930
## Iteration: 931
## Iteration: 932
## Iteration: 933
## Iteration: 934
## Iteration: 935
## Iteration: 936
## Iteration: 937
## Iteration: 938
## Iteration: 939
## Iteration: 940
## Iteration: 941
## Iteration: 942
## Iteration: 943
## Iteration: 944
## Iteration: 945
## Iteration: 946
## Iteration: 947
## Iteration: 948
## Iteration: 949
## Iteration: 950
## Iteration: 951
## Iteration: 952
## Iteration: 953
## Iteration: 954
## Iteration: 955
## Iteration: 956
## Iteration: 957
## Iteration: 958
## Iteration: 959
## Iteration: 960
## Iteration: 961
## Iteration: 962
## Iteration: 963
## Iteration: 964
## Iteration: 965
## Iteration: 966
## Iteration: 967
## Iteration: 968
## Iteration: 969
## Iteration: 970
## Iteration: 971
## Iteration: 972
## Iteration: 973
## Iteration: 974
## Iteration: 975
## Iteration: 976
## Iteration: 977
## Iteration: 978
## Iteration: 979
## Iteration: 980
## Iteration: 981
## Iteration: 982
## Iteration: 983
## Iteration: 984
## Iteration: 985
## Iteration: 986
## Iteration: 987
## Iteration: 988
## Iteration: 989
## Iteration: 990
## Iteration: 991
## Iteration: 992
## Iteration: 993
## Iteration: 994
## Iteration: 995
## Iteration: 996
## Iteration: 997
## Iteration: 998
## Iteration: 999
## Iteration: 1000
## Iteration: 1
emo_valence.sess1.bayes <- bayes_factor(emo_valence.sess1.model, null_valence.sess1.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 892
## Iteration: 893
## Iteration: 894
## Iteration: 895
## Iteration: 896
## Iteration: 897
## Iteration: 898
## Iteration: 899
## Iteration: 900
## Iteration: 901
## Iteration: 902
## Iteration: 903
## Iteration: 904
## Iteration: 905
## Iteration: 906
## Iteration: 907
## Iteration: 908
## Iteration: 909
## Iteration: 910
## Iteration: 911
## Iteration: 912
## Iteration: 913
## Iteration: 914
## Iteration: 915
## Iteration: 916
## Iteration: 917
## Iteration: 918
## Iteration: 919
## Iteration: 920
## Iteration: 921
## Iteration: 922
## Iteration: 923
## Iteration: 924
## Iteration: 925
## Iteration: 926
## Iteration: 927
## Iteration: 928
## Iteration: 929
## Iteration: 930
## Iteration: 931
## Iteration: 932
## Iteration: 933
## Iteration: 934
## Iteration: 935
## Iteration: 936
## Iteration: 937
## Iteration: 938
## Iteration: 939
## Iteration: 940
## Iteration: 941
## Iteration: 942
## Iteration: 943
## Iteration: 944
## Iteration: 945
## Iteration: 946
## Iteration: 947
## Iteration: 948
## Iteration: 949
## Iteration: 950
## Iteration: 951
## Iteration: 952
## Iteration: 953
## Iteration: 954
## Iteration: 955
## Iteration: 956
## Iteration: 957
## Iteration: 958
## Iteration: 959
## Iteration: 960
## Iteration: 961
## Iteration: 962
## Iteration: 963
## Iteration: 964
## Iteration: 965
## Iteration: 966
## Iteration: 967
## Iteration: 968
## Iteration: 969
## Iteration: 970
## Iteration: 971
## Iteration: 972
## Iteration: 973
## Iteration: 974
## Iteration: 975
## Iteration: 976
## Iteration: 977
## Iteration: 978
## Iteration: 979
## Iteration: 980
## Iteration: 981
## Iteration: 982
## Iteration: 983
## Iteration: 984
## Iteration: 985
## Iteration: 986
## Iteration: 987
## Iteration: 988
## Iteration: 989
## Iteration: 990
## Iteration: 991
## Iteration: 992
## Iteration: 993
## Iteration: 994
## Iteration: 995
## Iteration: 996
## Iteration: 997
## Iteration: 998
## Iteration: 999
## Iteration: 1000
## Iteration: 1
full_valence.sess1.bayes
## Estimated Bayes factor in favor of ratings_valence.sess1.model over null_valence.sess1.model: 5955984675155534663288468.00000
treat_valence.sess1.bayes
## Estimated Bayes factor in favor of treat_valence.sess1.model over null_valence.sess1.model: 0.00015
emo_valence.sess1.bayes
## Estimated Bayes factor in favor of emo_valence.sess1.model over null_valence.sess1.model: 8323827854170430.00000

compare with null

tibble(model = c("TreatxEmo", "Treat", "Emo"),
       Compared_To_Null = format(c(full_valence.sess1.bayes$bf, 
                                   treat_valence.sess1.bayes$bf, 
                                   emo_valence.sess1.bayes$bf), scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Null
TreatxEmo 5.955985e+24
Treat 1.492199e-04
Emo 8.323828e+15

compare with Emo

tibble(model = c("TreatxEmo", "Treat", "Emo"),
       Compared_To_Emo =
         format(c(full_valence.sess1.bayes$bf/emo_valence.sess1.bayes$bf, 
                  treat_valence.sess1.bayes$bf/emo_valence.sess1.bayes$bf,
                  emo_valence.sess1.bayes$bf/emo_valence.sess1.bayes$bf), 
                                scientific = TRUE),  
         BF01 = 
         format(c(emo_valence.sess1.bayes$bf/full_valence.sess1.bayes$bf, 
         emo_valence.sess1.bayes$bf/treat_valence.sess1.bayes$bf,
         emo_valence.sess1.bayes$bf/emo_valence.sess1.bayes$bf), 
                                scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Emo BF01
TreatxEmo 7.155343e+08 1.397557e-09
Treat 1.792684e-20 5.578228e+19
Emo 1.000000e+00 1.000000e+00

check assumptions

An ordinal regression has four assumptions:

  1. The dependent variables are ordered.
  2. One or more of the independent variables are either continuous, categorical, or ordinal.
  3. No multi-collinearity.
  4. Proportional odds.

Check vif and tolerance (multicollinearity)

check_collinearity(ratings_valence.sess1.model)

treatment comparison

  • session 1 and session 2 (session 1 as reference)
  • include only treatment groups
  • IVET = -.5, VRET = .5
  • use neutral pictures as reference emotion
model_name <- "only_treat_rating_valence"
model_formula <- formula("rating ~ 1 + treat*sess*Emo + (1 + sess*Emo | fp)")
data <- rate_only_treat_recode %>% 
  filter(rating_type == "Ple")
if (file.exists(sprintf("results/models/model_%s.RDS", model_name))) {
  assign(get("model_name"), readRDS(sprintf("results/models/model_%s.RDS", model_name)))
} else {
  assign(get("model_name"), lmerTest::lmer(model_formula,
                                           control = lmerControl(optimizer = "nloptwrap",
                                                                 optCtrl = list(maxfun = 1e7),
                                                                 calc.derivs = FALSE),
                                           data = data))
  saveRDS(eval(parse(text = model_name)), sprintf("results/models/model_%s.RDS", model_name))
}

plots

all categories

fits <- data %>%
  modelr::data_grid(treat, sess, Emo, fp) %>%
  mutate(predicted_re = predict(get(model_name), .),
         fp_treat = sprintf("%s_%s", fp, treat)) %>%
  filter(fp_treat %in% sprintf("%s_%s", data$fp, data$treat)) %>%
  mutate(sess = ifelse(sess == 0, 'pre', 'post'),
         sess = factor(sess, levels = c('pre', 'post')),
         treat = ifelse(treat == -.5, "IVET", "VRET"))
ggeffects::ggpredict(get(model_name), c("treat", "sess", "Emo")) %>%
  data.frame() %>%
  mutate(group = ifelse(group == 0, 'pre', 'post'),
         group = factor(group, levels = c('pre', 'post')),
         x = ifelse(x == -.5, "IVET", "VRET"),
         Emo = facet) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(data = fits, aes(x = sess, y = predicted_re, color = treat,
                             group = interaction(fp, treat, Emo)), alpha = .3, size = .2) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  facet_grid(~Emo) +
  scale_color_manual(values = palette[2:3], name = "treatment") +
  labs(y = "predicted valence\n", x = "\nsession") +
  plot_aes

spider and neutral ratings

fits <- data %>%
  modelr::data_grid(treat, sess, Emo, fp) %>%
  mutate(predicted_re = predict(get(model_name), .),
         fp_treat = sprintf("%s_%s", fp, treat)) %>%
  filter(fp_treat %in% sprintf("%s_%s", data$fp, data$treat)) %>%
  filter(Emo %in% c("neutral", "spider")) %>%
  mutate(sess = ifelse(sess == 0, 'pre', 'post'),
         sess = factor(sess, levels = c('pre', 'post')),
         treat = ifelse(treat == -.5, "IVET", "VRET"))
ggeffects::ggpredict(get(model_name), c("treat", "sess", "Emo")) %>%
  data.frame() %>%
  filter(facet %in% c("neutral", "spider")) %>%
  mutate(group = ifelse(group == 0, 'pre', 'post'),
         group = factor(group, levels = c('pre', 'post')),
         x = ifelse(x == -.5, "IVET", "VRET"),
         Emo = facet) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(data = fits, aes(x = sess, y = predicted_re, color = treat,
                             group = interaction(fp, treat, Emo)), alpha = .3, size = .2) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  facet_grid(~Emo) +
  scale_color_manual(values = palette[2:3], name = "treatment") +
  labs(y = "predicted valence\n", x = "\nsession") +
  plot_aes

ggsave('results/figures/fig_rating_valence_treat.png', plot = last_plot())

summarize model

summary(get(model_name))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: model_formula
##    Data: data
## Control: 
## lmerControl(optimizer = "nloptwrap", optCtrl = list(maxfun = 10000000),  
##     calc.derivs = FALSE)
## 
## REML criterion at convergence: 12672.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.9989 -0.4449 -0.0886  0.5322  6.1583 
## 
## Random effects:
##  Groups   Name             Variance Std.Dev. Corr                         
##  fp       (Intercept)      0.000000 0.00000                               
##           sess             0.007701 0.08776    NaN                        
##           Emospider        0.945369 0.97230    NaN -0.67                  
##           Emonegative      0.687228 0.82899    NaN -0.64  0.46            
##           Emopositive      0.648587 0.80535    NaN  0.70 -0.51 -0.49      
##           sess:Emospider   1.246364 1.11641    NaN  0.09 -0.35  0.09  0.33
##           sess:Emonegative 0.495650 0.70402    NaN -0.59  0.41 -0.21 -0.34
##           sess:Emopositive 0.110681 0.33269    NaN -0.19  0.12 -0.13 -0.49
##  Residual                  1.105887 1.05161                               
##             
##             
##             
##             
##             
##             
##             
##  -0.29      
##  -0.37  0.52
##             
## Number of obs: 4120, groups:  fp, 70
## 
## Fixed effects:
##                          Estimate Std. Error         df t value
## (Intercept)               5.25938    0.05518 3805.17270  95.319
## treat                     0.08125    0.11035 3805.17272   0.736
## sess                     -0.15341    0.06956  949.66103  -2.205
## Emospider                -3.12865    0.16124   49.89962 -19.404
## Emonegative              -1.96662    0.14225   54.31144 -13.825
## Emopositive               1.85772    0.13262   52.31807  14.008
## treat:sess               -0.09901    0.13913  949.66103  -0.712
## treat:Emospider          -0.34444    0.32248   49.89962  -1.068
## treat:Emonegative        -0.10529    0.28449   54.31144  -0.370
## treat:Emopositive        -0.33251    0.26524   52.31807  -1.254
## sess:Emospider            1.36332    0.18698   51.88640   7.291
## sess:Emonegative          0.26072    0.14625   52.22535   1.783
## sess:Emopositive         -0.27034    0.11662   79.82985  -2.318
## treat:sess:Emospider      0.59326    0.37397   51.88640   1.586
## treat:sess:Emonegative    0.60865    0.29250   52.22535   2.081
## treat:sess:Emopositive   -0.19312    0.23324   79.82985  -0.828
##                                    Pr(>|t|)    
## (Intercept)            < 0.0000000000000002 ***
## treat                                0.4616    
## sess                                 0.0277 *  
## Emospider              < 0.0000000000000002 ***
## Emonegative            < 0.0000000000000002 ***
## Emopositive            < 0.0000000000000002 ***
## treat:sess                           0.4769    
## treat:Emospider                      0.2906    
## treat:Emonegative                    0.7128    
## treat:Emopositive                    0.2156    
## sess:Emospider                0.00000000172 ***
## sess:Emonegative                     0.0804 .  
## sess:Emopositive                     0.0230 *  
## treat:sess:Emospider                 0.1187    
## treat:sess:Emonegative               0.0424 *  
## treat:sess:Emopositive               0.4101    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tidied_model <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

model table

table of labels

effectlbls <- data.frame(
  num = as.character(seq(1:16)), 
  original = tidied_model$term[1:16],
  standard = c("intercept (avr_treat, session (1), neutral)",
               "treatment (VRET vs IVET)",
               "session (2)",
               "emotion (spider)",
               "emotion (negative)",
               "emotion (positive)",
               "treatment (VRET vs IVET) x session",
               "treatment (VRET vs IVET) x emotion (spider)",
               "treatment (VRET vs IVET) x emotion (negative)",
               "treatment (VRET vs IVET) x emotion (positive)",
               "session x emotion (spider)",
               "session x emotion (negative)",
               "session x emotion (positive)",
               "treatment (VRET vs IVET) x session x emotion (spider)",
               "treatment (VRET vs IVET) x session x emotion (negative)",
               "treatment (VRET vs IVET) x session x emotion (positive)"),
  condition = c("treatment (avr_treat) / session (1) / emotion (neutral)",
                "treatment (VRET vs IVET) / sess (1) / emotion (neutral)",
                "treatment (avr_treat) / sess (2) / emotion (neutral)",
                "treatment (avr_treat) / sess (1) / emotion (spider)",
                "treatment (avr_treat) / sess (1) / emotion (negative)",
                "treatment (avr_treat) / sess (1) / emotion (positive)",
                "treatment (VRET vs IVET) / sess (2) / emotion (neutral)",
                "treatment (VRET vs IVET) / sess (1) / emotion (spider)",
                "treatment (VRET vs IVET) / sess (1) / emotion (negative)",
                "treatment (VRET vs IVET) / sess (1) / emotion (positive)",
                "treatment (avr_treat) / sess (2) / emotion (spider)",
                "treatment (avr_treat) / sess (2) / emotion (negative)",
                "treatment (avr_treat) / sess (2) / emotion (positive)",
                "treatment (VRET vs IVET) / sess (2) / emotion (spider)",
                "treatment (VRET vs IVET) / sess (2) / emotion (negative)",
                "treatment (VRET vs IVET) / sess (2) / emotion (positive)"),
  stringsAsFactors = F)
effectlbls %>%
  kable() %>%
  kable_styling()
num original standard condition
1 (Intercept) intercept (avr_treat, session (1), neutral) treatment (avr_treat) / session (1) / emotion (neutral)
2 treat treatment (VRET vs IVET) treatment (VRET vs IVET) / sess (1) / emotion (neutral)
3 sess session (2) treatment (avr_treat) / sess (2) / emotion (neutral)
4 Emospider emotion (spider) treatment (avr_treat) / sess (1) / emotion (spider)
5 Emonegative emotion (negative) treatment (avr_treat) / sess (1) / emotion (negative)
6 Emopositive emotion (positive) treatment (avr_treat) / sess (1) / emotion (positive)
7 treat:sess treatment (VRET vs IVET) x session treatment (VRET vs IVET) / sess (2) / emotion (neutral)
8 treat:Emospider treatment (VRET vs IVET) x emotion (spider) treatment (VRET vs IVET) / sess (1) / emotion (spider)
9 treat:Emonegative treatment (VRET vs IVET) x emotion (negative) treatment (VRET vs IVET) / sess (1) / emotion (negative)
10 treat:Emopositive treatment (VRET vs IVET) x emotion (positive) treatment (VRET vs IVET) / sess (1) / emotion (positive)
11 sess:Emospider session x emotion (spider) treatment (avr_treat) / sess (2) / emotion (spider)
12 sess:Emonegative session x emotion (negative) treatment (avr_treat) / sess (2) / emotion (negative)
13 sess:Emopositive session x emotion (positive) treatment (avr_treat) / sess (2) / emotion (positive)
14 treat:sess:Emospider treatment (VRET vs IVET) x session x emotion (spider) treatment (VRET vs IVET) / sess (2) / emotion (spider)
15 treat:sess:Emonegative treatment (VRET vs IVET) x session x emotion (negative) treatment (VRET vs IVET) / sess (2) / emotion (negative)
16 treat:sess:Emopositive treatment (VRET vs IVET) x session x emotion (positive) treatment (VRET vs IVET) / sess (2) / emotion (positive)

standard labels

table_model(get(model_name), 
            dv_labels = "only treat model",
            pred_labels = paste(effectlbls[,1], effectlbls[,3]))
  only treat model
Parameter B 95% CI SE t p
1 intercept (avr_treat, session (1), neutral) 5.26 5.15 – 5.37 0.06 95.32 <0.001
2 treatment (VRET vs IVET) 0.08 -0.14 – 0.30 0.11 0.74 0.462
3 session (2) -0.15 -0.29 – -0.02 0.07 -2.21 0.028
4 emotion (spider) -3.13 -3.45 – -2.80 0.16 -19.40 <0.001
5 emotion (negative) -1.97 -2.25 – -1.68 0.14 -13.83 <0.001
6 emotion (positive) 1.86 1.59 – 2.12 0.13 14.01 <0.001
7 treatment (VRET vs IVET) x session -0.10 -0.37 – 0.17 0.14 -0.71 0.477
8 treatment (VRET vs IVET) x emotion (spider) -0.34 -0.99 – 0.30 0.32 -1.07 0.291
9 treatment (VRET vs IVET) x emotion (negative) -0.11 -0.68 – 0.47 0.28 -0.37 0.713
10 treatment (VRET vs IVET) x emotion (positive) -0.33 -0.86 – 0.20 0.27 -1.25 0.216
11 session x emotion (spider) 1.36 0.99 – 1.74 0.19 7.29 <0.001
12 session x emotion (negative) 0.26 -0.03 – 0.55 0.15 1.78 0.080
13 session x emotion (positive) -0.27 -0.50 – -0.04 0.12 -2.32 0.023
14 treatment (VRET vs IVET) x session x emotion (spider) 0.59 -0.16 – 1.34 0.37 1.59 0.119
15 treatment (VRET vs IVET) x session x emotion (negative) 0.61 0.02 – 1.20 0.29 2.08 0.042
16 treatment (VRET vs IVET) x session x emotion (positive) -0.19 -0.66 – 0.27 0.23 -0.83 0.410
Random Effects
σ2 1.11
τ00 fp 0.00
τ11 fp.sess 0.01
τ11 fp.Emospider 0.95
τ11 fp.Emonegative 0.69
τ11 fp.Emopositive 0.65
τ11 fp.sess:Emospider 1.25
τ11 fp.sess:Emonegative 0.50
τ11 fp.sess:Emopositive 0.11
ρ01  
 
 
 
 
 
 
N fp 70
Observations 4120
Marginal R2 / Conditional R2 0.697 / NA

condition labels

table_model(get(model_name), 
            dv_labels = "only treat model",
            pred_labels = paste(effectlbls[,1], effectlbls[,4]))
  only treat model
Parameter B 95% CI SE t p
1 treatment (avr_treat) / session (1) / emotion (neutral) 5.26 5.15 – 5.37 0.06 95.32 <0.001
2 treatment (VRET vs IVET) / sess (1) / emotion (neutral) 0.08 -0.14 – 0.30 0.11 0.74 0.462
3 treatment (avr_treat) / sess (2) / emotion (neutral) -0.15 -0.29 – -0.02 0.07 -2.21 0.028
4 treatment (avr_treat) / sess (1) / emotion (spider) -3.13 -3.45 – -2.80 0.16 -19.40 <0.001
5 treatment (avr_treat) / sess (1) / emotion (negative) -1.97 -2.25 – -1.68 0.14 -13.83 <0.001
6 treatment (avr_treat) / sess (1) / emotion (positive) 1.86 1.59 – 2.12 0.13 14.01 <0.001
7 treatment (VRET vs IVET) / sess (2) / emotion (neutral) -0.10 -0.37 – 0.17 0.14 -0.71 0.477
8 treatment (VRET vs IVET) / sess (1) / emotion (spider) -0.34 -0.99 – 0.30 0.32 -1.07 0.291
9 treatment (VRET vs IVET) / sess (1) / emotion (negative) -0.11 -0.68 – 0.47 0.28 -0.37 0.713
10 treatment (VRET vs IVET) / sess (1) / emotion (positive) -0.33 -0.86 – 0.20 0.27 -1.25 0.216
11 treatment (avr_treat) / sess (2) / emotion (spider) 1.36 0.99 – 1.74 0.19 7.29 <0.001
12 treatment (avr_treat) / sess (2) / emotion (negative) 0.26 -0.03 – 0.55 0.15 1.78 0.080
13 treatment (avr_treat) / sess (2) / emotion (positive) -0.27 -0.50 – -0.04 0.12 -2.32 0.023
14 treatment (VRET vs IVET) / sess (2) / emotion (spider) 0.59 -0.16 – 1.34 0.37 1.59 0.119
15 treatment (VRET vs IVET) / sess (2) / emotion (negative) 0.61 0.02 – 1.20 0.29 2.08 0.042
16 treatment (VRET vs IVET) / sess (2) / emotion (positive) -0.19 -0.66 – 0.27 0.23 -0.83 0.410
Random Effects
σ2 1.11
τ00 fp 0.00
τ11 fp.sess 0.01
τ11 fp.Emospider 0.95
τ11 fp.Emonegative 0.69
τ11 fp.Emopositive 0.65
τ11 fp.sess:Emospider 1.25
τ11 fp.sess:Emonegative 0.50
τ11 fp.sess:Emopositive 0.11
ρ01  
 
 
 
 
 
 
N fp 70
Observations 4120
Marginal R2 / Conditional R2 0.697 / NA

interpretation

tm <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

The goal is to examine whether IVET and VRET differ from each other in spider (vs neutral) ratings in the first session and between the first and second session (but not in any other picture category).

The formula was rating ~ 1 + treat * sess * Emo + (1 + sess * Emo | fp).
Emo by sess as random effects: This means that emo, session, and the emo by session can differ between subjects.

Intercept = treatment(avr_treat) / session (1) / emotion (neutral).
avr_treat is the mean of IVET and VRET.

The effect for the intercept = 5.26. This is the mean rating for the intercept that contains the average across treatments in session 1 to neutral pictures.

The effect of the interaction is added to this together with lower-order terms to get the marginal mean. An interaction parameter is how much it differs from the lower order terms and the t-test is for the null hypothesis that the difference between these parameters is 0. When testing higher effects, the lower effects are removed. That is, the higher effects test for something over and above the lower effects. Accordingly, the estimated marginal means are the intercept + lower effects + estimate for higher effect.

We want to see whether the groups rated spiders differently from neutral pictures in session 1.

Emospider
In the model table with condition labels, this is number 4.

treatment (avr_treat) / sess (1) / emotion (spider).
- estimate: -3.13
- p value: 6.7617e-25
Indeed, spiders are rated more emotional.
(Note that the session 1 analysis with three groups tested each treatment compared to the control group.)

Did the groups differ in how they rated spiders from neutral pictures in session 1? The next analysis suggests: No. 

treat:Emospider
In the model table with condition labels, this is number 8.

treatment (VRET vs IVET) / sess (1) / emotion (spider).
- estimate: -0.34
- p value: 2.9061e-01
(Note that the session 1 analysis with three groups tested each treatment compared to the control group.)

Next, we examine whether the effect of spiders differed between sessions.

sess:Emospider
In the model table with condition labels, this is number 11.

treatment (avr_treat) / sess (2) / emotion (spider).
- estimate: 1.36
- p value: 1.7200e-09
Indeed, spiders (vs neutral) are rated less emotional in session 2 than session 1.

Critically, did this effect vary with treatment?

treat:sess:Emospider
In the model table with condition labels, this is number 14.

treatment (VRET vs IVET) / sess (2) / emotion (spider).
- estimate: 0.59
- p value: 1.1873e-01
No, it does not look like that the treatment groups differed.

All the other tests concern pictures other than spiders.

estimated means

data %>%
  modelr::data_grid(treat, Emo, sess) %>%
  mutate(marginal_mean = predict(get(model_name), ., re.form = NA),
         treat = ifelse(treat == -.5, "IVET", "VRET"),
         sess = ifelse(sess == 0, 'pre', 'post'),
         sess = factor(sess, levels = c('pre', 'post'))) %>%
  pivot_wider(names_from = Emo, values_from = marginal_mean) %>%
  kable(digits = 2) %>%
  kable_styling()
treat sess neutral spider negative positive
IVET pre 5.22 2.26 3.30 7.24
IVET post 5.11 3.23 3.16 6.97
VRET pre 5.30 2.00 3.28 6.99
VRET post 5.10 3.46 3.64 6.42

Bayes

ordinal model

ratings_valence_treat <- rate_only_treat_recode %>% 
  filter(rating_type == "Ple") %>% 
  filter(Emo %in% c('spider', 'neutral')) %>% 
  mutate(fp = as.factor(fp))
# Ordinal Regression Model.
ratings_valence.treat.model <- brm(rating ~ 1 + treat*sess*Emo + (1 + sess*Emo | fp), 
                             family = cumulative("probit"),
                             data = na.omit(ratings_valence_treat),
                             prior = c(prior(normal(0, 4), class = Intercept),
                                       prior(normal(0, 4), class = b)),
                             chains = 4,
                             file = "results/models/ratings_valence.treat.model", 
                             # file to save/reuse model
                             cores = 4, 
                             iter = 3000,
                             warmup = 1000,
                             init_r = 0.5,
                             save_pars = save_pars(all = TRUE))
# Model Summary.
summary(ratings_valence.treat.model)
##  Family: cumulative 
##   Links: mu = probit; disc = identity 
## Formula: rating ~ 1 + treat * sess * Emo + (1 + sess * Emo | fp) 
##    Data: na.omit(ratings_valence_treat) (Number of observations: 2060) 
##   Draws: 4 chains, each with iter = 3000; warmup = 1000; thin = 1;
##          total post-warmup draws = 8000
## 
## Group-Level Effects: 
## ~fp (Number of levels: 70) 
##                               Estimate Est.Error l-95% CI u-95% CI Rhat
## sd(Intercept)                     0.08      0.06     0.00     0.22 1.00
## sd(sess)                          0.08      0.06     0.00     0.23 1.00
## sd(Emospider)                     1.40      0.21     1.05     1.87 1.00
## sd(sess:Emospider)                1.59      0.23     1.18     2.10 1.00
## cor(Intercept,sess)              -0.14      0.45    -0.89     0.77 1.00
## cor(Intercept,Emospider)         -0.05      0.40    -0.78     0.76 1.01
## cor(sess,Emospider)              -0.02      0.43    -0.79     0.77 1.01
## cor(Intercept,sess:Emospider)     0.16      0.41    -0.70     0.84 1.01
## cor(sess,sess:Emospider)         -0.18      0.42    -0.87     0.69 1.01
## cor(Emospider,sess:Emospider)    -0.40      0.14    -0.66    -0.10 1.00
##                               Bulk_ESS Tail_ESS
## sd(Intercept)                     2019     3905
## sd(sess)                          2160     3296
## sd(Emospider)                     3548     5125
## sd(sess:Emospider)                2477     4752
## cor(Intercept,sess)               4845     5068
## cor(Intercept,Emospider)           393      999
## cor(sess,Emospider)                303      904
## cor(Intercept,sess:Emospider)      385      494
## cor(sess,sess:Emospider)           410     1394
## cor(Emospider,sess:Emospider)     3360     4605
## 
## Population-Level Effects: 
##                      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept[1]            -4.72      0.13    -4.97    -4.48 1.00     7904
## Intercept[2]            -3.82      0.11    -4.04    -3.60 1.00     9498
## Intercept[3]            -2.41      0.09    -2.59    -2.23 1.00    10258
## Intercept[4]            -1.66      0.08    -1.83    -1.50 1.00    10560
## Intercept[5]             0.97      0.07     0.83     1.11 1.00    10446
## Intercept[6]             1.27      0.08     1.12     1.43 1.00    11353
## Intercept[7]             1.80      0.10     1.62     2.00 1.00    12595
## Intercept[8]             2.13      0.12     1.91     2.37 1.00    13727
## treat                    0.04      0.13    -0.22     0.30 1.00     5931
## sess                    -0.23      0.08    -0.40    -0.07 1.00    12733
## Emospider               -4.25      0.25    -4.76    -3.76 1.00     4060
## treat:sess              -0.03      0.17    -0.36     0.29 1.00     6545
## treat:Emospider         -0.20      0.49    -1.17     0.76 1.00     3615
## sess:Emospider           1.73      0.27     1.21     2.27 1.00     4068
## treat:sess:Emospider     0.50      0.56    -0.60     1.58 1.00     3558
##                      Tail_ESS
## Intercept[1]             5756
## Intercept[2]             6184
## Intercept[3]             6712
## Intercept[4]             6575
## Intercept[5]             6584
## Intercept[6]             7093
## Intercept[7]             6035
## Intercept[8]             6122
## treat                    5880
## sess                     5972
## Emospider                5333
## treat:sess               6174
## treat:Emospider          4921
## sess:Emospider           5547
## treat:sess:Emospider     4295
## 
## Family Specific Parameters: 
##      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## disc     1.00      0.00     1.00     1.00   NA       NA       NA
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Bayes factor

only spider and neutral

computations

null_valence.treat.model <- brm(rating ~ 1 + (1 + sess*Emo | fp),
                          family = cumulative("probit"),
                          data = ratings_valence_treat,
                          prior = prior(normal(0, 4), class = Intercept),
                          chains = 4,
                          file = "results/models/rating_valence.treat.null", 
                          # Specify file to save/reuse model
                          cores = 4, 
                          iter = 3000,
                          warmup = 1000,
                          init_r = 0.5,
                          save_pars = save_pars(all = TRUE))
sess_emo.treat_valence.model <- brm(rating ~ 1 + sess*Emo + (1 + sess*Emo | fp),
                              family = cumulative("probit"),
                              data = ratings_valence_treat,
                              prior = c(prior(normal(0, 4), class = Intercept),
                                        prior(normal(0, 4), class = b)),
                              chains = 4,
                              file = "results/models/rating_valence.treat.sess_emo", 
                              cores = 4, 
                              iter = 3000,
                              warmup = 1000,
                              save_pars = save_pars(all = TRUE))
emo.treat_valence.model <- brm(rating ~ 1 + Emo + (1 + sess*Emo | fp),
                         family = cumulative("probit"),
                         data = ratings_valence_treat,
                         prior = c(prior(normal(0, 4), class = Intercept),
                                   prior(normal(0, 4), class = b)),
                         chains = 4,
                         file = "results/models/rating_valence.treat.emo", 
                         cores = 4, 
                         iter = 3000,
                         warmup = 1000,
                         save_pars = save_pars(all = TRUE))

Compute bayes factor approximations (via bridge sampling)

# Bayes factor comparisons are in favor of alternative hypothesis.
full.treat_valence.bayes <- bayes_factor(ratings_valence.treat.model, null_valence.treat.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 892
## Iteration: 893
## Iteration: 894
## Iteration: 895
## Iteration: 896
## Iteration: 897
## Iteration: 898
## Iteration: 899
## Iteration: 900
## Iteration: 901
## Iteration: 902
## Iteration: 903
## Iteration: 904
## Iteration: 905
## Iteration: 906
## Iteration: 907
## Iteration: 908
## Iteration: 909
## Iteration: 910
## Iteration: 911
## Iteration: 912
## Iteration: 913
## Iteration: 914
## Iteration: 915
## Iteration: 916
## Iteration: 917
## Iteration: 918
## Iteration: 919
## Iteration: 920
## Iteration: 921
## Iteration: 922
## Iteration: 923
## Iteration: 924
## Iteration: 925
## Iteration: 926
## Iteration: 927
## Iteration: 928
## Iteration: 929
## Iteration: 930
## Iteration: 931
## Iteration: 932
## Iteration: 933
## Iteration: 934
## Iteration: 935
## Iteration: 936
## Iteration: 937
## Iteration: 938
## Iteration: 939
## Iteration: 940
## Iteration: 941
## Iteration: 942
## Iteration: 943
## Iteration: 944
## Iteration: 945
## Iteration: 946
## Iteration: 947
## Iteration: 948
## Iteration: 949
## Iteration: 950
## Iteration: 951
## Iteration: 952
## Iteration: 953
## Iteration: 954
## Iteration: 955
## Iteration: 956
## Iteration: 957
## Iteration: 958
## Iteration: 959
## Iteration: 960
## Iteration: 961
## Iteration: 962
## Iteration: 963
## Iteration: 964
## Iteration: 965
## Iteration: 966
## Iteration: 967
## Iteration: 968
## Iteration: 969
## Iteration: 970
## Iteration: 971
## Iteration: 972
## Iteration: 973
## Iteration: 974
## Iteration: 975
## Iteration: 976
## Iteration: 977
## Iteration: 978
## Iteration: 979
## Iteration: 980
## Iteration: 981
## Iteration: 982
## Iteration: 983
## Iteration: 984
## Iteration: 985
## Iteration: 986
## Iteration: 987
## Iteration: 988
## Iteration: 989
## Iteration: 990
## Iteration: 991
## Iteration: 992
## Iteration: 993
## Iteration: 994
## Iteration: 995
## Iteration: 996
## Iteration: 997
## Iteration: 998
## Iteration: 999
## Iteration: 1000
## Iteration: 1
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 892
## Iteration: 893
## Iteration: 894
## Iteration: 895
## Iteration: 896
## Iteration: 897
## Iteration: 898
## Iteration: 899
## Iteration: 900
## Iteration: 901
## Iteration: 902
## Iteration: 903
## Iteration: 904
## Iteration: 905
## Iteration: 906
## Iteration: 907
## Iteration: 908
## Iteration: 909
## Iteration: 910
## Iteration: 911
## Iteration: 912
## Iteration: 913
## Iteration: 914
## Iteration: 915
## Iteration: 916
## Iteration: 917
## Iteration: 918
## Iteration: 919
## Iteration: 920
## Iteration: 921
## Iteration: 922
## Iteration: 923
## Iteration: 924
## Iteration: 925
## Iteration: 926
## Iteration: 927
## Iteration: 928
## Iteration: 929
## Iteration: 930
## Iteration: 931
## Iteration: 932
## Iteration: 933
## Iteration: 934
## Iteration: 935
## Iteration: 936
## Iteration: 937
## Iteration: 938
## Iteration: 939
## Iteration: 940
## Iteration: 941
## Iteration: 942
## Iteration: 943
## Iteration: 944
## Iteration: 945
## Iteration: 946
## Iteration: 947
## Iteration: 948
## Iteration: 949
## Iteration: 950
## Iteration: 951
## Iteration: 952
## Iteration: 953
## Iteration: 954
## Iteration: 955
## Iteration: 956
## Iteration: 957
## Iteration: 958
## Iteration: 959
## Iteration: 960
## Iteration: 961
## Iteration: 962
## Iteration: 963
## Iteration: 964
## Iteration: 965
## Iteration: 966
## Iteration: 967
## Iteration: 968
## Iteration: 969
## Iteration: 970
## Iteration: 971
## Iteration: 972
## Iteration: 973
## Iteration: 974
## Iteration: 975
## Iteration: 976
## Iteration: 977
## Iteration: 978
## Iteration: 979
## Iteration: 980
## Iteration: 981
## Iteration: 982
## Iteration: 983
## Iteration: 984
## Iteration: 985
## Iteration: 986
## Iteration: 987
## Iteration: 988
## Iteration: 989
## Iteration: 990
## Iteration: 991
## Iteration: 992
## Iteration: 993
## Iteration: 994
## Iteration: 995
## Iteration: 996
## Iteration: 997
## Iteration: 998
## Iteration: 999
## Iteration: 1000
## Iteration: 1
sess_emo.treat_valence.bayes <- bayes_factor(sess_emo.treat_valence.model, null_valence.treat.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 892
## Iteration: 893
## Iteration: 894
## Iteration: 895
## Iteration: 896
## Iteration: 897
## Iteration: 898
## Iteration: 899
## Iteration: 900
## Iteration: 901
## Iteration: 902
## Iteration: 903
## Iteration: 904
## Iteration: 905
## Iteration: 906
## Iteration: 907
## Iteration: 908
## Iteration: 909
## Iteration: 910
## Iteration: 911
## Iteration: 912
## Iteration: 913
## Iteration: 914
## Iteration: 915
## Iteration: 916
## Iteration: 917
## Iteration: 918
## Iteration: 919
## Iteration: 920
## Iteration: 921
## Iteration: 922
## Iteration: 923
## Iteration: 924
## Iteration: 925
## Iteration: 926
## Iteration: 927
## Iteration: 928
## Iteration: 929
## Iteration: 930
## Iteration: 931
## Iteration: 932
## Iteration: 933
## Iteration: 934
## Iteration: 935
## Iteration: 936
## Iteration: 937
## Iteration: 938
## Iteration: 939
## Iteration: 940
## Iteration: 941
## Iteration: 942
## Iteration: 943
## Iteration: 944
## Iteration: 945
## Iteration: 946
## Iteration: 947
## Iteration: 948
## Iteration: 949
## Iteration: 950
## Iteration: 951
## Iteration: 952
## Iteration: 953
## Iteration: 954
## Iteration: 955
## Iteration: 956
## Iteration: 957
## Iteration: 958
## Iteration: 959
## Iteration: 960
## Iteration: 961
## Iteration: 962
## Iteration: 963
## Iteration: 964
## Iteration: 965
## Iteration: 966
## Iteration: 967
## Iteration: 968
## Iteration: 969
## Iteration: 970
## Iteration: 971
## Iteration: 972
## Iteration: 973
## Iteration: 974
## Iteration: 975
## Iteration: 976
## Iteration: 977
## Iteration: 978
## Iteration: 979
## Iteration: 980
## Iteration: 981
## Iteration: 982
## Iteration: 983
## Iteration: 984
## Iteration: 985
## Iteration: 986
## Iteration: 987
## Iteration: 988
## Iteration: 989
## Iteration: 990
## Iteration: 991
## Iteration: 992
## Iteration: 993
## Iteration: 994
## Iteration: 995
## Iteration: 996
## Iteration: 997
## Iteration: 998
## Iteration: 999
## Iteration: 1000
## Iteration: 1
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 892
## Iteration: 893
## Iteration: 894
## Iteration: 895
## Iteration: 896
## Iteration: 897
## Iteration: 898
## Iteration: 899
## Iteration: 900
## Iteration: 901
## Iteration: 902
## Iteration: 903
## Iteration: 904
## Iteration: 905
## Iteration: 906
## Iteration: 907
## Iteration: 908
## Iteration: 909
## Iteration: 910
## Iteration: 911
## Iteration: 912
## Iteration: 913
## Iteration: 914
## Iteration: 915
## Iteration: 916
## Iteration: 917
## Iteration: 918
## Iteration: 919
## Iteration: 920
## Iteration: 921
## Iteration: 922
## Iteration: 923
## Iteration: 924
## Iteration: 925
## Iteration: 926
## Iteration: 927
## Iteration: 928
## Iteration: 929
## Iteration: 930
## Iteration: 931
## Iteration: 932
## Iteration: 933
## Iteration: 934
## Iteration: 935
## Iteration: 936
## Iteration: 937
## Iteration: 938
## Iteration: 939
## Iteration: 940
## Iteration: 941
## Iteration: 942
## Iteration: 943
## Iteration: 944
## Iteration: 945
## Iteration: 946
## Iteration: 947
## Iteration: 948
## Iteration: 949
## Iteration: 950
## Iteration: 951
## Iteration: 952
## Iteration: 953
## Iteration: 954
## Iteration: 955
## Iteration: 956
## Iteration: 957
## Iteration: 958
## Iteration: 959
## Iteration: 960
## Iteration: 961
## Iteration: 962
## Iteration: 963
## Iteration: 964
## Iteration: 965
## Iteration: 966
## Iteration: 967
## Iteration: 968
## Iteration: 969
## Iteration: 970
## Iteration: 971
## Iteration: 972
## Iteration: 973
## Iteration: 974
## Iteration: 975
## Iteration: 976
## Iteration: 977
## Iteration: 978
## Iteration: 979
## Iteration: 980
## Iteration: 981
## Iteration: 982
## Iteration: 983
## Iteration: 984
## Iteration: 985
## Iteration: 986
## Iteration: 987
## Iteration: 988
## Iteration: 989
## Iteration: 990
## Iteration: 991
## Iteration: 992
## Iteration: 993
## Iteration: 994
## Iteration: 995
## Iteration: 996
## Iteration: 997
## Iteration: 998
## Iteration: 999
## Iteration: 1000
## Iteration: 1
emo.treat_valence.bayes <- bayes_factor(emo.treat_valence.model, null_valence.treat.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 892
## Iteration: 893
## Iteration: 894
## Iteration: 895
## Iteration: 896
## Iteration: 897
## Iteration: 898
## Iteration: 899
## Iteration: 900
## Iteration: 901
## Iteration: 902
## Iteration: 903
## Iteration: 904
## Iteration: 905
## Iteration: 906
## Iteration: 907
## Iteration: 908
## Iteration: 909
## Iteration: 910
## Iteration: 911
## Iteration: 912
## Iteration: 913
## Iteration: 914
## Iteration: 915
## Iteration: 916
## Iteration: 917
## Iteration: 918
## Iteration: 919
## Iteration: 920
## Iteration: 921
## Iteration: 922
## Iteration: 923
## Iteration: 924
## Iteration: 925
## Iteration: 926
## Iteration: 927
## Iteration: 928
## Iteration: 929
## Iteration: 930
## Iteration: 931
## Iteration: 932
## Iteration: 933
## Iteration: 934
## Iteration: 935
## Iteration: 936
## Iteration: 937
## Iteration: 938
## Iteration: 939
## Iteration: 940
## Iteration: 941
## Iteration: 942
## Iteration: 943
## Iteration: 944
## Iteration: 945
## Iteration: 946
## Iteration: 947
## Iteration: 948
## Iteration: 949
## Iteration: 950
## Iteration: 951
## Iteration: 952
## Iteration: 953
## Iteration: 954
## Iteration: 955
## Iteration: 956
## Iteration: 957
## Iteration: 958
## Iteration: 959
## Iteration: 960
## Iteration: 961
## Iteration: 962
## Iteration: 963
## Iteration: 964
## Iteration: 965
## Iteration: 966
## Iteration: 967
## Iteration: 968
## Iteration: 969
## Iteration: 970
## Iteration: 971
## Iteration: 972
## Iteration: 973
## Iteration: 974
## Iteration: 975
## Iteration: 976
## Iteration: 977
## Iteration: 978
## Iteration: 979
## Iteration: 980
## Iteration: 981
## Iteration: 982
## Iteration: 983
## Iteration: 984
## Iteration: 985
## Iteration: 986
## Iteration: 987
## Iteration: 988
## Iteration: 989
## Iteration: 990
## Iteration: 991
## Iteration: 992
## Iteration: 993
## Iteration: 994
## Iteration: 995
## Iteration: 996
## Iteration: 997
## Iteration: 998
## Iteration: 999
## Iteration: 1000
## Iteration: 1
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 892
## Iteration: 893
## Iteration: 894
## Iteration: 895
## Iteration: 896
## Iteration: 897
## Iteration: 898
## Iteration: 899
## Iteration: 900
## Iteration: 901
## Iteration: 902
## Iteration: 903
## Iteration: 904
## Iteration: 905
## Iteration: 906
## Iteration: 907
## Iteration: 908
## Iteration: 909
## Iteration: 910
## Iteration: 911
## Iteration: 912
## Iteration: 913
## Iteration: 914
## Iteration: 915
## Iteration: 916
## Iteration: 917
## Iteration: 918
## Iteration: 919
## Iteration: 920
## Iteration: 921
## Iteration: 922
## Iteration: 923
## Iteration: 924
## Iteration: 925
## Iteration: 926
## Iteration: 927
## Iteration: 928
## Iteration: 929
## Iteration: 930
## Iteration: 931
## Iteration: 932
## Iteration: 933
## Iteration: 934
## Iteration: 935
## Iteration: 936
## Iteration: 937
## Iteration: 938
## Iteration: 939
## Iteration: 940
## Iteration: 941
## Iteration: 942
## Iteration: 943
## Iteration: 944
## Iteration: 945
## Iteration: 946
## Iteration: 947
## Iteration: 948
## Iteration: 949
## Iteration: 950
## Iteration: 951
## Iteration: 952
## Iteration: 953
## Iteration: 954
## Iteration: 955
## Iteration: 956
## Iteration: 957
## Iteration: 958
## Iteration: 959
## Iteration: 960
## Iteration: 961
## Iteration: 962
## Iteration: 963
## Iteration: 964
## Iteration: 965
## Iteration: 966
## Iteration: 967
## Iteration: 968
## Iteration: 969
## Iteration: 970
## Iteration: 971
## Iteration: 972
## Iteration: 973
## Iteration: 974
## Iteration: 975
## Iteration: 976
## Iteration: 977
## Iteration: 978
## Iteration: 979
## Iteration: 980
## Iteration: 981
## Iteration: 982
## Iteration: 983
## Iteration: 984
## Iteration: 985
## Iteration: 986
## Iteration: 987
## Iteration: 988
## Iteration: 989
## Iteration: 990
## Iteration: 991
## Iteration: 992
## Iteration: 993
## Iteration: 994
## Iteration: 995
## Iteration: 996
## Iteration: 997
## Iteration: 998
## Iteration: 999
## Iteration: 1000
## Iteration: 1
full.treat_valence.bayes
## Estimated Bayes factor in favor of ratings_valence.treat.model over null_valence.treat.model: 340797569866239771220824860464082048864200060242866422404684488666848846088060284620620808422822044466464062222.00000
sess_emo.treat_valence.bayes
## Estimated Bayes factor in favor of sess_emo.treat_valence.model over null_valence.treat.model: 1497734727796046631080424020620602666860080026282064042886664088886840660248264088262442600648008266040404842284262.00000
emo.treat_valence.bayes
## Estimated Bayes factor in favor of emo.treat_valence.model over null_valence.treat.model: 91035955249920028720224822202402626042802028880860646446626468828064808822442028408668646660.00000

compare with null

tibble(model = c("TreatxSessxEmo", "SessxEmo", "Emo"),
       Compared_To_Null = format(c(full.treat_valence.bayes$bf, 
                                   sess_emo.treat_valence.bayes$bf, 
                                   emo.treat_valence.bayes$bf), scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Null
TreatxSessxEmo 3.407976e+110
SessxEmo 1.497735e+114
Emo 9.103596e+91

compare with Sess x Emo

tibble(model = c("TreatxSessxEmo", "SessxEmo", "Emo"),
       Compared_To_SessxEmo =     
         format(c(full.treat_valence.bayes$bf/sess_emo.treat_valence.bayes$bf,
                  sess_emo.treat_valence.bayes$bf/sess_emo.treat_valence.bayes$bf,
                  emo.treat_valence.bayes$bf/sess_emo.treat_valence.bayes$bf),
                                               scientific = TRUE),
         BF01 =   format(c(sess_emo.treat_valence.bayes$bf/full.treat_valence.bayes$bf,
                  sess_emo.treat_valence.bayes$bf/sess_emo.treat_valence.bayes$bf,
                  sess_emo.treat_valence.bayes$bf/emo.treat_valence.bayes$bf),
                                              scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_SessxEmo BF01
TreatxSessxEmo 2.275420e-04 4.394793e+03
SessxEmo 1.000000e+00 1.000000e+00
Emo 6.078243e-23 1.645212e+22

compare with Treat x Sess x Emo

tibble(model = c("TreatxSessxEmo", "SessxEmo", "Emo"),
       Compared_To_TreatxSessxEmo =   
         format(c(full.treat_valence.bayes$bf/full.treat_valence.bayes$bf,
                  sess_emo.treat_valence.bayes$bf/full.treat_valence.bayes$bf, 
                  emo.treat_valence.bayes$bf/full.treat_valence.bayes$bf),
                                               scientific = TRUE),
       BF01 =   format(c(full.treat_valence.bayes$bf/full.treat_valence.bayes$bf,
                  full.treat_valence.bayes$bf/sess_emo.treat_valence.bayes$bf, 
                  full.treat_valence.bayes$bf/emo.treat_valence.bayes$bf),
                                               scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_TreatxSessxEmo BF01
TreatxSessxEmo 1.000000e+00 1.000000e+00
SessxEmo 4.394793e+03 2.275420e-04
Emo 2.671262e-19 3.743549e+18

check assumptions

An ordinal regression has four assumptions:

  1. The dependent variables are ordered.
  2. One or more of the independent variables are either continuous, categorical, or ordinal.
  3. No multi-collinearity.
  4. Proportional odds.

Check vif and tolerance (multicollinearity)

check_collinearity(ratings_valence.treat.model)

EEG: EPN-relevant amplitude

EEG data during the detection task

session 1 three groups

  • use session 1 from all three groups
  • examine whether IVET and VRET differ from controls to spiders (vs neutral) in session 1
  • compare IVET and VRET separately to the control group
  • do not test whether the treatments differ from each other
  • use neutral pictures as reference emotion
  • save the model to save time
model_name <- "session_pre_all_groups_EPN"
model_formula <- formula("EPN ~ 1 + treat*Emo + (1 + Emo | fp)")
data <- detect_baseline
if (file.exists(sprintf("results/models/model_%s.RDS", model_name))) {
  assign(get("model_name"), readRDS(sprintf("results/models/model_%s.RDS", model_name)))
} else {
  assign(get("model_name"), lmerTest::lmer(model_formula,
                                           control = lmerControl(optimizer = "nloptwrap",
                                                                 optCtrl = list(maxfun = 1e7),
                                                                 calc.derivs = FALSE), 
                                           data = data))
  saveRDS(eval(parse(text = model_name)), sprintf("results/models/model_%s.RDS", model_name))
}
# with nloptwrap: Model failed to converge with 1 negative eigenvalue: -1.5e+03
# Nelder_Mead: Model failed to converge with 1 negative eigenvalue: -2.3e+02
# results looked similar

plot

fits <- data %>%
  modelr::data_grid(treat, Emo, fp) %>%
  mutate(predicted_re = predict(get(model_name), .),
         fp_treat = sprintf("%s_%s", fp, treat)) %>%
  filter(fp_treat %in% sprintf("%s_%s", data$fp, data$treat))
ggeffects::ggpredict(get(model_name), c("treat", "Emo")) %>%
  data.frame() %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(data = fits, aes(x = Emo, y = predicted_re, color = treat,
                             group = interaction(fp, treat)), alpha = .3, size = .2) +
  geom_line(aes(group = x), position = position_dodge(width = .15), size = 1) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .15), size = .5) +
  scale_color_manual(values = palette, name = "treatment") +
  labs(y = "predicted mean amplitude (µV)\n", x = "\nemotion") +
  plot_aes

ggsave('results/figures/fig_meanamps_EPN_pre.png', plot = last_plot())

summarize model

summary(get(model_name))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: model_formula
##    Data: data
## Control: 
## lmerControl(optimizer = "nloptwrap", optCtrl = list(maxfun = 10000000),  
##     calc.derivs = FALSE)
## 
## REML criterion at convergence: 109165.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.5941 -0.5970  0.0034  0.6177  4.0229 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr             
##  fp       (Intercept)  9.0953  3.0158                    
##           Emospider    0.0255  0.1597   -1.00            
##           Emonegative  0.7771  0.8815   -0.10  0.10      
##           Emopositive  0.8176  0.9042   -0.05  0.05  0.64
##  Residual             30.7074  5.5414                    
## Number of obs: 17360, groups:  fp, 89
## 
## Fixed effects:
##                        Estimate Std. Error        df t value
## (Intercept)              4.8798     0.4325   86.1517  11.282
## treatIVET                0.4419     0.8917   86.1771   0.496
## treatVRET                0.3926     0.8062   86.0656   0.487
## Emospider               -0.5201     0.1573 1858.2153  -3.307
## Emonegative             -1.4642     0.1981  115.9796  -7.392
## Emopositive             -0.1879     0.2000  117.4984  -0.939
## treatIVET:Emospider     -2.5674     0.3251 1876.8873  -7.897
## treatVRET:Emospider     -2.1420     0.2924 1840.7098  -7.325
## treatIVET:Emonegative   -0.2335     0.4082  115.7678  -0.572
## treatVRET:Emonegative   -0.2796     0.3685  115.1414  -0.759
## treatIVET:Emopositive   -0.4361     0.4129  117.9486  -1.056
## treatVRET:Emopositive   -0.3384     0.3724  116.8471  -0.909
##                                   Pr(>|t|)    
## (Intercept)           < 0.0000000000000002 ***
## treatIVET                         0.621482    
## treatVRET                         0.627536    
## Emospider                         0.000962 ***
## Emonegative            0.00000000002441116 ***
## Emopositive                       0.349437    
## treatIVET:Emospider    0.00000000000000481 ***
## treatVRET:Emospider    0.00000000000035467 ***
## treatIVET:Emonegative             0.568438    
## treatVRET:Emonegative             0.449606    
## treatIVET:Emopositive             0.293050    
## treatVRET:Emopositive             0.365349    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trIVET trVRET Emspdr Emngtv Empstv trtIVET:Ems trtVRET:Ems
## treatIVET   -0.485                                                           
## treatVRET   -0.536  0.260                                                    
## Emospider   -0.315  0.153  0.169                                             
## Emonegative -0.199  0.097  0.107  0.398                                      
## Emopositive -0.169  0.082  0.090  0.390  0.554                               
## trtIVET:Ems  0.152 -0.314 -0.082 -0.484 -0.193 -0.189                        
## trtVRET:Ems  0.169 -0.082 -0.314 -0.538 -0.214 -0.210  0.260                 
## trtIVET:Emn  0.097 -0.200 -0.052 -0.193 -0.485 -0.269  0.398       0.104     
## trtVRET:Emn  0.107 -0.052 -0.199 -0.214 -0.537 -0.298  0.104       0.398     
## trtIVET:Emp  0.082 -0.169 -0.044 -0.189 -0.268 -0.484  0.389       0.102     
## trtVRET:Emp  0.091 -0.044 -0.168 -0.210 -0.298 -0.537  0.101       0.389     
##             trtIVET:Emn trtVRET:Emn trtIVET:Emp
## treatIVET                                      
## treatVRET                                      
## Emospider                                      
## Emonegative                                    
## Emopositive                                    
## trtIVET:Ems                                    
## trtVRET:Ems                                    
## trtIVET:Emn                                    
## trtVRET:Emn  0.261                             
## trtIVET:Emp  0.554       0.144                 
## trtVRET:Emp  0.144       0.554       0.260
tidied_model <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

model table

table of labels

effectlbls <- data.frame(
  num = as.character(seq(1:12)), 
  original = tidied_model$term[1:12],
  standard = c("intercept (control, neutral)", 
               "treatment (IVET)", 
               "treatment (VRET)", 
               "emotion (spider)", 
               "emotion (negative)", 
               "emotion (positive)",
               "treatment (IVET) x emotion (spider)",
               "treatment (VRET) x emotion (spider)",
               "treatment (IVET) x emotion (negative)", 
               "treatment (VRET) x emotion (negative)",
               "treatment (IVET) x emotion (positive)", 
               "treatment (VRET) x emotion (positive)"),
  condition = c("treatment (control) / emotion (neutral)", 
                "treatment (IVET) / emotion (neutral)", 
                "treatment (VRET) / emotion (neutral)", 
                "treatment (control) / emotion (spider)", 
                "treatment (control) / emotion (negative)", 
                "treatment (control) / emotion (positive)",
                "treatment (IVET) / emotion (spider)", 
                "treatment (VRET) / emotion (spider)",
                "treatment (IVET) / emotion (negative)", 
                "treatment (VRET) / emotion (negative)",
                "treatment (IVET) / emotion (positive)", 
                "treatment (VRET) / emotion (positive)"),
  stringsAsFactors = F)
effectlbls %>%
  kable() %>%
  kable_styling()
num original standard condition
1 (Intercept) intercept (control, neutral) treatment (control) / emotion (neutral)
2 treatIVET treatment (IVET) treatment (IVET) / emotion (neutral)
3 treatVRET treatment (VRET) treatment (VRET) / emotion (neutral)
4 Emospider emotion (spider) treatment (control) / emotion (spider)
5 Emonegative emotion (negative) treatment (control) / emotion (negative)
6 Emopositive emotion (positive) treatment (control) / emotion (positive)
7 treatIVET:Emospider treatment (IVET) x emotion (spider) treatment (IVET) / emotion (spider)
8 treatVRET:Emospider treatment (VRET) x emotion (spider) treatment (VRET) / emotion (spider)
9 treatIVET:Emonegative treatment (IVET) x emotion (negative) treatment (IVET) / emotion (negative)
10 treatVRET:Emonegative treatment (VRET) x emotion (negative) treatment (VRET) / emotion (negative)
11 treatIVET:Emopositive treatment (IVET) x emotion (positive) treatment (IVET) / emotion (positive)
12 treatVRET:Emopositive treatment (VRET) x emotion (positive) treatment (VRET) / emotion (positive)

standard labels

table_model(get(model_name), 
            dv_labels = "session 1",
            pred_labels = paste(effectlbls[,1], effectlbls[,3]))
  session 1
Parameter B 95% CI SE t p
1 intercept (control, neutral) 4.88 4.02 – 5.74 0.43 11.28 <0.001
2 treatment (IVET) 0.44 -1.33 – 2.21 0.89 0.50 0.621
3 treatment (VRET) 0.39 -1.21 – 2.00 0.81 0.49 0.628
4 emotion (spider) -0.52 -0.83 – -0.21 0.16 -3.31 0.001
5 emotion (negative) -1.46 -1.86 – -1.07 0.20 -7.39 <0.001
6 emotion (positive) -0.19 -0.58 – 0.21 0.20 -0.94 0.349
7 treatment (IVET) x emotion (spider) -2.57 -3.21 – -1.93 0.33 -7.90 <0.001
8 treatment (VRET) x emotion (spider) -2.14 -2.72 – -1.57 0.29 -7.33 <0.001
9 treatment (IVET) x emotion (negative) -0.23 -1.04 – 0.58 0.41 -0.57 0.568
10 treatment (VRET) x emotion (negative) -0.28 -1.01 – 0.45 0.37 -0.76 0.450
11 treatment (IVET) x emotion (positive) -0.44 -1.25 – 0.38 0.41 -1.06 0.293
12 treatment (VRET) x emotion (positive) -0.34 -1.08 – 0.40 0.37 -0.91 0.365
Random Effects
σ2 30.71
τ00 fp 9.10
τ11 fp.Emospider 0.03
τ11 fp.Emonegative 0.78
τ11 fp.Emopositive 0.82
ρ01 -1.00
-0.10
-0.05
N fp 89
Observations 17360
Marginal R2 / Conditional R2 0.023 / NA

condition labels

table_model(get(model_name), 
            dv_labels = "session 1",
            pred_labels = paste(effectlbls[,1], effectlbls[,4]))
  session 1
Parameter B 95% CI SE t p
1 treatment (control) / emotion (neutral) 4.88 4.02 – 5.74 0.43 11.28 <0.001
2 treatment (IVET) / emotion (neutral) 0.44 -1.33 – 2.21 0.89 0.50 0.621
3 treatment (VRET) / emotion (neutral) 0.39 -1.21 – 2.00 0.81 0.49 0.628
4 treatment (control) / emotion (spider) -0.52 -0.83 – -0.21 0.16 -3.31 0.001
5 treatment (control) / emotion (negative) -1.46 -1.86 – -1.07 0.20 -7.39 <0.001
6 treatment (control) / emotion (positive) -0.19 -0.58 – 0.21 0.20 -0.94 0.349
7 treatment (IVET) / emotion (spider) -2.57 -3.21 – -1.93 0.33 -7.90 <0.001
8 treatment (VRET) / emotion (spider) -2.14 -2.72 – -1.57 0.29 -7.33 <0.001
9 treatment (IVET) / emotion (negative) -0.23 -1.04 – 0.58 0.41 -0.57 0.568
10 treatment (VRET) / emotion (negative) -0.28 -1.01 – 0.45 0.37 -0.76 0.450
11 treatment (IVET) / emotion (positive) -0.44 -1.25 – 0.38 0.41 -1.06 0.293
12 treatment (VRET) / emotion (positive) -0.34 -1.08 – 0.40 0.37 -0.91 0.365
Random Effects
σ2 30.71
τ00 fp 9.10
τ11 fp.Emospider 0.03
τ11 fp.Emonegative 0.78
τ11 fp.Emopositive 0.82
ρ01 -1.00
-0.10
-0.05
N fp 89
Observations 17360
Marginal R2 / Conditional R2 0.023 / NA

interpretation

tm <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

The goal is to examine whether IVET and VRET differ from controls in spider (vs neutral) mean amplitude in the first session (but not in any other picture category). The analysis compares IVET and VRET separately to the control group and does not test whether the treatments differ from each other.

The formula was EPN ~ 1 + treat * Emo + (1 + Emo | fp).
Emo as random effect.

Intercept = treatment(control) / emotion(neutral).

The effect for the intercept = 4.88. This is the mean amplitude for the intercept that contains treatment(control) and emotion(neutral) and is thus the marginal mean for the control group for neutral pictures.

The first effect shows that there is an effect of spider (vs neutral). It shows that for the control group, spiders have lower amps than neutral pictures. This relative negativity supports an EPN. But, this effect is not of particular interest because it is only for the control group.

Emospider
In the model table with condition labels, this is number 4.

treatment (control) / emotion (spider).
- estimate: -0.52
- p value: 9.6189e-04

The main interest is to see whether IVET and VRET differ from controls in their amps to spiders. Particularly, the difference between spiders and neutral pictures should be more negative for each treatment group compared to controls. Because the intercept contains treatment(control) and emotion(neutral), we are interested in these tests:

For IVET:

treatIVET:Emospider
In the model table with condition labels, this is number 7.

treatment (IVET) / emotion (spider).
- estimate: -2.57
- p value: 4.8116e-15
This is the interaction of treatment(IVET vs control) x emotion (spider vs neutral).

For VRET (same test as for IVET):

treatVRET:Emospider
In the model table with condition labels, this is number 8.

treatment (VRET) / emotion (spider).
- estimate: -2.14
- p value: 3.5467e-13
This is the interaction of treatment(VRET vs control) x emotion (spider vs neutral).

estimated means

data %>%
  modelr::data_grid(treat, Emo) %>%
  mutate(marginal_mean = predict(get(model_name), ., re.form = NA),) %>%
  pivot_wider(names_from = Emo, values_from = marginal_mean) %>%
  kable(digits = 2) %>%
  kable_styling()
treat neutral spider negative positive
Control 4.88 4.36 3.42 4.69
IVET 5.32 2.23 3.62 4.70
VRET 5.27 2.61 3.53 4.75

session 1 across treatments

  • use session 1 from all three groups
  • combine treatment groups
  • use neutral pictures as reference emotion
  • save the model to save time
model_name <- "session_pre_across_treat_EPN"
model_formula <- formula("EPN ~ 1 + treat*Emo + (1 + Emo | fp)")
data <- detect_baseline_acrosstreatment
if (file.exists(sprintf("results/models/model_%s.RDS", model_name))) {
  assign(get("model_name"), readRDS(sprintf("results/models/model_%s.RDS", model_name)))
} else {
  assign(get("model_name"), lmerTest::lmer(model_formula,
                                           control = lmerControl(optimizer = "nloptwrap",
                                                                 optCtrl = list(maxfun = 1e7),
                                                                 calc.derivs = FALSE), 
                                           data = data))
  saveRDS(eval(parse(text = model_name)), sprintf("results/models/model_%s.RDS", model_name))
}

plot

fits <- data %>%
  modelr::data_grid(treat, Emo, fp) %>%
  mutate(predicted_re = predict(get(model_name), .),
         fp_treat = sprintf("%s_%s", fp, treat)) %>%
  filter(fp_treat %in% sprintf("%s_%s", data$fp, data$treat))
ggeffects::ggpredict(get(model_name), c("treat", "Emo")) %>%
  data.frame() %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(data = fits, aes(x = Emo, y = predicted_re, color = treat,
                             group = interaction(fp, treat)), alpha = .3, size = .2) +
  geom_line(aes(group = x), position = position_dodge(width = .1), size = 1) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1), size = .5) +
  scale_color_manual(values = palette2, name = "treatment") +
  labs(y = "predicted mean amplitude (µV)\n", x = "\nemotion") +
  plot_aes

summarize model

summary(get(model_name))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: model_formula
##    Data: data
## Control: 
## lmerControl(optimizer = "nloptwrap", optCtrl = list(maxfun = 10000000),  
##     calc.derivs = FALSE)
## 
## REML criterion at convergence: 109131
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.6152 -0.5945  0.0013  0.6173  4.0387 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr             
##  fp       (Intercept)  9.1029  3.0171                    
##           Emospider    1.1830  1.0876   -0.26            
##           Emonegative  0.5147  0.7174   -0.08  0.04      
##           Emopositive  0.3305  0.5749    0.03 -0.32  0.34
##  Residual             30.5617  5.5283                    
## Number of obs: 17360, groups:  fp, 89
## 
## Fixed effects:
##                            Estimate Std. Error      df t value
## (Intercept)                  4.8784     0.4326 87.0637  11.276
## treatIVET/VRET               0.4162     0.6709 87.0317   0.620
## Emospider                   -0.5154     0.2166 86.5825  -2.380
## Emonegative                 -1.4629     0.1846 88.4801  -7.925
## Emopositive                 -0.1861     0.1747 86.8951  -1.065
## treatIVET/VRET:Emospider    -2.3363     0.3358 86.4976  -6.957
## treatIVET/VRET:Emonegative  -0.2619     0.2859 88.0938  -0.916
## treatIVET/VRET:Emopositive  -0.3826     0.2708 86.7534  -1.413
##                                        Pr(>|t|)    
## (Intercept)                < 0.0000000000000002 ***
## treatIVET/VRET                           0.5366    
## Emospider                                0.0195 *  
## Emonegative                     0.0000000000064 ***
## Emopositive                              0.2897    
## treatIVET/VRET:Emospider        0.0000000006301 ***
## treatIVET/VRET:Emonegative               0.3621    
## treatIVET/VRET:Emopositive               0.1613    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                  (Intr) trIVET/VRET Emspdr Emngtv Empstv trtIVET/VRET:Ems
## trIVET/VRET      -0.645                                                  
## Emospider        -0.306  0.198                                           
## Emonegative      -0.195  0.126       0.316                               
## Emopositive      -0.146  0.094       0.218  0.460                        
## trtIVET/VRET:Ems  0.198 -0.306      -0.645 -0.204 -0.141                 
## trtIVET/VRET:Emn  0.126 -0.195      -0.204 -0.646 -0.297  0.315          
## trtIVET/VRET:Emp  0.094 -0.146      -0.141 -0.296 -0.645  0.218          
##                  trtIVET/VRET:Emn
## trIVET/VRET                      
## Emospider                        
## Emonegative                      
## Emopositive                      
## trtIVET/VRET:Ems                 
## trtIVET/VRET:Emn                 
## trtIVET/VRET:Emp  0.459
tidied_model <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

model table

table of labels

effectlbls <- data.frame(
  num = as.character(seq(1:8)), 
  original = tidied_model$term[1:8],
  standard = c("intercept (control, neutral)", 
               "treatment (IVET/VRET)", 
               "emotion (spider)", 
               "emotion (negative)", 
               "emotion (positive)",
               "treatment (IVET/VRET) x emotion (spider)",
               "treatment (IVET/VRET) x emotion (negative)", 
               "treatment (IVET/VRET) x emotion (positive)"), 
  condition = c("treatment (control) / emotion (neutral)", 
                "treatment (IVET/VRET) / emotion (neutral)", 
                "treatment (control) / emotion (spider)", 
                "treatment (control) / emotion (negative)", 
                "treatment (control) / emotion (positive)",
                "treatment (IVET/VRET) / emotion (spider)", 
                "treatment (IVET/VRET) / emotion (negative)", 
                "treatment (IVET/VRET) / emotion (positive)"), 
  stringsAsFactors = F)
effectlbls %>%
  kable() %>%
  kable_styling()
num original standard condition
1 (Intercept) intercept (control, neutral) treatment (control) / emotion (neutral)
2 treatIVET/VRET treatment (IVET/VRET) treatment (IVET/VRET) / emotion (neutral)
3 Emospider emotion (spider) treatment (control) / emotion (spider)
4 Emonegative emotion (negative) treatment (control) / emotion (negative)
5 Emopositive emotion (positive) treatment (control) / emotion (positive)
6 treatIVET/VRET:Emospider treatment (IVET/VRET) x emotion (spider) treatment (IVET/VRET) / emotion (spider)
7 treatIVET/VRET:Emonegative treatment (IVET/VRET) x emotion (negative) treatment (IVET/VRET) / emotion (negative)
8 treatIVET/VRET:Emopositive treatment (IVET/VRET) x emotion (positive) treatment (IVET/VRET) / emotion (positive)

standard labels

table_model(get(model_name), 
            dv_labels = "session 1",
            pred_labels = paste(effectlbls[,1], effectlbls[,3]))
  session 1
Parameter B 95% CI SE t p
1 intercept (control, neutral) 4.88 4.02 – 5.74 0.43 11.28 <0.001
2 treatment (IVET/VRET) 0.42 -0.92 – 1.75 0.67 0.62 0.537
3 emotion (spider) -0.52 -0.95 – -0.08 0.22 -2.38 0.020
4 emotion (negative) -1.46 -1.83 – -1.10 0.18 -7.92 <0.001
5 emotion (positive) -0.19 -0.53 – 0.16 0.17 -1.07 0.290
6 treatment (IVET/VRET) x emotion (spider) -2.34 -3.00 – -1.67 0.34 -6.96 <0.001
7 treatment (IVET/VRET) x emotion (negative) -0.26 -0.83 – 0.31 0.29 -0.92 0.362
8 treatment (IVET/VRET) x emotion (positive) -0.38 -0.92 – 0.16 0.27 -1.41 0.161
Random Effects
σ2 30.56
τ00 fp 9.10
τ11 fp.Emospider 1.18
τ11 fp.Emonegative 0.51
τ11 fp.Emopositive 0.33
ρ01 -0.26
-0.08
0.03
ICC 0.23
N fp 89
Observations 17360
Marginal R2 / Conditional R2 0.018 / 0.243

condition labels

table_model(get(model_name), 
            dv_labels = "session 1",
            pred_labels = paste(effectlbls[,1], effectlbls[,4]))
  session 1
Parameter B 95% CI SE t p
1 treatment (control) / emotion (neutral) 4.88 4.02 – 5.74 0.43 11.28 <0.001
2 treatment (IVET/VRET) / emotion (neutral) 0.42 -0.92 – 1.75 0.67 0.62 0.537
3 treatment (control) / emotion (spider) -0.52 -0.95 – -0.08 0.22 -2.38 0.020
4 treatment (control) / emotion (negative) -1.46 -1.83 – -1.10 0.18 -7.92 <0.001
5 treatment (control) / emotion (positive) -0.19 -0.53 – 0.16 0.17 -1.07 0.290
6 treatment (IVET/VRET) / emotion (spider) -2.34 -3.00 – -1.67 0.34 -6.96 <0.001
7 treatment (IVET/VRET) / emotion (negative) -0.26 -0.83 – 0.31 0.29 -0.92 0.362
8 treatment (IVET/VRET) / emotion (positive) -0.38 -0.92 – 0.16 0.27 -1.41 0.161
Random Effects
σ2 30.56
τ00 fp 9.10
τ11 fp.Emospider 1.18
τ11 fp.Emonegative 0.51
τ11 fp.Emopositive 0.33
ρ01 -0.26
-0.08
0.03
ICC 0.23
N fp 89
Observations 17360
Marginal R2 / Conditional R2 0.018 / 0.243

interpretation

tm <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

The goal is to examine whether the combined treatment groups (IVET and VRET) differ from controls in spider (vs neutral) mean amplitude in the first session (but not in any other picture category). The analysis compares the combined IVET and VRET to the control group and does not test whether the treatments differ from each other.

The formula was EPN ~ 1 + treat * Emo + (1 + Emo | fp).
Emo as random effect.

Intercept = treatment(control) / emotion(neutral).

The effect for the intercept = 4.88. This is the mean amplitude for the intercept that contains treatment(control) and emotion(neutral) and is thus the marginal mean for the control group for neutral pictures.

The first effect shows that there is an effect of spider (vs neutral). It shows that for the control group, spiders have lower amps than neutral pictures. This relative negativity supports an EPN. But, this effect is not of particular interest because it is only for the control group.

Emospider
In the model table with condition labels, this is number 3.

treatment (control) / emotion (spider).
- estimate: -0.52
- p value: 1.9525e-02

The main interest is to see whether the combined treatment groups (IVET and VRET) differ from controls in their amps to spiders. Particularly, the difference between spiders and neutral pictures should be more negative across treatment groups compared to controls. Because the intercept contains treatment(control) and emotion(neutral), we are interested in this test:

treatIVET/VRET:Emospider
In the model table with condition labels, this is number 6.

treatment (IVET/VRET) / emotion (spider).
- estimate: -2.34
- p value: 6.3010e-10
This is the interaction of treatment(IVET/VRET vs control) x emotion (spider vs neutral).

estimated means

data %>%
  modelr::data_grid(treat, Emo) %>%
  mutate(marginal_mean = predict(get(model_name), ., re.form = NA),) %>%
  pivot_wider(names_from = Emo, values_from = marginal_mean) %>%
  kable(digits = 2) %>%
  kable_styling()
treat neutral spider negative positive
Control 4.88 4.36 3.42 4.69
IVET/VRET 5.29 2.44 3.57 4.73

Bayes

only spider and neutral

gaussian model

# Prepare dataframe.
detect_sess1 <- detect_baseline_acrosstreatment %>% 
  select(Emo, EPN, LPP, fp, sess, treat) %>% 
  filter(Emo %in% c('spider', 'neutral')) %>% 
  mutate(fp = as.factor(fp),
         Emo = factor(Emo, levels = c('neutral','spider'))) %>% 
  na.omit()
# Regression Model.
EPN.sess1.model <- brm(EPN ~ 1 + treat*Emo + (1 + Emo | fp), 
                       family = gaussian(),
                       data = detect_sess1,
                       prior = c(prior(normal(0, 4), class = Intercept),
                                 prior(normal(0, 4), class = b)),
                       chains = 4,
                       file = "results/models/EPN.sess1.model", # file to save/reuse model
                       cores = 4, 
                       iter = 3000,
                       warmup = 1000,
                       init_r = 0.5,
                       save_pars = save_pars(all = TRUE))
# Model Summary.
summary(EPN.sess1.model)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: EPN ~ 1 + treat * Emo + (1 + Emo | fp) 
##    Data: detect_sess1 (Number of observations: 8677) 
##   Draws: 4 chains, each with iter = 3000; warmup = 1000; thin = 1;
##          total post-warmup draws = 8000
## 
## Group-Level Effects: 
## ~fp (Number of levels: 89) 
##                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)                3.06      0.25     2.62     3.60 1.00     1918
## sd(Emospider)                1.12      0.18     0.78     1.47 1.00     3472
## cor(Intercept,Emospider)    -0.25      0.14    -0.51     0.05 1.00     6980
##                          Tail_ESS
## sd(Intercept)                3637
## sd(Emospider)                4526
## cor(Intercept,Emospider)     6513
## 
## Population-Level Effects: 
##                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                    4.85      0.43     4.02     5.71 1.00     1124
## treatIVETDVRET               0.41      0.67    -0.86     1.73 1.00     1092
## Emospider                   -0.52      0.22    -0.96    -0.09 1.00     5798
## treatIVETDVRET:Emospider    -2.32      0.34    -2.99    -1.65 1.00     5267
##                          Tail_ESS
## Intercept                    1980
## treatIVETDVRET               2026
## Emospider                    5791
## treatIVETDVRET:Emospider     5899
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     5.41      0.04     5.33     5.50 1.00    18330     5344
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Bayes factor

only spider and neutral

computations

null.sess1.model <- brm(EPN ~ 1 + (1 + Emo | fp),
                        family = gaussian(),
                        data = detect_sess1,
                        prior = prior(normal(0, 4), class = Intercept),
                        chains = 4,
                        file = "results/models/EPN.sess1.null", 
                        # Specify file to save/reuse model
                        cores = 4, 
                        iter = 3000,
                        warmup = 1000,
                        init_r = 0.5,
                        save_pars = save_pars(all = TRUE))
emo.sess1.model <- brm(EPN ~ 1 + Emo + (1 + Emo | fp),
                       family =  gaussian(),
                       data = detect_sess1,
                       prior = c(prior(normal(0, 4), class = Intercept),
                                 prior(normal(0, 4), class = b)),
                       chains = 4,
                       file = "results/models/EPN.sess1.emo", 
                       # Specify file to save/reuse model
                       cores = 4, 
                       iter = 3000,
                       warmup = 1000,
                       init_r = 0.5,
                       save_pars = save_pars(all = TRUE))
treat.sess1.model <- brm(EPN ~ 1 + treat + (1 + Emo | fp),
                         family =  gaussian(),
                         data = detect_sess1,
                         prior = c(prior(normal(0, 4), class = Intercept),
                                   prior(normal(0, 4), class = b)),
                         chains = 4,
                         file = "results/models/EPN.sess1.treat", 
                         # Specify file to save/reuse model
                         cores = 4, 
                         iter = 3000,
                         warmup = 1000,
                         init_r = 0.5,
                         save_pars = save_pars(all = TRUE))

Compute bayes factor approximations (via bridge sampling)

# Bayes factor comparisons are in favor of alternative hypothesis.
full.sess1.bayes <- bayes_factor(EPN.sess1.model, null.sess1.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
treat.sess1.bayes <- bayes_factor(treat.sess1.model, null.sess1.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
emo.sess1.bayes <- bayes_factor(emo.sess1.model, null.sess1.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
full.sess1.bayes
## Estimated Bayes factor in favor of EPN.sess1.model over null.sess1.model: 348247035184728.56250
treat.sess1.bayes
## Estimated Bayes factor in favor of treat.sess1.model over null.sess1.model: 0.40278
emo.sess1.bayes
## Estimated Bayes factor in favor of emo.sess1.model over null.sess1.model: 33859255.67491

compare with null

tibble(model = c("TreatxEmo", "Treat", "Emo"),
       Compared_To_Null = format(c(full.sess1.bayes$bf, 
                                   treat.sess1.bayes$bf, 
                                   emo.sess1.bayes$bf), scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Null
TreatxEmo 3.482470e+14
Treat 4.027773e-01
Emo 3.385926e+07

compare with Emo

tibble(model = c("TreatxEmo", "Treat", "Emo"),
       Compared_To_Emo = format(c(full.sess1.bayes$bf/emo.sess1.bayes$bf, 
                                  treat.sess1.bayes$bf/emo.sess1.bayes$bf,
                                  emo.sess1.bayes$bf/emo.sess1.bayes$bf), 
                                scientific = TRUE), 
           BF01 = format(c(emo.sess1.bayes$bf/full.sess1.bayes$bf, 
                           emo.sess1.bayes$bf/treat.sess1.bayes$bf,
                           emo.sess1.bayes$bf/emo.sess1.bayes$bf), 
                                scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Emo BF01
TreatxEmo 1.028514e+07 9.722769e-08
Treat 1.189563e-08 8.406446e+07
Emo 1.000000e+00 1.000000e+00

check assumptions

Linear regression has these assumptions:

  1. Linear association
  2. Normality of residuals
  3. No heteroskedasticity
  4. No multicollinearity
linearity
# Check linearity
na.omit(detect_sess1) %>%
  #add_residual_draws(EPN.sess1.model) %>%
  add_residual_draws(EPN.sess1.model, ndraws = 1) %>%
  ggplot(aes(x = .row, y = .residual)) +
  stat_pointinterval()

normality
# Check normality
na.omit(detect_sess1) %>%
  add_residual_draws(EPN.sess1.model, ndraws = 1) %>%
  median_qi() %>%
  ggplot(aes(sample = .residual)) +
  geom_qq() +
  geom_qq_line()

multicollinearity
# Check vif and tolerance
check_collinearity(EPN.sess1.model)

treatment comparison

  • session 1 and session 2 (session 1 as reference)
  • include only treatment groups
  • IVET = -.5, VRET = .5
  • use neutral pictures as reference emotion
model_name <- "only_treat_EPN"
model_formula <- formula("EPN ~ 1 + treat*sess*Emo + (1 + sess * Emo | fp)")
data <- detect_only_treat_recode
if (file.exists(sprintf("results/models/model_%s.RDS", model_name))) {
  assign(get("model_name"), readRDS(sprintf("results/models/model_%s.RDS", model_name)))
} else {
  assign(get("model_name"), lmerTest::lmer(model_formula,
                                           control = lmerControl(optimizer = "nloptwrap",
                                                                 optCtrl = list(maxfun = 1e7),
                                                                 calc.derivs = FALSE), 
                                           data = data))
  saveRDS(eval(parse(text = model_name)), sprintf("results/models/model_%s.RDS", model_name))
}

plot

all categories

fits <- data %>%
  modelr::data_grid(treat, sess, Emo, fp) %>%
  mutate(predicted_re = predict(get(model_name), .),
         fp_treat = sprintf("%s_%s", fp, treat)) %>%
  filter(fp_treat %in% sprintf("%s_%s", data$fp, data$treat)) %>%
  mutate(sess = ifelse(sess == 0, 'pre', 'post'),
         sess = factor(sess, levels = c('pre', 'post')),
         treat = ifelse(treat == -.5, "IVET", "VRET"))
ggeffects::ggpredict(get(model_name), c("treat", "sess", "Emo")) %>%
  data.frame() %>%
  mutate(group = ifelse(group == 0, 'pre', 'post'),
         group = factor(group, levels = c('pre', 'post')),
         x = ifelse(x == -.5, "IVET", "VRET"),
         Emo = facet) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(data = fits, aes(x = sess, y = predicted_re, color = treat,
                             group = interaction(fp, treat, Emo)), alpha = .3, size = .2) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  facet_grid(~Emo) +
  scale_color_manual(values = palette[2:3], name = "treatment") +
  labs(y = "predicted mean amplitude (µV)\n", x = "\nsession") +
  plot_aes

spider and neutral

fits <- data %>%
  modelr::data_grid(treat, sess, Emo, fp) %>%
  mutate(predicted_re = predict(get(model_name), .),
         fp_treat = sprintf("%s_%s", fp, treat)) %>%
  filter(fp_treat %in% sprintf("%s_%s", data$fp, data$treat)) %>%
  filter(Emo %in% c("neutral", "spider")) %>%
  mutate(sess = ifelse(sess == 0, 'pre', 'post'),
         sess = factor(sess, levels = c('pre', 'post')),
         treat = ifelse(treat == -.5, "IVET", "VRET"))
ggeffects::ggpredict(get(model_name), c("treat", "sess", "Emo")) %>%
  data.frame() %>%
  filter(facet %in% c("neutral", "spider")) %>%
  mutate(group = ifelse(group == 0, 'pre', 'post'),
         group = factor(group, levels = c('pre', 'post')),
         x = ifelse(x == -.5, "IVET", "VRET"),
         Emo = facet) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(data = fits, aes(x = sess, y = predicted_re, color = treat,
                             group = interaction(fp, treat, Emo)), alpha = .3, size = .2) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  facet_grid(~Emo) +
  scale_color_manual(values = palette[2:3], name = "treatment") +
  labs(y = "predicted mean amplitude (µV)\n", x = "\nsession") +
  plot_aes

ggsave('results/figures/fig_estimated_EPN_treat.png', plot = last_plot())

summarize model

summary(get(model_name))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: model_formula
##    Data: data
## Control: 
## lmerControl(optimizer = "nloptwrap", optCtrl = list(maxfun = 10000000),  
##     calc.derivs = FALSE)
## 
## REML criterion at convergence: 123655.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.3128 -0.6168  0.0083  0.6223  4.2434 
## 
## Random effects:
##  Groups   Name             Variance Std.Dev. Corr                         
##  fp       (Intercept)      12.6616  3.5583                                
##           sess              0.8901  0.9435   -0.31                        
##           Emospider         2.0838  1.4435   -0.32  0.37                  
##           Emonegative       1.1931  1.0923   -0.34  0.08  0.38            
##           Emopositive       0.5011  0.7079   -0.13  0.18  0.04  0.32      
##           sess:Emospider    1.3879  1.1781   -0.24  0.05 -0.34  0.16 -0.59
##           sess:Emonegative  0.9383  0.9687    0.12 -0.10  0.02 -0.45  0.34
##           sess:Emopositive  0.8358  0.9142    0.08 -0.24 -0.14 -0.55 -0.74
##  Residual                  25.2321  5.0232                                
##             
##             
##             
##             
##             
##             
##             
##  -0.62      
##   0.28  0.31
##             
## Number of obs: 20284, groups:  fp, 70
## 
## Fixed effects:
##                        Estimate Std. Error       df t value           Pr(>|t|)
## (Intercept)             4.61116    0.45963 59.80823  10.032 0.0000000000000196
## treat                  -1.46091    0.91925 59.80823  -1.589             0.1173
## sess                    0.17971    0.23022 32.93086   0.781             0.4406
## Emospider              -2.93909    0.27427 39.60494 -10.716 0.0000000000002868
## Emonegative            -1.77110    0.23150 43.06249  -7.650 0.0000000014768418
## Emopositive            -0.58988    0.19816 46.88578  -2.977             0.0046
## treat:sess              0.48778    0.46044 32.93086   1.059             0.2971
## treat:Emospider         0.65797    0.54853 39.60494   1.200             0.2375
## treat:Emonegative       0.30534    0.46301 43.06249   0.659             0.5131
## treat:Emopositive       0.25546    0.39633 46.88578   0.645             0.5223
## sess:Emospider          0.19675    0.28780 38.74402   0.684             0.4983
## sess:Emonegative        0.03905    0.25898 54.28829   0.151             0.8807
## sess:Emopositive       -0.03538    0.24476 53.64553  -0.145             0.8856
## treat:sess:Emospider   -0.83686    0.57559 38.74402  -1.454             0.1540
## treat:sess:Emonegative -0.16927    0.51796 54.28829  -0.327             0.7451
## treat:sess:Emopositive -0.14777    0.48952 53.64553  -0.302             0.7639
##                           
## (Intercept)            ***
## treat                     
## sess                      
## Emospider              ***
## Emonegative            ***
## Emopositive            ** 
## treat:sess                
## treat:Emospider           
## treat:Emonegative         
## treat:Emopositive         
## sess:Emospider            
## sess:Emonegative          
## sess:Emopositive          
## treat:sess:Emospider      
## treat:sess:Emonegative    
## treat:sess:Emopositive    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tidied_model <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

model table

table of labels

effectlbls <- data.frame(
  num = as.character(seq(1:16)), 
  original = tidied_model$term[1:16],
  standard = c("intercept (avr_treat, session (1), neutral)",
               "treatment (VRET vs IVET)",
               "session (2)",
               "emotion (spider)",
               "emotion (negative)",
               "emotion (positive)",
               "treatment (VRET vs IVET) x session",
               "treatment (VRET vs IVET) x emotion (spider)",
               "treatment (VRET vs IVET) x emotion (negative)",
               "treatment (VRET vs IVET) x emotion (positive)",
               "session x emotion (spider)",
               "session x emotion (negative)",
               "session x emotion (positive)",
               "treatment (VRET vs IVET) x session x emotion (spider)",
               "treatment (VRET vs IVET) x session x emotion (negative)",
               "treatment (VRET vs IVET) x session x emotion (positive)"),
  condition = c("treatment (avr_treat) / session (1) / emotion (neutral)",
                "treatment (VRET vs IVET) / sess (1) / emotion (neutral)",
                "treatment (avr_treat) / sess (2) / emotion (neutral)",
                "treatment (avr_treat) / sess (1) / emotion (spider)",
                "treatment (avr_treat) / sess (1) / emotion (negative)",
                "treatment (avr_treat) / sess (1) / emotion (positive)",
                "treatment (VRET vs IVET) / sess (2) / emotion (neutral)",
                "treatment (VRET vs IVET) / sess (1) / emotion (spider)",
                "treatment (VRET vs IVET) / sess (1) / emotion (negative)",
                "treatment (VRET vs IVET) / sess (1) / emotion (positive)",
                "treatment (avr_treat) / sess (2) / emotion (spider)",
                "treatment (avr_treat) / sess (2) / emotion (negative)",
                "treatment (avr_treat) / sess (2) / emotion (positive)",
                "treatment (VRET vs IVET) / sess (2) / emotion (spider)",
                "treatment (VRET vs IVET) / sess (2) / emotion (negative)",
                "treatment (VRET vs IVET) / sess (2) / emotion (positive)"),
  stringsAsFactors = F)
effectlbls %>%
  kable() %>%
  kable_styling()
num original standard condition
1 (Intercept) intercept (avr_treat, session (1), neutral) treatment (avr_treat) / session (1) / emotion (neutral)
2 treat treatment (VRET vs IVET) treatment (VRET vs IVET) / sess (1) / emotion (neutral)
3 sess session (2) treatment (avr_treat) / sess (2) / emotion (neutral)
4 Emospider emotion (spider) treatment (avr_treat) / sess (1) / emotion (spider)
5 Emonegative emotion (negative) treatment (avr_treat) / sess (1) / emotion (negative)
6 Emopositive emotion (positive) treatment (avr_treat) / sess (1) / emotion (positive)
7 treat:sess treatment (VRET vs IVET) x session treatment (VRET vs IVET) / sess (2) / emotion (neutral)
8 treat:Emospider treatment (VRET vs IVET) x emotion (spider) treatment (VRET vs IVET) / sess (1) / emotion (spider)
9 treat:Emonegative treatment (VRET vs IVET) x emotion (negative) treatment (VRET vs IVET) / sess (1) / emotion (negative)
10 treat:Emopositive treatment (VRET vs IVET) x emotion (positive) treatment (VRET vs IVET) / sess (1) / emotion (positive)
11 sess:Emospider session x emotion (spider) treatment (avr_treat) / sess (2) / emotion (spider)
12 sess:Emonegative session x emotion (negative) treatment (avr_treat) / sess (2) / emotion (negative)
13 sess:Emopositive session x emotion (positive) treatment (avr_treat) / sess (2) / emotion (positive)
14 treat:sess:Emospider treatment (VRET vs IVET) x session x emotion (spider) treatment (VRET vs IVET) / sess (2) / emotion (spider)
15 treat:sess:Emonegative treatment (VRET vs IVET) x session x emotion (negative) treatment (VRET vs IVET) / sess (2) / emotion (negative)
16 treat:sess:Emopositive treatment (VRET vs IVET) x session x emotion (positive) treatment (VRET vs IVET) / sess (2) / emotion (positive)

standard labels

table_model(get(model_name), 
            dv_labels = "only treat model",
            pred_labels = paste(effectlbls[,1], effectlbls[,3]))
  only treat model
Parameter B 95% CI SE t p
1 intercept (avr_treat, session (1), neutral) 4.61 3.69 – 5.53 0.46 10.03 <0.001
2 treatment (VRET vs IVET) -1.46 -3.30 – 0.38 0.92 -1.59 0.117
3 session (2) 0.18 -0.29 – 0.65 0.23 0.78 0.441
4 emotion (spider) -2.94 -3.49 – -2.38 0.27 -10.72 <0.001
5 emotion (negative) -1.77 -2.24 – -1.30 0.23 -7.65 <0.001
6 emotion (positive) -0.59 -0.99 – -0.19 0.20 -2.98 0.005
7 treatment (VRET vs IVET) x session 0.49 -0.45 – 1.42 0.46 1.06 0.297
8 treatment (VRET vs IVET) x emotion (spider) 0.66 -0.45 – 1.77 0.55 1.20 0.237
9 treatment (VRET vs IVET) x emotion (negative) 0.31 -0.63 – 1.24 0.46 0.66 0.513
10 treatment (VRET vs IVET) x emotion (positive) 0.26 -0.54 – 1.05 0.40 0.64 0.522
11 session x emotion (spider) 0.20 -0.39 – 0.78 0.29 0.68 0.498
12 session x emotion (negative) 0.04 -0.48 – 0.56 0.26 0.15 0.881
13 session x emotion (positive) -0.04 -0.53 – 0.46 0.24 -0.14 0.886
14 treatment (VRET vs IVET) x session x emotion (spider) -0.84 -2.00 – 0.33 0.58 -1.45 0.154
15 treatment (VRET vs IVET) x session x emotion (negative) -0.17 -1.21 – 0.87 0.52 -0.33 0.745
16 treatment (VRET vs IVET) x session x emotion (positive) -0.15 -1.13 – 0.83 0.49 -0.30 0.764
Random Effects
σ2 25.23
τ00 fp 12.66
τ11 fp.sess 0.89
τ11 fp.Emospider 2.08
τ11 fp.Emonegative 1.19
τ11 fp.Emopositive 0.50
τ11 fp.sess:Emospider 1.39
τ11 fp.sess:Emonegative 0.94
τ11 fp.sess:Emopositive 0.84
ρ01 -0.31
-0.32
-0.34
-0.13
-0.24
0.12
0.08
ICC 0.31
N fp 70
Observations 20284
Marginal R2 / Conditional R2 0.038 / 0.335

condition labels

table_model(get(model_name), 
            dv_labels = "only treat model",
            pred_labels = paste(effectlbls[,1], effectlbls[,4]))
  only treat model
Parameter B 95% CI SE t p
1 treatment (avr_treat) / session (1) / emotion (neutral) 4.61 3.69 – 5.53 0.46 10.03 <0.001
2 treatment (VRET vs IVET) / sess (1) / emotion (neutral) -1.46 -3.30 – 0.38 0.92 -1.59 0.117
3 treatment (avr_treat) / sess (2) / emotion (neutral) 0.18 -0.29 – 0.65 0.23 0.78 0.441
4 treatment (avr_treat) / sess (1) / emotion (spider) -2.94 -3.49 – -2.38 0.27 -10.72 <0.001
5 treatment (avr_treat) / sess (1) / emotion (negative) -1.77 -2.24 – -1.30 0.23 -7.65 <0.001
6 treatment (avr_treat) / sess (1) / emotion (positive) -0.59 -0.99 – -0.19 0.20 -2.98 0.005
7 treatment (VRET vs IVET) / sess (2) / emotion (neutral) 0.49 -0.45 – 1.42 0.46 1.06 0.297
8 treatment (VRET vs IVET) / sess (1) / emotion (spider) 0.66 -0.45 – 1.77 0.55 1.20 0.237
9 treatment (VRET vs IVET) / sess (1) / emotion (negative) 0.31 -0.63 – 1.24 0.46 0.66 0.513
10 treatment (VRET vs IVET) / sess (1) / emotion (positive) 0.26 -0.54 – 1.05 0.40 0.64 0.522
11 treatment (avr_treat) / sess (2) / emotion (spider) 0.20 -0.39 – 0.78 0.29 0.68 0.498
12 treatment (avr_treat) / sess (2) / emotion (negative) 0.04 -0.48 – 0.56 0.26 0.15 0.881
13 treatment (avr_treat) / sess (2) / emotion (positive) -0.04 -0.53 – 0.46 0.24 -0.14 0.886
14 treatment (VRET vs IVET) / sess (2) / emotion (spider) -0.84 -2.00 – 0.33 0.58 -1.45 0.154
15 treatment (VRET vs IVET) / sess (2) / emotion (negative) -0.17 -1.21 – 0.87 0.52 -0.33 0.745
16 treatment (VRET vs IVET) / sess (2) / emotion (positive) -0.15 -1.13 – 0.83 0.49 -0.30 0.764
Random Effects
σ2 25.23
τ00 fp 12.66
τ11 fp.sess 0.89
τ11 fp.Emospider 2.08
τ11 fp.Emonegative 1.19
τ11 fp.Emopositive 0.50
τ11 fp.sess:Emospider 1.39
τ11 fp.sess:Emonegative 0.94
τ11 fp.sess:Emopositive 0.84
ρ01 -0.31
-0.32
-0.34
-0.13
-0.24
0.12
0.08
ICC 0.31
N fp 70
Observations 20284
Marginal R2 / Conditional R2 0.038 / 0.335

interpretation

tm <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

The goal is to examine whether IVET and VRET differ from each other in spider (vs neutral) mean amps in the first session and between the first and second session (but not in any other picture category).

The formula was EPN ~ 1 + treat * sess * Emo + (1 + sess * Emo | fp).
Sess * Emo as random effects: This means that emo, session, and the 2-way interaction can differ between subjects.

Intercept = treatment(avr_treat) / session (1) / emotion (neutral).
avr_treat is the mean of IVET and VRET.

The effect for the intercept = 4.61. This is the mean amp for the intercept that contains the average across treatments in session 1 to neutral pictures.

The effect of the interaction is added to this together with lower-order terms to get the marginal mean. An interaction parameter is how much it differs from the lower order terms and the t-test is for the null hypothesis that the difference between these parameters is 0. When testing higher effects, the lower effects are removed. That is, the higher effects test for something over and above the lower effects. Accordingly, the estimated marginal means are the intercept + lower effects + estimate for higher effect.

We want to see whether the groups showed lower amps to spiders than neutral pictures in session 1.

Emospider
In the model table with condition labels, this is number 4.

treatment (avr_treat) / sess (1) / emotion (spider).
- estimate: -2.94
- p value: 2.8677e-13
Indeed, mean amps are relatively negative to spiders.

Did the groups differ in how they responded to spiders versus neutral pictures in session 1? No. 

treat:Emospider
In the model table with condition labels, this is number 8.

treatment (VRET vs IVET) / sess (1) / emotion (spider).
- estimate: 0.66
- p value: 2.3745e-01

Did the effect of spiders differ between sessions: No difference!

sess:Emospider
In the model table with condition labels, this is number 11.

treatment (avr_treat) / sess (2) / emotion (spider).
- estimate: 0.20
- p value: 4.9826e-01

Critically, did this effect vary with treatment? No difference!

treat:sess:Emospider
In the model table with condition labels, this is number 14.

treatment (VRET vs IVET) / sess (2) / emotion (spider).
- estimate: -0.84
- p value: 1.5403e-01

estimated means

data %>%
  modelr::data_grid(treat, Emo, sess) %>%
  mutate(marginal_mean = predict(get(model_name), ., re.form = NA),
         treat = ifelse(treat == -.5, "IVET", "VRET"),
         sess = ifelse(sess == 0, 'pre', 'post'),
         sess = factor(sess, levels = c('pre', 'post'))) %>%
  pivot_wider(names_from = Emo, values_from = marginal_mean) %>%
  kable(digits = 2) %>%
  kable_styling()
treat sess neutral spider negative positive
IVET pre 5.34 2.07 3.42 4.62
IVET post 5.28 2.62 3.48 4.60
VRET pre 3.88 1.27 2.26 3.42
VRET post 4.30 1.47 2.64 3.73

Bayes

only spider and neutral

gaussian model

detect_treat <- detect_only_treat_recode %>% 
  select(Emo, EPN, LPP, fp, sess, treat) %>% 
  filter(Emo %in% c('spider', 'neutral')) %>% 
  mutate(fp = as.factor(fp),
         Emo = factor(Emo, levels = c('neutral','spider'))) %>% 
  na.omit()
# Regression Model.
EPN.treat.model <- brm(EPN ~ 1 + treat*sess*Emo + (1 + sess*Emo | fp), 
                       family = gaussian(),
                       data = detect_treat,
                       prior = c(prior(normal(0, 4), class = Intercept),
                                 prior(normal(0, 4), class = b)),
                       chains = 4,
                       file = "results/models/EPN.treat.model", # file to save/reuse model
                       cores = 4, 
                       iter = 3000,
                       warmup = 1000,
                       init_r = 0.5,
                       save_pars = save_pars(all = TRUE))
# Model Summary.
summary(EPN.treat.model)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: EPN ~ 1 + treat * sess * Emo + (1 + sess * Emo | fp) 
##    Data: detect_treat (Number of observations: 10145) 
##   Draws: 4 chains, each with iter = 3000; warmup = 1000; thin = 1;
##          total post-warmup draws = 8000
## 
## Group-Level Effects: 
## ~fp (Number of levels: 70) 
##                               Estimate Est.Error l-95% CI u-95% CI Rhat
## sd(Intercept)                     3.57      0.37     2.91     4.37 1.00
## sd(sess)                          0.97      0.28     0.44     1.53 1.00
## sd(Emospider)                     1.45      0.25     1.00     1.97 1.00
## sd(sess:Emospider)                0.95      0.39     0.14     1.70 1.00
## cor(Intercept,sess)              -0.17      0.23    -0.60     0.31 1.00
## cor(Intercept,Emospider)         -0.31      0.17    -0.61     0.04 1.00
## cor(sess,Emospider)               0.18      0.26    -0.37     0.64 1.00
## cor(Intercept,sess:Emospider)    -0.31      0.27    -0.79     0.25 1.00
## cor(sess,sess:Emospider)          0.20      0.35    -0.49     0.83 1.00
## cor(Emospider,sess:Emospider)    -0.11      0.31    -0.62     0.60 1.00
##                               Bulk_ESS Tail_ESS
## sd(Intercept)                     2292     3752
## sd(sess)                          1172      787
## sd(Emospider)                     3315     5043
## sd(sess:Emospider)                 979     1566
## cor(Intercept,sess)               4972     4938
## cor(Intercept,Emospider)          4181     5417
## cor(sess,Emospider)               1267     2631
## cor(Intercept,sess:Emospider)     4648     4034
## cor(sess,sess:Emospider)          1700     2824
## cor(Emospider,sess:Emospider)     2535     3629
## 
## Population-Level Effects: 
##                      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                4.57      0.46     3.63     5.47 1.00     1204
## treat                   -1.37      0.90    -3.16     0.42 1.00     1358
## sess                     0.17      0.25    -0.33     0.65 1.00     4647
## Emospider               -2.86      0.28    -3.40    -2.30 1.00     4597
## treat:sess               0.50      0.49    -0.47     1.46 1.00     4733
## treat:Emospider          0.53      0.53    -0.53     1.59 1.00     4886
## sess:Emospider           0.12      0.28    -0.43     0.67 1.00     6636
## treat:sess:Emospider    -0.79      0.56    -1.89     0.33 1.00     7282
##                      Tail_ESS
## Intercept                2453
## treat                    2410
## sess                     5863
## Emospider                5757
## treat:sess               5030
## treat:Emospider          5932
## sess:Emospider           5591
## treat:sess:Emospider     6578
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     4.94      0.03     4.87     5.01 1.00    16291     5261
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Bayes factor

only spider and neutral

computations

null.treat.model <- brm(EPN ~ 1 + (1 + sess*Emo | fp),
                        family = gaussian(),
                        data = detect_treat,
                        prior = prior(normal(0, 4), class = Intercept),
                        chains = 4,
                        file = "results/models/EPN.treat.null", 
                        # Specify file to save/reuse model
                        cores = 4, 
                        iter = 3000,
                        warmup = 1000,
                        init_r = 0.5,
                        save_pars = save_pars(all = TRUE))
sess_emo.treat.model <- brm(EPN ~ 1 + sess*Emo + (1 + sess*Emo | fp),
                            family = gaussian(),
                            data = detect_treat,
                            prior = c(prior(normal(0, 4), class = Intercept),
                                      prior(normal(0, 4), class = b)),
                            chains = 4,
                            file = "results/models/EPN.treat.sess_emo", 
                            cores = 4, 
                            iter = 3000,
                            warmup = 1000,
                            save_pars = save_pars(all = TRUE))
emo.treat.model <- brm(EPN ~ 1 + Emo + (1 + sess*Emo | fp),
                       family = gaussian(),
                       data = detect_treat,
                       prior = c(prior(normal(0, 4), class = Intercept),
                                 prior(normal(0, 4), class = b)),
                       chains = 4,
                       file = "results/models/EPN.treat.emo", 
                       cores = 4, 
                       iter = 3000,
                       warmup = 1000,
                       save_pars = save_pars(all = TRUE))

Compute bayes factor approximations (via bridge sampling)

# Bayes factor comparisons are in favor of alternative hypothesis.
full.treat.bayes <- bayes_factor(EPN.treat.model, null.treat.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
sess_emo.treat.bayes <- bayes_factor(sess_emo.treat.model, null.treat.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
emo.treat.bayes <- bayes_factor(emo.treat.model, null.treat.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
full.treat.bayes
## Estimated Bayes factor in favor of EPN.treat.model over null.treat.model: 15919855820418.37109
sess_emo.treat.bayes
## Estimated Bayes factor in favor of sess_emo.treat.model over null.treat.model: 11831242103522704.00000
emo.treat.bayes
## Estimated Bayes factor in favor of emo.treat.model over null.treat.model: 2097671964500722176.00000

compare with null

tibble(model = c("TreatxSessxEmo", "SessxEmo", "Emo"),
       Compared_To_Null = format(c(full.treat.bayes$bf, 
                                   sess_emo.treat.bayes$bf, 
                                   emo.treat.bayes$bf), scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Null
TreatxSessxEmo 1.591986e+13
SessxEmo 1.183124e+16
Emo 2.097672e+18

compare with Treat x Sess x Emo

tibble(model = c("TreatxSessxEmo", "SessxEmo", "Emo"),
       Compared_To_Treat.Sess.Emo = 
         format(c(full.treat.bayes$bf/full.treat.bayes$bf, 
                  sess_emo.treat.bayes$bf/full.treat.bayes$bf, 
                  emo.treat.bayes$bf/full.treat.bayes$bf),
                                           scientific = TRUE),
       BF01 = 
         format(c(full.treat.bayes$bf/full.treat.bayes$bf, 
                  full.treat.bayes$bf/sess_emo.treat.bayes$bf, 
                  full.treat.bayes$bf/emo.treat.bayes$bf),
                                           scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Treat.Sess.Emo BF01
TreatxSessxEmo 1.000000e+00 1.000000e+00
SessxEmo 7.431752e+02 1.345578e-03
Emo 1.317645e+05 7.589297e-06

compare with Sess x Emo

tibble(model = c("TreatxSessxEmo", "SessxEmo", "Emo"),
       Compared_To_Sess.Emo = format(c(full.treat.bayes$bf/sess_emo.treat.bayes$bf, 
                                       sess_emo.treat.bayes$bf/sess_emo.treat.bayes$bf,
                                       emo.treat.bayes$bf/sess_emo.treat.bayes$bf),
                                     scientific = TRUE),
       BF01 = format(c(sess_emo.treat.bayes$bf/full.treat.bayes$bf, 
                       sess_emo.treat.bayes$bf/sess_emo.treat.bayes$bf,
                       sess_emo.treat.bayes$bf/emo.treat.bayes$bf),
                                     scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Sess.Emo BF01
TreatxSessxEmo 1.345578e-03 7.431752e+02
SessxEmo 1.000000e+00 1.000000e+00
Emo 1.772994e+02 5.640177e-03

compare with Emo

tibble(model = c("TreatxSessxEmo", "SessxEmo", "Emo"),
       Compared_To_Emo = format(c(full.treat.bayes$bf/emo.treat.bayes$bf, 
                                  sess_emo.treat.bayes$bf/emo.treat.bayes$bf, 
                                  emo.treat.bayes$bf/emo.treat.bayes$bf),
                                scientific = TRUE),
       BF01 = format(c(emo.treat.bayes$bf/full.treat.bayes$bf, 
                       emo.treat.bayes$bf/sess_emo.treat.bayes$bf, 
                       emo.treat.bayes$bf/emo.treat.bayes$bf),
                                scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Emo BF01
TreatxSessxEmo 7.589297e-06 1.317645e+05
SessxEmo 5.640177e-03 1.772994e+02
Emo 1.000000e+00 1.000000e+00

check assumptions

Linear regression has these assumptions:

  1. Linear association
  2. Normality of residuals
  3. No heteroskedasticity
  4. No multicollinearity
linearity
# Check linearity
na.omit(detect_treat) %>%
  add_residual_draws(EPN.treat.model, ndraws = 1) %>%  
  ggplot(aes(x = .row, y = .residual)) +
  stat_pointinterval()

normality
# Check normality
na.omit(detect_treat) %>%
  add_residual_draws(EPN.treat.model, ndraws = 1) %>%
  median_qi() %>%
  ggplot(aes(sample = .residual)) +
  geom_qq() +
  geom_qq_line()

multicollinearity
# Check vif and tolerance
check_collinearity(EPN.treat.model)

EEG: LPP-relevant amplitude

EEG data during the detection task

session 1 three groups

  • use session 1 from all three groups
  • examine whether IVET and VRET differ from controls to spiders (vs neutral) in session 1
  • compare IVET and VRET separately to the control group
  • do not test whether the treatments differ from each other
  • use neutral pictures as reference emotion
  • save the model to save time
model_name <- "session_pre_all_groups_LPP"
model_formula <- formula("LPP ~ 1 + treat*Emo + (1 + Emo | fp)")
data <- detect_baseline
if (file.exists(sprintf("results/models/model_%s.RDS", model_name))) {
  assign(get("model_name"), readRDS(sprintf("results/models/model_%s.RDS", model_name)))
} else {
  assign(get("model_name"), lmerTest::lmer(model_formula,
                                           control = lmerControl(optimizer = "Nelder_Mead",
                                                                 optCtrl = list(maxfun = 1e7),
                                                                 calc.derivs = FALSE), 
                                           data = data))
  saveRDS(eval(parse(text = model_name)), sprintf("results/models/model_%s.RDS", model_name))
}
# nloptwrap: Model failed to converge with 1 negative eigenvalue: -8.0e+02

plot

fits <- data %>%
  modelr::data_grid(treat, Emo, fp) %>%
  mutate(predicted_re = predict(get(model_name), .),
         fp_treat = sprintf("%s_%s", fp, treat)) %>%
  filter(fp_treat %in% sprintf("%s_%s", data$fp, data$treat))
ggeffects::ggpredict(get(model_name), c("treat", "Emo")) %>%
  data.frame() %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(data = fits, aes(x = Emo, y = predicted_re, color = treat,
                             group = interaction(fp, treat)), alpha = .3, size = .2) +
  geom_line(aes(group = x), position = position_dodge(width = .15), size = 1) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .15), size = .5) +
  scale_color_manual(values = palette, name = "treatment") +
  labs(y = "predicted mean amplitude (µV)\n", x = "\nemotion") +
  plot_aes

ggsave('results/figures/fig_meanamps_LPP_pre.png', plot = last_plot())

summarize model

summary(get(model_name))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: model_formula
##    Data: data
## Control: 
## lmerControl(optimizer = "Nelder_Mead", optCtrl = list(maxfun = 10000000),  
##     calc.derivs = FALSE)
## 
## REML criterion at convergence: 103073.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.4655 -0.5470 -0.0018  0.5473  5.3080 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr             
##  fp       (Intercept)  1.275   1.129                     
##           Emospider    5.874   2.424    -0.64            
##           Emonegative  2.578   1.606    -0.69  0.94      
##           Emopositive  1.191   1.091    -0.49  0.89  0.94
##  Residual             21.657   4.654                     
## Number of obs: 17360, groups:  fp, 89
## 
## Fixed effects:
##                       Estimate Std. Error       df t value Pr(>|t|)   
## (Intercept)            -0.5088     0.1820  56.0223  -2.796  0.00707 **
## treatIVET               0.3663     0.3753  56.0868   0.976  0.33326   
## treatVRET               0.1735     0.3389  55.7998   0.512  0.61064   
## Emospider               0.6451     0.3607 164.5251   1.789  0.07552 . 
## Emonegative             0.4224     0.2583  68.6949   1.635  0.10654   
## Emopositive             0.1809     0.2001  49.6938   0.904  0.37042   
## treatIVET:Emospider     0.8040     0.7440 164.7964   1.081  0.28142   
## treatVRET:Emospider     0.9524     0.6722 164.2231   1.417  0.15841   
## treatIVET:Emonegative  -0.1017     0.5324  68.6512  -0.191  0.84907   
## treatVRET:Emonegative   0.0612     0.4812  68.4786   0.127  0.89915   
## treatIVET:Emopositive  -0.1706     0.4129  49.8336  -0.413  0.68120   
## treatVRET:Emopositive   0.1363     0.3726  49.4989   0.366  0.71620   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trIVET trVRET Emspdr Emngtv Empstv trtIVET:Ems trtVRET:Ems
## treatIVET   -0.485                                                           
## treatVRET   -0.537  0.260                                                    
## Emospider   -0.646  0.313  0.347                                             
## Emonegative -0.695  0.337  0.373  0.848                                      
## Emopositive -0.553  0.268  0.297  0.748  0.777                               
## trtIVET:Ems  0.313 -0.645 -0.168 -0.485 -0.411 -0.362                        
## trtVRET:Ems  0.346 -0.168 -0.645 -0.537 -0.455 -0.401  0.260                 
## trtIVET:Emn  0.337 -0.695 -0.181 -0.411 -0.485 -0.377  0.848       0.221     
## trtVRET:Emn  0.373 -0.181 -0.694 -0.455 -0.537 -0.417  0.221       0.848     
## trtIVET:Emp  0.268 -0.552 -0.144 -0.362 -0.377 -0.485  0.747       0.194     
## trtVRET:Emp  0.297 -0.144 -0.552 -0.401 -0.417 -0.537  0.195       0.748     
##             trtIVET:Emn trtVRET:Emn trtIVET:Emp
## treatIVET                                      
## treatVRET                                      
## Emospider                                      
## Emonegative                                    
## Emopositive                                    
## trtIVET:Ems                                    
## trtVRET:Ems                                    
## trtIVET:Emn                                    
## trtVRET:Emn  0.260                             
## trtIVET:Emp  0.777       0.202                 
## trtVRET:Emp  0.202       0.778       0.260
tidied_model <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

model table

table of labels

effectlbls <- data.frame(
  num = as.character(seq(1:12)), 
  original = tidied_model$term[1:12],
  standard = c("intercept (control, neutral)", 
               "treatment (IVET)", 
               "treatment (VRET)", 
               "emotion (spider)", 
               "emotion (negative)", 
               "emotion (positive)",
               "treatment (IVET) x emotion (spider)",
               "treatment (VRET) x emotion (spider)",
               "treatment (IVET) x emotion (negative)", 
               "treatment (VRET) x emotion (negative)",
               "treatment (IVET) x emotion (positive)", 
               "treatment (VRET) x emotion (positive)"),
  condition = c("treatment (control) / emotion (neutral)", 
                "treatment (IVET) / emotion (neutral)", 
                "treatment (VRET) / emotion (neutral)", 
                "treatment (control) / emotion (spider)", 
                "treatment (control) / emotion (negative)", 
                "treatment (control) / emotion (positive)",
                "treatment (IVET) / emotion (spider)", 
                "treatment (VRET) / emotion (spider)",
                "treatment (IVET) / emotion (negative)", 
                "treatment (VRET) / emotion (negative)",
                "treatment (IVET) / emotion (positive)", 
                "treatment (VRET) / emotion (positive)"),
  stringsAsFactors = F)
effectlbls %>%
  kable() %>%
  kable_styling()
num original standard condition
1 (Intercept) intercept (control, neutral) treatment (control) / emotion (neutral)
2 treatIVET treatment (IVET) treatment (IVET) / emotion (neutral)
3 treatVRET treatment (VRET) treatment (VRET) / emotion (neutral)
4 Emospider emotion (spider) treatment (control) / emotion (spider)
5 Emonegative emotion (negative) treatment (control) / emotion (negative)
6 Emopositive emotion (positive) treatment (control) / emotion (positive)
7 treatIVET:Emospider treatment (IVET) x emotion (spider) treatment (IVET) / emotion (spider)
8 treatVRET:Emospider treatment (VRET) x emotion (spider) treatment (VRET) / emotion (spider)
9 treatIVET:Emonegative treatment (IVET) x emotion (negative) treatment (IVET) / emotion (negative)
10 treatVRET:Emonegative treatment (VRET) x emotion (negative) treatment (VRET) / emotion (negative)
11 treatIVET:Emopositive treatment (IVET) x emotion (positive) treatment (IVET) / emotion (positive)
12 treatVRET:Emopositive treatment (VRET) x emotion (positive) treatment (VRET) / emotion (positive)

standard labels

table_model(get(model_name), 
            dv_labels = "session 1",
            pred_labels = paste(effectlbls[,1], effectlbls[,3]))
  session 1
Parameter B 95% CI SE t p
1 intercept (control, neutral) -0.51 -0.87 – -0.14 0.18 -2.80 0.007
2 treatment (IVET) 0.37 -0.39 – 1.12 0.38 0.98 0.333
3 treatment (VRET) 0.17 -0.51 – 0.85 0.34 0.51 0.611
4 emotion (spider) 0.65 -0.07 – 1.36 0.36 1.79 0.076
5 emotion (negative) 0.42 -0.09 – 0.94 0.26 1.64 0.107
6 emotion (positive) 0.18 -0.22 – 0.58 0.20 0.90 0.370
7 treatment (IVET) x emotion (spider) 0.80 -0.66 – 2.27 0.74 1.08 0.281
8 treatment (VRET) x emotion (spider) 0.95 -0.37 – 2.28 0.67 1.42 0.158
9 treatment (IVET) x emotion (negative) -0.10 -1.16 – 0.96 0.53 -0.19 0.849
10 treatment (VRET) x emotion (negative) 0.06 -0.90 – 1.02 0.48 0.13 0.899
11 treatment (IVET) x emotion (positive) -0.17 -1.00 – 0.66 0.41 -0.41 0.681
12 treatment (VRET) x emotion (positive) 0.14 -0.61 – 0.88 0.37 0.37 0.716
Random Effects
σ2 21.66
τ00 fp 1.28
τ11 fp.Emospider 5.87
τ11 fp.Emonegative 2.58
τ11 fp.Emopositive 1.19
ρ01 -0.64
-0.69
-0.49
ICC 0.08
N fp 89
Observations 17360
Marginal R2 / Conditional R2 0.010 / 0.089

condition labels

table_model(get(model_name), 
            dv_labels = "session 1",
            pred_labels = paste(effectlbls[,1], effectlbls[,4]))
  session 1
Parameter B 95% CI SE t p
1 treatment (control) / emotion (neutral) -0.51 -0.87 – -0.14 0.18 -2.80 0.007
2 treatment (IVET) / emotion (neutral) 0.37 -0.39 – 1.12 0.38 0.98 0.333
3 treatment (VRET) / emotion (neutral) 0.17 -0.51 – 0.85 0.34 0.51 0.611
4 treatment (control) / emotion (spider) 0.65 -0.07 – 1.36 0.36 1.79 0.076
5 treatment (control) / emotion (negative) 0.42 -0.09 – 0.94 0.26 1.64 0.107
6 treatment (control) / emotion (positive) 0.18 -0.22 – 0.58 0.20 0.90 0.370
7 treatment (IVET) / emotion (spider) 0.80 -0.66 – 2.27 0.74 1.08 0.281
8 treatment (VRET) / emotion (spider) 0.95 -0.37 – 2.28 0.67 1.42 0.158
9 treatment (IVET) / emotion (negative) -0.10 -1.16 – 0.96 0.53 -0.19 0.849
10 treatment (VRET) / emotion (negative) 0.06 -0.90 – 1.02 0.48 0.13 0.899
11 treatment (IVET) / emotion (positive) -0.17 -1.00 – 0.66 0.41 -0.41 0.681
12 treatment (VRET) / emotion (positive) 0.14 -0.61 – 0.88 0.37 0.37 0.716
Random Effects
σ2 21.66
τ00 fp 1.28
τ11 fp.Emospider 5.87
τ11 fp.Emonegative 2.58
τ11 fp.Emopositive 1.19
ρ01 -0.64
-0.69
-0.49
ICC 0.08
N fp 89
Observations 17360
Marginal R2 / Conditional R2 0.010 / 0.089

interpretation

tm <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

The goal is to examine whether IVET and VRET differ from controls in spider (vs neutral) mean amplitude in the first session (but not in any other picture category). The analysis compares IVET and VRET separately to the control group and does not test whether the treatments differ from each other.

The formula was LPP ~ 1 + treat * Emo + (1 + Emo | fp).
Emo as random effect.

Intercept = treatment(control) / emotion(neutral).

The effect for the intercept = -0.51. This is the mean amplitude for the intercept that contains treatment(control) and emotion(neutral) and is thus the marginal mean for the control group for neutral pictures.

The first effect shows that there is an effect of spider (vs neutral). It shows that for the control group, spiders have higher amps than neutral pictures. This relative positivity supports an LPP. But, this effect is not of particular interest because it is only for the control group.

Emospider
In the model table with condition labels, this is number 4.

treatment (control) / emotion (spider).
- estimate: 0.65
- p value: 7.5522e-02

The main interest is to see whether IVET and VRET differ from controls in their amps to spiders. Particularly, the difference between spiders and neutral pictures should be more positive for each treatment group compared to controls. Because the intercept contains treatment(control) and emotion(neutral), we are interested in these tests:

For IVET:

treatIVET:Emospider
In the model table with condition labels, this is number 7.

treatment (IVET) / emotion (spider).
- estimate: 0.80
- p value: 2.8142e-01
This is the interaction of treatment(IVET vs control) x emotion (spider vs neutral).

For VRET (same test as for IVET):

treatVRET:Emospider
In the model table with condition labels, this is number 8.

treatment (VRET) / emotion (spider).
- estimate: 0.95
- p value: 1.5841e-01
This is the interaction of treatment(VRET vs control) x emotion (spider vs neutral).

estimated means

data %>%
  modelr::data_grid(treat, Emo) %>%
  mutate(marginal_mean = predict(get(model_name), ., re.form = NA),) %>%
  pivot_wider(names_from = Emo, values_from = marginal_mean) %>%
  kable(digits = 2) %>%
  kable_styling()
treat neutral spider negative positive
Control -0.51 0.14 -0.09 -0.33
IVET -0.14 1.31 0.18 -0.13
VRET -0.34 1.26 0.15 -0.02

session 1 across treatments

  • use session 1 from all three groups
  • combine treatment groups
  • use neutral pictures as reference emotion
  • save the model to save time
model_name <- "session_pre_across_treat_LPP"
model_formula <- formula("LPP ~ 1 + treat*Emo + (1 + Emo | fp)")
data <- detect_baseline_acrosstreatment
if (file.exists(sprintf("results/models/model_%s.RDS", model_name))) {
  assign(get("model_name"), readRDS(sprintf("results/models/model_%s.RDS", model_name)))
} else {
  assign(get("model_name"), lmerTest::lmer(model_formula,
                                           control = lmerControl(optimizer = "nloptwrap",
                                                                 optCtrl = list(maxfun = 1e7),
                                                                 calc.derivs = FALSE), 
                                           data = data))
  saveRDS(eval(parse(text = model_name)), sprintf("results/models/model_%s.RDS", model_name))
}

plot

fits <- data %>%
  modelr::data_grid(treat, Emo, fp) %>%
  mutate(predicted_re = predict(get(model_name), .),
         fp_treat = sprintf("%s_%s", fp, treat)) %>%
  filter(fp_treat %in% sprintf("%s_%s", data$fp, data$treat))
ggeffects::ggpredict(get(model_name), c("treat", "Emo")) %>%
  data.frame() %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(data = fits, aes(x = Emo, y = predicted_re, color = treat,
                             group = interaction(fp, treat)), alpha = .3, size = .2) +
  geom_line(aes(group = x), position = position_dodge(width = .1), size = 1) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1), size = .5) +
  scale_color_manual(values = palette2, name = "treatment") +
  labs(y = "predicted mean amplitude (µV)\n", x = "\nemotion") +
  plot_aes

summarize model

summary(get(model_name))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: model_formula
##    Data: data
## Control: 
## lmerControl(optimizer = "nloptwrap", optCtrl = list(maxfun = 10000000),  
##     calc.derivs = FALSE)
## 
## REML criterion at convergence: 103003.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.4308 -0.5421  0.0009  0.5444  5.3091 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr             
##  fp       (Intercept)  0.6396  0.7998                    
##           Emospider    0.8690  0.9322    0.17            
##           Emonegative  0.1431  0.3783   -0.16  0.23      
##           Emopositive  0.1090  0.3302    0.74  0.25  0.54
##  Residual             21.7360  4.6622                    
## Number of obs: 17360, groups:  fp, 89
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 -0.515606   0.144588  91.462137  -3.566 0.000579
## treatIVET/VRET               0.264373   0.224117  91.265705   1.180 0.241219
## Emospider                    0.654496   0.184094  89.431828   3.555 0.000606
## Emonegative                  0.432262   0.141208  83.697640   3.061 0.002963
## Emopositive                  0.187415   0.138838 248.440820   1.350 0.178280
## treatIVET/VRET:Emospider     0.875490   0.285461  89.347173   3.067 0.002862
## treatIVET/VRET:Emonegative  -0.022285   0.218676  83.280734  -0.102 0.919073
## treatIVET/VRET:Emopositive  -0.002446   0.215233 247.998807  -0.011 0.990943
##                               
## (Intercept)                ***
## treatIVET/VRET                
## Emospider                  ***
## Emonegative                ** 
## Emopositive                   
## treatIVET/VRET:Emospider   ** 
## treatIVET/VRET:Emonegative    
## treatIVET/VRET:Emopositive    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                  (Intr) trIVET/VRET Emspdr Emngtv Empstv trtIVET/VRET:Ems
## trIVET/VRET      -0.645                                                  
## Emospider        -0.230  0.149                                           
## Emonegative      -0.466  0.301       0.392                               
## Emopositive      -0.241  0.155       0.394  0.505                        
## trtIVET/VRET:Ems  0.149 -0.230      -0.645 -0.253 -0.254                 
## trtIVET/VRET:Emn  0.301 -0.466      -0.253 -0.646 -0.326  0.392          
## trtIVET/VRET:Emp  0.155 -0.240      -0.254 -0.326 -0.645  0.393          
##                  trtIVET/VRET:Emn
## trIVET/VRET                      
## Emospider                        
## Emonegative                      
## Emopositive                      
## trtIVET/VRET:Ems                 
## trtIVET/VRET:Emn                 
## trtIVET/VRET:Emp  0.505
tidied_model <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

model table

table of labels

effectlbls <- data.frame(
  num = as.character(seq(1:8)), 
  original = tidied_model$term[1:8],
  standard = c("intercept (control, neutral)", 
               "treatment (IVET/VRET)", 
               "emotion (spider)", 
               "emotion (negative)", 
               "emotion (positive)",
               "treatment (IVET/VRET) x emotion (spider)",
               "treatment (IVET/VRET) x emotion (negative)", 
               "treatment (IVET/VRET) x emotion (positive)"), 
  condition = c("treatment (control) / emotion (neutral)", 
                "treatment (IVET/VRET) / emotion (neutral)", 
                "treatment (control) / emotion (spider)", 
                "treatment (control) / emotion (negative)", 
                "treatment (control) / emotion (positive)",
                "treatment (IVET/VRET) / emotion (spider)", 
                "treatment (IVET/VRET) / emotion (negative)", 
                "treatment (IVET/VRET) / emotion (positive)"), 
  stringsAsFactors = F)
effectlbls %>%
  kable() %>%
  kable_styling()
num original standard condition
1 (Intercept) intercept (control, neutral) treatment (control) / emotion (neutral)
2 treatIVET/VRET treatment (IVET/VRET) treatment (IVET/VRET) / emotion (neutral)
3 Emospider emotion (spider) treatment (control) / emotion (spider)
4 Emonegative emotion (negative) treatment (control) / emotion (negative)
5 Emopositive emotion (positive) treatment (control) / emotion (positive)
6 treatIVET/VRET:Emospider treatment (IVET/VRET) x emotion (spider) treatment (IVET/VRET) / emotion (spider)
7 treatIVET/VRET:Emonegative treatment (IVET/VRET) x emotion (negative) treatment (IVET/VRET) / emotion (negative)
8 treatIVET/VRET:Emopositive treatment (IVET/VRET) x emotion (positive) treatment (IVET/VRET) / emotion (positive)

standard labels

table_model(get(model_name), 
            dv_labels = "session 1",
            pred_labels = paste(effectlbls[,1], effectlbls[,3]))
  session 1
Parameter B 95% CI SE t p
1 intercept (control, neutral) -0.52 -0.80 – -0.23 0.14 -3.57 0.001
2 treatment (IVET/VRET) 0.26 -0.18 – 0.71 0.22 1.18 0.241
3 emotion (spider) 0.65 0.29 – 1.02 0.18 3.56 0.001
4 emotion (negative) 0.43 0.15 – 0.71 0.14 3.06 0.003
5 emotion (positive) 0.19 -0.09 – 0.46 0.14 1.35 0.178
6 treatment (IVET/VRET) x emotion (spider) 0.88 0.31 – 1.44 0.29 3.07 0.003
7 treatment (IVET/VRET) x emotion (negative) -0.02 -0.46 – 0.41 0.22 -0.10 0.919
8 treatment (IVET/VRET) x emotion (positive) -0.00 -0.43 – 0.42 0.22 -0.01 0.991
Random Effects
σ2 21.74
τ00 fp 0.64
τ11 fp.Emospider 0.87
τ11 fp.Emonegative 0.14
τ11 fp.Emopositive 0.11
ρ01 0.17
-0.16
0.74
N fp 89
Observations 17360
Marginal R2 / Conditional R2 0.011 / NA

condition labels

table_model(get(model_name), 
            dv_labels = "session 1",
            pred_labels = paste(effectlbls[,1], effectlbls[,4]))
  session 1
Parameter B 95% CI SE t p
1 treatment (control) / emotion (neutral) -0.52 -0.80 – -0.23 0.14 -3.57 0.001
2 treatment (IVET/VRET) / emotion (neutral) 0.26 -0.18 – 0.71 0.22 1.18 0.241
3 treatment (control) / emotion (spider) 0.65 0.29 – 1.02 0.18 3.56 0.001
4 treatment (control) / emotion (negative) 0.43 0.15 – 0.71 0.14 3.06 0.003
5 treatment (control) / emotion (positive) 0.19 -0.09 – 0.46 0.14 1.35 0.178
6 treatment (IVET/VRET) / emotion (spider) 0.88 0.31 – 1.44 0.29 3.07 0.003
7 treatment (IVET/VRET) / emotion (negative) -0.02 -0.46 – 0.41 0.22 -0.10 0.919
8 treatment (IVET/VRET) / emotion (positive) -0.00 -0.43 – 0.42 0.22 -0.01 0.991
Random Effects
σ2 21.74
τ00 fp 0.64
τ11 fp.Emospider 0.87
τ11 fp.Emonegative 0.14
τ11 fp.Emopositive 0.11
ρ01 0.17
-0.16
0.74
N fp 89
Observations 17360
Marginal R2 / Conditional R2 0.011 / NA

interpretation

tm <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

The goal is to examine whether the combined treatment groups (IVET and VRET) differ from controls in spider (vs neutral) mean amplitude in the first session (but not in any other picture category). The analysis compares the combined IVET and VRET to the control group and does not test whether the treatments differ from each other.

The formula was LPP ~ 1 + treat * Emo + (1 + Emo | fp).
Emo as random effect.

Intercept = treatment(control) / emotion(neutral).

The effect for the intercept = -0.52. This is the mean amplitude for the intercept that contains treatment(control) and emotion(neutral) and is thus the marginal mean for the control group for neutral pictures.

The first effect shows that there is an effect of spider (vs neutral). It shows that for the control group, spiders have higher amps than neutral pictures. This relative positivity supports an LPP. But, this effect is not of particular interest because it is only for the control group.

Emospider
In the model table with condition labels, this is number 3.

treatment (control) / emotion (spider).
- estimate: 0.65
- p value: 6.0601e-04

The main interest is to see whether the combined treatment groups (IVET and VRET) differ from controls in their amps to spiders. Particularly, the difference between spiders and neutral pictures should be more positive across treatment groups compared to controls. Because the intercept contains treatment(control) and emotion(neutral), we are interested in this test:

treatIVET/VRET:Emospider
In the model table with condition labels, this is number 6.

treatment (IVET/VRET) / emotion (spider).
- estimate: 0.88
- p value: 2.8616e-03
This is the interaction of treatment(IVET/VRET vs control) x emotion (spider vs neutral) across ratings.

estimated means

data %>%
  modelr::data_grid(treat, Emo) %>%
  mutate(marginal_mean = predict(get(model_name), ., re.form = NA),) %>%
  pivot_wider(names_from = Emo, values_from = marginal_mean) %>%
  kable(digits = 2) %>%
  kable_styling()
treat neutral spider negative positive
Control -0.52 0.14 -0.08 -0.33
IVET/VRET -0.25 1.28 0.16 -0.07

Bayes

only spider and neutral

gaussian model

# Prepare dataframe.
detect_sess1 <- detect_baseline_acrosstreatment %>% 
  select(Emo, EPN, LPP, fp, sess, treat) %>% 
  filter(Emo %in% c('spider', 'neutral')) %>% 
  mutate(fp = as.factor(fp),
         Emo = factor(Emo, levels = c('neutral','spider'))) %>% 
  na.omit()
# Regression Model.
LPP.sess1.model <- brm(LPP ~ 1 + treat*Emo + (1 + Emo | fp), 
                       family = gaussian(),
                       data = detect_sess1,
                       prior = c(prior(normal(0, 4), class = Intercept),
                                 prior(normal(0, 4), class = b)),
                       chains = 4,
                       file = "results/models/LPP.sess1.model", 
                       # file to save/reuse model
                       cores = 4, 
                       iter = 3000,
                       warmup = 1000,
                       init_r = 0.5,
                       save_pars = save_pars(all = TRUE))
# Model Summary.
summary(LPP.sess1.model)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: LPP ~ 1 + treat * Emo + (1 + Emo | fp) 
##    Data: detect_sess1 (Number of observations: 8677) 
##   Draws: 4 chains, each with iter = 3000; warmup = 1000; thin = 1;
##          total post-warmup draws = 8000
## 
## Group-Level Effects: 
## ~fp (Number of levels: 89) 
##                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)                0.80      0.11     0.60     1.02 1.00     4159
## sd(Emospider)                0.92      0.15     0.63     1.22 1.00     2018
## cor(Intercept,Emospider)     0.25      0.23    -0.16     0.73 1.00     1761
##                          Tail_ESS
## sd(Intercept)                6237
## sd(Emospider)                3326
## cor(Intercept,Emospider)     1922
## 
## Population-Level Effects: 
##                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                   -0.51      0.15    -0.79    -0.22 1.00     6062
## treatIVETDVRET               0.27      0.22    -0.18     0.70 1.00     5441
## Emospider                    0.66      0.18     0.30     1.02 1.00     7053
## treatIVETDVRET:Emospider     0.86      0.28     0.30     1.41 1.00     7334
##                          Tail_ESS
## Intercept                    5503
## treatIVETDVRET               5996
## Emospider                    6278
## treatIVETDVRET:Emospider     5674
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     4.66      0.04     4.59     4.73 1.00    13068     5756
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Bayes factor

only spider and neutral

computations

null.sess1.model <- brm(LPP ~ 1 + (1 + Emo | fp),
                        family = gaussian(),
                        data = detect_sess1,
                        prior = prior(normal(0, 4), class = Intercept),
                        chains = 4,
                        file = "results/models/LPP.sess1.null", 
                        # Specify file to save/reuse model
                        cores = 4, 
                        iter = 3000,
                        warmup = 1000,
                        init_r = 0.5,
                        save_pars = save_pars(all = TRUE))
emo.sess1.model <- brm(LPP ~ 1 + Emo + (1 + Emo | fp),
                       family =  gaussian(),
                       data = detect_sess1,
                       prior = c(prior(normal(0, 4), class = Intercept),
                                 prior(normal(0, 4), class = b)),
                       chains = 4,
                       file = "results/models/LPP.sess1.emo", 
                       # Specify file to save/reuse model
                       cores = 4, 
                       iter = 3000,
                       warmup = 1000,
                       init_r = 0.5,
                       save_pars = save_pars(all = TRUE))
treat.sess1.model <- brm(LPP ~ 1 + treat + (1 + Emo | fp),
                         family =  gaussian(),
                         data = detect_sess1,
                         prior = c(prior(normal(0, 4), class = Intercept),
                                   prior(normal(0, 4), class = b)),
                         chains = 4,
                         file = "results/models/LPP.sess1.treat", 
                         # Specify file to save/reuse model
                         cores = 4, 
                         iter = 3000,
                         warmup = 1000,
                         init_r = 0.5,
                         save_pars = save_pars(all = TRUE))

Compute bayes factor approximations (via bridge sampling)

# Bayes factor comparisons are in favor of alternative hypothesis.
full.sess1.bayes <- bayes_factor(LPP.sess1.model, null.sess1.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
treat.sess1.bayes <- bayes_factor(treat.sess1.model, null.sess1.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
emo.sess1.bayes <- bayes_factor(emo.sess1.model, null.sess1.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
full.sess1.bayes
## Estimated Bayes factor in favor of LPP.sess1.model over null.sess1.model: 20045589.34571
treat.sess1.bayes
## Estimated Bayes factor in favor of treat.sess1.model over null.sess1.model: 0.25289
emo.sess1.bayes
## Estimated Bayes factor in favor of emo.sess1.model over null.sess1.model: 10633809.20049

compare with null

tibble(model = c("TreatxEmo", "Treat", "Emo"),
       Compared_To_Null = format(c(full.sess1.bayes$bf, 
                                   treat.sess1.bayes$bf, 
                                   emo.sess1.bayes$bf), scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Null
TreatxEmo 2.004559e+07
Treat 2.528901e-01
Emo 1.063381e+07

compare with Emo

tibble(model = c("TreatxEmo", "Treat", "Emo"),
       Compared_To_Emo = format(c(full.sess1.bayes$bf/emo.sess1.bayes$bf, 
                                  treat.sess1.bayes$bf/emo.sess1.bayes$bf,
                                  emo.sess1.bayes$bf/emo.sess1.bayes$bf), 
                                scientific = TRUE), 
           BF01 = format(c(emo.sess1.bayes$bf/full.sess1.bayes$bf, 
                           emo.sess1.bayes$bf/treat.sess1.bayes$bf,
                           emo.sess1.bayes$bf/emo.sess1.bayes$bf), 
                                scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Emo BF01
TreatxEmo 1.885081e+00 5.304812e-01
Treat 2.378170e-08 4.204914e+07
Emo 1.000000e+00 1.000000e+00

check assumptions

Linear regression has these assumptions:

  1. Linear association
  2. Normality of residuals
  3. No heteroskedasticity
  4. No multicollinearity
linearity
# Check linearity
na.omit(detect_sess1) %>%
  add_residual_draws(LPP.sess1.model, ndraws = 1) %>%
  ggplot(aes(x = .row, y = .residual)) +
  stat_pointinterval()

normality
# Check normality
na.omit(detect_sess1) %>%
  add_residual_draws(LPP.sess1.model, ndraws = 1) %>%
  median_qi() %>%
  ggplot(aes(sample = .residual)) +
  geom_qq() +
  geom_qq_line()

multicollinearity
# Check vif and tolerance
check_collinearity(LPP.sess1.model)

treatment comparison

  • session 1 and session 2 (session 1 as reference)
  • include only treatment groups
  • IVET = -.5, VRET = .5
  • use neutral pictures as reference emotion
model_name <- "only_treat_LPP"
model_formula <- formula("LPP ~ 1 + treat*sess*Emo + (1 + sess * Emo | fp)")
data <- detect_only_treat_recode
if (file.exists(sprintf("results/models/model_%s.RDS", model_name))) {
  assign(get("model_name"), readRDS(sprintf("results/models/model_%s.RDS", model_name)))
} else {
  assign(get("model_name"), lmerTest::lmer(model_formula,
                                           control = lmerControl(optimizer = "Nelder_Mead",
                                                                 optCtrl = list(maxfun = 1e7),
                                                                 calc.derivs = FALSE), 
                                           data = data))
  saveRDS(eval(parse(text = model_name)), sprintf("results/models/model_%s.RDS", model_name))
}
# nloptwrap: Model failed to converge with 4 negative eigenvalues: -1.3e-02 -7.1e-02 -1.7e-01 -7.8e+01
# Nelder_Mead: Model failed to converge with 2 negative eigenvalues: -3.5e+01 -4.4e+01

plot

all categories

fits <- data %>%
  modelr::data_grid(treat, sess, Emo, fp) %>%
  mutate(predicted_re = predict(get(model_name), .),
         fp_treat = sprintf("%s_%s", fp, treat)) %>%
  filter(fp_treat %in% sprintf("%s_%s", data$fp, data$treat)) %>%
  mutate(sess = ifelse(sess == 0, 'pre', 'post'),
         sess = factor(sess, levels = c('pre', 'post')),
         treat = ifelse(treat == -.5, "IVET", "VRET"))
ggeffects::ggpredict(get(model_name), c("treat", "sess", "Emo")) %>%
  data.frame() %>%
  mutate(group = ifelse(group == 0, 'pre', 'post'),
         group = factor(group, levels = c('pre', 'post')),
         x = ifelse(x == -.5, "IVET", "VRET"),
         Emo = facet) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(data = fits, aes(x = sess, y = predicted_re, color = treat,
                             group = interaction(fp, treat, Emo)), alpha = .3, size = .2) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  facet_grid(~Emo) +
  scale_color_manual(values = palette[2:3], name = "treatment") +
  labs(y = "predicted mean amplitude (µV)\n", x = "\nsession") +
  plot_aes

spider and neutral

fits <- data %>%
  modelr::data_grid(treat, sess, Emo, fp) %>%
  mutate(predicted_re = predict(get(model_name), .),
         fp_treat = sprintf("%s_%s", fp, treat)) %>%
  filter(fp_treat %in% sprintf("%s_%s", data$fp, data$treat)) %>%
  filter(Emo %in% c("neutral", "spider")) %>%
  mutate(sess = ifelse(sess == 0, 'pre', 'post'),
         sess = factor(sess, levels = c('pre', 'post')),
         treat = ifelse(treat == -.5, "IVET", "VRET"))
ggeffects::ggpredict(get(model_name), c("treat", "sess", "Emo")) %>%
  data.frame() %>%
  filter(facet %in% c("neutral", "spider")) %>%
  mutate(group = ifelse(group == 0, 'pre', 'post'),
         group = factor(group, levels = c('pre', 'post')),
         x = ifelse(x == -.5, "IVET", "VRET"),
         Emo = facet) %>%
  ggplot(aes(group, predicted, color = x)) +
  geom_line(data = fits, aes(x = sess, y = predicted_re, color = treat,
                             group = interaction(fp, treat, Emo)), alpha = .3, size = .2) +
  geom_line(aes(group = x), position = position_dodge(width = .1)) +
  geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
  facet_grid(~Emo) +
  scale_color_manual(values = palette[2:3], name = "treatment") +
  labs(y = "predicted mean amplitude (µV)\n", x = "\nsession") +
  plot_aes

ggsave('results/figures/fig_estimated_LPP_treat.png', plot = last_plot())

summarize model

summary(get(model_name))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: model_formula
##    Data: data
## Control: 
## lmerControl(optimizer = "Nelder_Mead", optCtrl = list(maxfun = 10000000),  
##     calc.derivs = FALSE)
## 
## REML criterion at convergence: 115533.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.2454 -0.5664 -0.0046  0.5526  6.1588 
## 
## Random effects:
##  Groups   Name             Variance Std.Dev. Corr                         
##  fp       (Intercept)       0.4393  0.6628                                
##           sess              0.8677  0.9315    0.38                        
##           Emospider        16.5298  4.0657    0.21  0.47                  
##           Emonegative       5.6218  2.3710    0.12  0.58  0.92            
##           Emopositive       4.6972  2.1673    0.55  0.81  0.71  0.79      
##           sess:Emospider    2.4732  1.5727   -0.08 -0.14 -0.26 -0.18 -0.05
##           sess:Emonegative  3.3048  1.8179    0.20  0.07  0.52  0.35  0.38
##           sess:Emopositive 64.4452  8.0278   -0.11  0.07  0.76  0.73  0.37
##  Residual                  16.6861  4.0849                                
##             
##             
##             
##             
##             
##             
##             
##   0.42      
##   0.06  0.68
##             
## Number of obs: 20284, groups:  fp, 70
## 
## Fixed effects:
##                         Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)             -0.26617    0.13650  37.96659  -1.950  0.05860 . 
## treat                   -0.14925    0.27301  37.96659  -0.547  0.58778   
## sess                    -0.26842    0.17489  35.98661  -1.535  0.13360   
## Emospider                1.60677    0.53667  39.50463   2.994  0.00473 **
## Emonegative              0.40088    0.33752  16.58090   1.188  0.25167   
## Emopositive              0.11616    0.30752  16.66537   0.378  0.71040   
## treat:sess               0.46054    0.34979  35.98661   1.317  0.19629   
## treat:Emospider         -0.05195    1.07334  39.50463  -0.048  0.96164   
## treat:Emonegative        0.13738    0.67504  16.58090   0.204  0.84121   
## treat:Emopositive        0.41937    0.61504  16.66537   0.682  0.50470   
## sess:Emospider           0.12642    0.32112  22.54868   0.394  0.69753   
## sess:Emonegative         0.08597    0.30794  15.75335   0.279  0.78375   
## sess:Emopositive         0.24476    0.99118 540.06088   0.247  0.80505   
## treat:sess:Emospider    -0.01792    0.64225  22.54868  -0.028  0.97799   
## treat:sess:Emonegative  -0.44355    0.61589  15.75335  -0.720  0.48196   
## treat:sess:Emopositive  -0.70398    1.98236 540.06084  -0.355  0.72264   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tidied_model <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

model table

table of labels

effectlbls <- data.frame(
  num = as.character(seq(1:16)), 
  original = tidied_model$term[1:16],
  standard = c("intercept (avr_treat, session (1), neutral)",
               "treatment (VRET vs IVET)",
               "session (2)",
               "emotion (spider)",
               "emotion (negative)",
               "emotion (positive)",
               "treatment (VRET vs IVET) x session",
               "treatment (VRET vs IVET) x emotion (spider)",
               "treatment (VRET vs IVET) x emotion (negative)",
               "treatment (VRET vs IVET) x emotion (positive)",
               "session x emotion (spider)",
               "session x emotion (negative)",
               "session x emotion (positive)",
               "treatment (VRET vs IVET) x session x emotion (spider)",
               "treatment (VRET vs IVET) x session x emotion (negative)",
               "treatment (VRET vs IVET) x session x emotion (positive)"),
  condition = c("treatment (avr_treat) / session (1) / emotion (neutral)",
                "treatment (VRET vs IVET) / sess (1) / emotion (neutral)",
                "treatment (avr_treat) / sess (2) / emotion (neutral)",
                "treatment (avr_treat) / sess (1) / emotion (spider)",
                "treatment (avr_treat) / sess (1) / emotion (negative)",
                "treatment (avr_treat) / sess (1) / emotion (positive)",
                "treatment (VRET vs IVET) / sess (2) / emotion (neutral)",
                "treatment (VRET vs IVET) / sess (1) / emotion (spider)",
                "treatment (VRET vs IVET) / sess (1) / emotion (negative)",
                "treatment (VRET vs IVET) / sess (1) / emotion (positive)",
                "treatment (avr_treat) / sess (2) / emotion (spider)",
                "treatment (avr_treat) / sess (2) / emotion (negative)",
                "treatment (avr_treat) / sess (2) / emotion (positive)",
                "treatment (VRET vs IVET) / sess (2) / emotion (spider)",
                "treatment (VRET vs IVET) / sess (2) / emotion (negative)",
                "treatment (VRET vs IVET) / sess (2) / emotion (positive)"),
  stringsAsFactors = F)
effectlbls %>%
  kable() %>%
  kable_styling()
num original standard condition
1 (Intercept) intercept (avr_treat, session (1), neutral) treatment (avr_treat) / session (1) / emotion (neutral)
2 treat treatment (VRET vs IVET) treatment (VRET vs IVET) / sess (1) / emotion (neutral)
3 sess session (2) treatment (avr_treat) / sess (2) / emotion (neutral)
4 Emospider emotion (spider) treatment (avr_treat) / sess (1) / emotion (spider)
5 Emonegative emotion (negative) treatment (avr_treat) / sess (1) / emotion (negative)
6 Emopositive emotion (positive) treatment (avr_treat) / sess (1) / emotion (positive)
7 treat:sess treatment (VRET vs IVET) x session treatment (VRET vs IVET) / sess (2) / emotion (neutral)
8 treat:Emospider treatment (VRET vs IVET) x emotion (spider) treatment (VRET vs IVET) / sess (1) / emotion (spider)
9 treat:Emonegative treatment (VRET vs IVET) x emotion (negative) treatment (VRET vs IVET) / sess (1) / emotion (negative)
10 treat:Emopositive treatment (VRET vs IVET) x emotion (positive) treatment (VRET vs IVET) / sess (1) / emotion (positive)
11 sess:Emospider session x emotion (spider) treatment (avr_treat) / sess (2) / emotion (spider)
12 sess:Emonegative session x emotion (negative) treatment (avr_treat) / sess (2) / emotion (negative)
13 sess:Emopositive session x emotion (positive) treatment (avr_treat) / sess (2) / emotion (positive)
14 treat:sess:Emospider treatment (VRET vs IVET) x session x emotion (spider) treatment (VRET vs IVET) / sess (2) / emotion (spider)
15 treat:sess:Emonegative treatment (VRET vs IVET) x session x emotion (negative) treatment (VRET vs IVET) / sess (2) / emotion (negative)
16 treat:sess:Emopositive treatment (VRET vs IVET) x session x emotion (positive) treatment (VRET vs IVET) / sess (2) / emotion (positive)

standard labels

table_model(get(model_name), 
            dv_labels = "only treat model",
            pred_labels = paste(effectlbls[,1], effectlbls[,3]))
  only treat model
Parameter B 95% CI SE t p
1 intercept (avr_treat, session (1), neutral) -0.27 -0.54 – 0.01 0.14 -1.95 0.059
2 treatment (VRET vs IVET) -0.15 -0.70 – 0.40 0.27 -0.55 0.588
3 session (2) -0.27 -0.62 – 0.09 0.17 -1.53 0.134
4 emotion (spider) 1.61 0.52 – 2.69 0.54 2.99 0.005
5 emotion (negative) 0.40 -0.31 – 1.11 0.34 1.19 0.252
6 emotion (positive) 0.12 -0.53 – 0.77 0.31 0.38 0.710
7 treatment (VRET vs IVET) x session 0.46 -0.25 – 1.17 0.35 1.32 0.196
8 treatment (VRET vs IVET) x emotion (spider) -0.05 -2.22 – 2.12 1.07 -0.05 0.962
9 treatment (VRET vs IVET) x emotion (negative) 0.14 -1.29 – 1.56 0.68 0.20 0.841
10 treatment (VRET vs IVET) x emotion (positive) 0.42 -0.88 – 1.72 0.62 0.68 0.505
11 session x emotion (spider) 0.13 -0.54 – 0.79 0.32 0.39 0.698
12 session x emotion (negative) 0.09 -0.57 – 0.74 0.31 0.28 0.784
13 session x emotion (positive) 0.24 -1.70 – 2.19 0.99 0.25 0.805
14 treatment (VRET vs IVET) x session x emotion (spider) -0.02 -1.35 – 1.31 0.64 -0.03 0.978
15 treatment (VRET vs IVET) x session x emotion (negative) -0.44 -1.75 – 0.86 0.62 -0.72 0.482
16 treatment (VRET vs IVET) x session x emotion (positive) -0.70 -4.60 – 3.19 1.98 -0.36 0.723
Random Effects
σ2 16.69
τ00 fp 0.44
τ11 fp.sess 0.87
τ11 fp.Emospider 16.53
τ11 fp.Emonegative 5.62
τ11 fp.Emopositive 4.70
τ11 fp.sess:Emospider 2.47
τ11 fp.sess:Emonegative 3.30
τ11 fp.sess:Emopositive 64.45
ρ01 0.38
0.21
0.12
0.55
-0.08
0.20
-0.11
ICC 0.59
N fp 70
Observations 20284
Marginal R2 / Conditional R2 0.011 / 0.591

condition labels

table_model(get(model_name), 
            dv_labels = "only treat model",
            pred_labels = paste(effectlbls[,1], effectlbls[,4]))
  only treat model
Parameter B 95% CI SE t p
1 treatment (avr_treat) / session (1) / emotion (neutral) -0.27 -0.54 – 0.01 0.14 -1.95 0.059
2 treatment (VRET vs IVET) / sess (1) / emotion (neutral) -0.15 -0.70 – 0.40 0.27 -0.55 0.588
3 treatment (avr_treat) / sess (2) / emotion (neutral) -0.27 -0.62 – 0.09 0.17 -1.53 0.134
4 treatment (avr_treat) / sess (1) / emotion (spider) 1.61 0.52 – 2.69 0.54 2.99 0.005
5 treatment (avr_treat) / sess (1) / emotion (negative) 0.40 -0.31 – 1.11 0.34 1.19 0.252
6 treatment (avr_treat) / sess (1) / emotion (positive) 0.12 -0.53 – 0.77 0.31 0.38 0.710
7 treatment (VRET vs IVET) / sess (2) / emotion (neutral) 0.46 -0.25 – 1.17 0.35 1.32 0.196
8 treatment (VRET vs IVET) / sess (1) / emotion (spider) -0.05 -2.22 – 2.12 1.07 -0.05 0.962
9 treatment (VRET vs IVET) / sess (1) / emotion (negative) 0.14 -1.29 – 1.56 0.68 0.20 0.841
10 treatment (VRET vs IVET) / sess (1) / emotion (positive) 0.42 -0.88 – 1.72 0.62 0.68 0.505
11 treatment (avr_treat) / sess (2) / emotion (spider) 0.13 -0.54 – 0.79 0.32 0.39 0.698
12 treatment (avr_treat) / sess (2) / emotion (negative) 0.09 -0.57 – 0.74 0.31 0.28 0.784
13 treatment (avr_treat) / sess (2) / emotion (positive) 0.24 -1.70 – 2.19 0.99 0.25 0.805
14 treatment (VRET vs IVET) / sess (2) / emotion (spider) -0.02 -1.35 – 1.31 0.64 -0.03 0.978
15 treatment (VRET vs IVET) / sess (2) / emotion (negative) -0.44 -1.75 – 0.86 0.62 -0.72 0.482
16 treatment (VRET vs IVET) / sess (2) / emotion (positive) -0.70 -4.60 – 3.19 1.98 -0.36 0.723
Random Effects
σ2 16.69
τ00 fp 0.44
τ11 fp.sess 0.87
τ11 fp.Emospider 16.53
τ11 fp.Emonegative 5.62
τ11 fp.Emopositive 4.70
τ11 fp.sess:Emospider 2.47
τ11 fp.sess:Emonegative 3.30
τ11 fp.sess:Emopositive 64.45
ρ01 0.38
0.21
0.12
0.55
-0.08
0.20
-0.11
ICC 0.59
N fp 70
Observations 20284
Marginal R2 / Conditional R2 0.011 / 0.591

interpretation

tm <- get(model_name) %>%
  broom.mixed::tidy(conf.int = TRUE)

The goal is to examine whether IVET and VRET differ from each other in spider (vs neutral) mean amps in the first session and between the first and second session (but not in any other picture category).

The formula was LPP ~ 1 + treat * sess * Emo + (1 + sess * Emo | fp).
Sess * Emo as random effects: This means that emo, session, and the 2-way interaction can differ between subjects.

Intercept = treatment(avr_treat) / session (1) / emotion (neutral).
avr_treat is the mean of IVET and VRET.

The effect for the intercept = -0.27. This is the mean amp for the intercept that contains the average across treatments in session 1 to neutral pictures.

The effect of the interaction is added to this together with lower-order terms to get the marginal mean. An interaction parameter is how much it differs from the lower order terms and the t test is for the null hypothesis that the difference between these parameters is 0. When testing higher effects, the lower effects are removed. That is, the higher effects test for something over and above the lower effects. Accordingly, the estimated marginal means are the intercept + lower effects + estimate for higher effect.

We want to see whether the groups showed higher amps to spiders than neutral pictures in session 1.

Emospider
In the model table with condition labels, this is number 4.

treatment (avr_treat) / sess (1) / emotion (spider).
- estimate: 1.61
- p value: 4.7331e-03
Indeed, mean amps are relatively positive to spiders.

Did the groups differ in how they responded to spiders versus neutral pictures in session 1? No. 

treat:Emospider
In the model table with condition labels, this is number 8.

treatment (VRET vs IVET) / sess (1) / emotion (spider).
- estimate: -0.05
- p value: 9.6164e-01

Did the effect of spiders differ between sessions: No difference!

sess:Emospider
In the model table with condition labels, this is number 11.

treatment (avr_treat) / sess (2) / emotion (spider).
- estimate: 0.13
- p value: 6.9753e-01

Critically, did this effect vary with treatment? No difference!

treat:sess:Emospider
In the model table with condition labels, this is number 14.

treatment (VRET vs IVET) / sess (2) / emotion (spider).
- estimate: -0.02
- p value: 9.7799e-01

estimated means

data %>%
  modelr::data_grid(treat, Emo, sess) %>%
  mutate(marginal_mean = predict(get(model_name), ., re.form = NA),
         treat = ifelse(treat == -.5, "IVET", "VRET"),
         sess = ifelse(sess == 0, "1", "2")) %>%
  pivot_wider(names_from = Emo, values_from = marginal_mean) %>%
  kable(digits = 2) %>%
  kable_styling()
treat sess neutral spider negative positive
IVET 1 -0.19 1.44 0.14 -0.29
IVET 2 -0.69 1.08 -0.05 -0.19
VRET 1 -0.34 1.24 0.13 -0.01
VRET 2 -0.38 1.32 -0.05 -0.16

Bayes

only spider and neutral

gaussian model

detect_treat <- detect_only_treat_recode %>% 
  select(Emo, EPN, LPP, fp, sess, treat) %>% 
  filter(Emo %in% c('spider', 'neutral')) %>% 
  mutate(fp = as.factor(fp),
         Emo = factor(Emo, levels = c('neutral','spider'))) %>% 
  na.omit()
# Regression Model.
LPP.treat.model <- brm(LPP ~ 1 + treat*sess*Emo + (1 + sess*Emo | fp), 
                       family = gaussian(),
                       data = detect_treat,
                       prior = c(prior(normal(0, 4), class = Intercept),
                                 prior(normal(0, 4), class = b)),
                       chains = 4,
                       file = "results/models/LPP.treat.model", 
                       # file to save/reuse model
                       cores = 4, 
                       iter = 3000,
                       warmup = 1000,
                       init_r = 0.5,
                       save_pars = save_pars(all = TRUE))
# Model Summary.
summary(LPP.treat.model)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: LPP ~ 1 + treat * sess * Emo + (1 + sess * Emo | fp) 
##    Data: detect_treat (Number of observations: 10145) 
##   Draws: 4 chains, each with iter = 3000; warmup = 1000; thin = 1;
##          total post-warmup draws = 8000
## 
## Group-Level Effects: 
## ~fp (Number of levels: 70) 
##                               Estimate Est.Error l-95% CI u-95% CI Rhat
## sd(Intercept)                     0.70      0.13     0.46     0.97 1.00
## sd(sess)                          0.49      0.21     0.06     0.89 1.00
## sd(Emospider)                     1.22      0.21     0.85     1.66 1.00
## sd(sess:Emospider)                0.81      0.32     0.15     1.43 1.00
## cor(Intercept,sess)              -0.24      0.32    -0.72     0.50 1.00
## cor(Intercept,Emospider)          0.18      0.23    -0.26     0.62 1.00
## cor(sess,Emospider)              -0.19      0.31    -0.75     0.48 1.01
## cor(Intercept,sess:Emospider)    -0.33      0.28    -0.82     0.24 1.00
## cor(sess,sess:Emospider)          0.27      0.35    -0.46     0.87 1.00
## cor(Emospider,sess:Emospider)    -0.45      0.25    -0.82     0.17 1.00
##                               Bulk_ESS Tail_ESS
## sd(Intercept)                     4022     5894
## sd(sess)                           997      942
## sd(Emospider)                     3558     5699
## sd(sess:Emospider)                 903     1316
## cor(Intercept,sess)               2836     2829
## cor(Intercept,Emospider)          1722     3494
## cor(sess,Emospider)                852     1073
## cor(Intercept,sess:Emospider)     2812     4190
## cor(sess,sess:Emospider)          1495     2570
## cor(Emospider,sess:Emospider)     3669     3809
## 
## Population-Level Effects: 
##                      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept               -0.27      0.14    -0.55     0.02 1.00     5930
## treat                   -0.17      0.29    -0.74     0.40 1.00     6077
## sess                    -0.29      0.15    -0.60     0.01 1.00     9030
## Emospider                1.64      0.23     1.20     2.09 1.00     5680
## treat:sess               0.51      0.31    -0.09     1.12 1.00     7133
## treat:Emospider         -0.08      0.45    -0.99     0.80 1.00     6774
## sess:Emospider           0.08      0.23    -0.37     0.53 1.00     7294
## treat:sess:Emospider     0.03      0.46    -0.88     0.91 1.00     8037
##                      Tail_ESS
## Intercept                6006
## treat                    5598
## sess                     6688
## Emospider                5623
## treat:sess               5640
## treat:Emospider          6084
## sess:Emospider           5998
## treat:sess:Emospider     6145
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     4.07      0.03     4.01     4.12 1.00    16735     5357
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Bayes factor

only spider and neutral

computations

null.treat.model <- brm(LPP ~ 1 + (1 + sess*Emo | fp),
                        family = gaussian(),
                        data = detect_treat,
                        prior = prior(normal(0, 4), class = Intercept),
                        chains = 4,
                        file = "results/models/LPP.treat.null", 
                        # Specify file to save/reuse model
                        cores = 4, 
                        iter = 3000,
                        warmup = 1000,
                        init_r = 0.5,
                        save_pars = save_pars(all = TRUE))
sess_emo.treat.model <- brm(LPP ~ 1 + sess*Emo + (1 + sess*Emo | fp),
                            family = gaussian(),
                            data = detect_treat,
                            prior = c(prior(normal(0, 4), class = Intercept),
                                      prior(normal(0, 4), class = b)),
                            chains = 4,
                            file = "results/models/LPP.treat.sess_emo", 
                            cores = 4, 
                            iter = 3000,
                            warmup = 1000,
                            save_pars = save_pars(all = TRUE))
emo.treat.model <- brm(LPP ~ 1 + Emo + (1 + sess*Emo | fp),
                       family = gaussian(),
                       data = detect_treat,
                       prior = c(prior(normal(0, 4), class = Intercept),
                                 prior(normal(0, 4), class = b)),
                       chains = 4,
                       file = "results/models/LPP.treat.emo", 
                       cores = 4, 
                       iter = 3000,
                       warmup = 1000,
                       save_pars = save_pars(all = TRUE))

Compute bayes factor approximations (via bridge sampling)

# Bayes factor comparisons are in favor of alternative hypothesis.
full.treat.bayes <- bayes_factor(LPP.treat.model, null.treat.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
sess_emo.treat.bayes <- bayes_factor(sess_emo.treat.model, null.treat.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
emo.treat.bayes <- bayes_factor(emo.treat.model, null.treat.model)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 892
## Iteration: 893
## Iteration: 894
## Iteration: 895
## Iteration: 896
## Iteration: 897
## Iteration: 898
## Iteration: 899
## Iteration: 900
## Iteration: 901
## Iteration: 902
## Iteration: 903
## Iteration: 904
## Iteration: 905
## Iteration: 906
## Iteration: 907
## Iteration: 908
## Iteration: 909
## Iteration: 910
## Iteration: 911
## Iteration: 912
## Iteration: 913
## Iteration: 914
## Iteration: 915
## Iteration: 916
## Iteration: 917
## Iteration: 918
## Iteration: 919
## Iteration: 920
## Iteration: 921
## Iteration: 922
## Iteration: 923
## Iteration: 924
## Iteration: 925
## Iteration: 926
## Iteration: 927
## Iteration: 928
## Iteration: 929
## Iteration: 930
## Iteration: 931
## Iteration: 932
## Iteration: 933
## Iteration: 934
## Iteration: 935
## Iteration: 936
## Iteration: 937
## Iteration: 938
## Iteration: 939
## Iteration: 940
## Iteration: 941
## Iteration: 942
## Iteration: 943
## Iteration: 944
## Iteration: 945
## Iteration: 946
## Iteration: 947
## Iteration: 948
## Iteration: 949
## Iteration: 950
## Iteration: 951
## Iteration: 952
## Iteration: 953
## Iteration: 954
## Iteration: 955
## Iteration: 956
## Iteration: 957
## Iteration: 958
## Iteration: 959
## Iteration: 960
## Iteration: 961
## Iteration: 962
## Iteration: 963
## Iteration: 964
## Iteration: 965
## Iteration: 966
## Iteration: 967
## Iteration: 968
## Iteration: 969
## Iteration: 970
## Iteration: 971
## Iteration: 972
## Iteration: 973
## Iteration: 974
## Iteration: 975
## Iteration: 976
## Iteration: 977
## Iteration: 978
## Iteration: 979
## Iteration: 980
## Iteration: 981
## Iteration: 982
## Iteration: 983
## Iteration: 984
## Iteration: 985
## Iteration: 986
## Iteration: 987
## Iteration: 988
## Iteration: 989
## Iteration: 990
## Iteration: 991
## Iteration: 992
## Iteration: 993
## Iteration: 994
## Iteration: 995
## Iteration: 996
## Iteration: 997
## Iteration: 998
## Iteration: 999
## Iteration: 1000
## Iteration: 1
full.treat.bayes
## Estimated Bayes factor in favor of LPP.treat.model over null.treat.model: 35070233.10941
sess_emo.treat.bayes
## Estimated Bayes factor in favor of sess_emo.treat.model over null.treat.model: 229742538642.90051
emo.treat.bayes
## Estimated Bayes factor in favor of emo.treat.model over null.treat.model: 3152655368753433.50000

compare with null

tibble(model = c("TreatxSessxEmo", "SessxEmo", "Emo"),
       Compared_To_Null = format(c(full.treat.bayes$bf, 
                                   sess_emo.treat.bayes$bf, 
                                   emo.treat.bayes$bf), scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Null
TreatxSessxEmo 3.507023e+07
SessxEmo 2.297425e+11
Emo 3.152655e+15

compare with Treat x Sess x Emo

tibble(model = c("TreatxSessxEmo", "SessxEmo", "Emo"),
       Compared_To_Treat.Sess.Emo = 
         format(c(full.treat.bayes$bf/full.treat.bayes$bf, 
                  sess_emo.treat.bayes$bf/full.treat.bayes$bf, 
                  emo.treat.bayes$bf/full.treat.bayes$bf),
                                           scientific = TRUE),
       BF01 = 
         format(c(full.treat.bayes$bf/full.treat.bayes$bf, 
                  full.treat.bayes$bf/sess_emo.treat.bayes$bf, 
                  full.treat.bayes$bf/emo.treat.bayes$bf),
                                           scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Treat.Sess.Emo BF01
TreatxSessxEmo 1.000000e+00 1.000000e+00
SessxEmo 6.550927e+03 1.526502e-04
Emo 8.989548e+07 1.112403e-08

compare with Sess x Emo

tibble(model = c("TreatxSessxEmo", "SessxEmo", "Emo"),
       Compared_To_Sess.Emo = format(c(full.treat.bayes$bf/sess_emo.treat.bayes$bf, 
                                       sess_emo.treat.bayes$bf/sess_emo.treat.bayes$bf,
                                       emo.treat.bayes$bf/sess_emo.treat.bayes$bf),
                                     scientific = TRUE),
       BF01 = format(c(sess_emo.treat.bayes$bf/full.treat.bayes$bf, 
                       sess_emo.treat.bayes$bf/sess_emo.treat.bayes$bf,
                       sess_emo.treat.bayes$bf/emo.treat.bayes$bf),
                                     scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Sess.Emo BF01
TreatxSessxEmo 1.526502e-04 6.550927e+03
SessxEmo 1.000000e+00 1.000000e+00
Emo 1.372256e+04 7.287271e-05

compare with Emo

tibble(model = c("TreatxSessxEmo", "SessxEmo", "Emo"),
       Compared_To_Emo = format(c(full.treat.bayes$bf/emo.treat.bayes$bf, 
                                  sess_emo.treat.bayes$bf/emo.treat.bayes$bf, 
                                  emo.treat.bayes$bf/emo.treat.bayes$bf),
                                scientific = TRUE),
       BF01 = format(c(emo.treat.bayes$bf/full.treat.bayes$bf, 
                       emo.treat.bayes$bf/sess_emo.treat.bayes$bf, 
                       emo.treat.bayes$bf/emo.treat.bayes$bf),
                                scientific = TRUE)) %>% 
  kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                full_width = F, position = 'left')
model Compared_To_Emo BF01
TreatxSessxEmo 1.112403e-08 8.989548e+07
SessxEmo 7.287271e-05 1.372256e+04
Emo 1.000000e+00 1.000000e+00

check assumptions

Linear regression has these assumptions:

  1. Linear association
  2. Normality of residuals
  3. No heteroskedasticity
  4. No multicollinearity
linearity
# Check linearity
na.omit(detect_treat) %>%
  add_residual_draws(LPP.treat.model, ndraws = 1) %>%
  ggplot(aes(x = .row, y = .residual)) +
  stat_pointinterval()

normality
# Check normality
na.omit(detect_treat) %>%
  add_residual_draws(LPP.treat.model, ndraws = 1) %>%
  median_qi() %>%
  ggplot(aes(sample = .residual)) +
  geom_qq() +
  geom_qq_line()

multicollinearity
# Check vif and tolerance
check_collinearity(LPP.treat.model)