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Abstract 
We theoretically explore the interrelations between population (P), affluence (A), and 
technology (T) for various environmental impacts (I), using IPAT-type modelling. To 
illustrate differences across environmental dimensions, climate and land use impacts were 
modelled using middle-of-the-road projections for population and per capita income. 
Different forecasting methods were implemented, including historical extrapolations, models 
based on stochastic IPAT (STIRPAT), and technological forecasting trajectories in the 
literature. The different approaches were compared within the IPAT framework. We also 
explored consequences of alternative trajectories for P, A and T, and we discussed 
implications for reaching global goals, with a basis in our modelling. Further, our findings 
were analysed in light of three theories in environmental sociology that give different 
emphasis on the different components of IPAT. We argue that the large technological 
mitigation assumed in many forecasts makes affluence and population relatively irrelevant 
for climate change. However, both factors will likely be influential determinants of land use 
impact in the twenty-first century. 

Keywords: IPAT, environmental Kuznets curve (EKC), green growth, human ecology, 
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Introduction 

For more than half a century, environmental sciences have highlighted how increasing 

consumption contribute to environmental problems. In an influential school of thought, such 

impacts have been conceptualized as the product of the number of people (P), per capita 

affluence (A), and a conversion factor (T) that translates consumption into environmental 

impact (I). Ehrlich and Holdren (1971) and Commoner (1971) introduced the IPAT identity to 

illustrate this point. This conceptualization has been influential in both theoretical work and 

empirical studies relating to the sources of the world’s growing environmental problems. A 

further development of the IPAT with respect to carbon emissions was created by Kaya and 

Yokobori (1997) that distinguished between energy use per unit of consumption and the carbon 

intensity of energy consumption. 

For many environmental problems, the historical empirical evidence of a strongly 

positive correlation between environmental impact and both population and affluence is 

relatively robust. Over the last decade, more scientists and social scientists have highlighted 

the importance of population for many contemporary environmental challenges (Bongaarts & 

O’Neill, 2018; Lidicker, 2020). Other researchers have focused primarily on consumption and 

downplayed the role of the population in many environmental problems (Wiedmann et al., 

2020). The IPAT framework have been used to draw attention to the implications of increasing 

economic and population growth for different kinds of environmental challenges. Early 

research on IPAT-type relationships generally argued for either population policy (smaller P) 

or reduced economic growth and consumption (smaller A) as possible solutions to 

environmental problems. For example, Ehrlich and Holdren’s (1971) original work focused on 

meeting future environmental challenges by limiting population growth. In contrast, more 

recent research has primarily focused on technological solutions to environmental problems, 

seeing mitigation through affluence or population as infeasible or indefensible.  
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In this article, we take a theoretical approach in which we use IPAT-type modelling to 

examine how IPAT-based reasoning gives different answers depending on the environmental 

issue at hand. Instead of using IPAT to motivate why any one part of the identity is a universal 

tool to understand all kinds of environmental challenges (which is how IPAT-based arguments 

have often been used in the past), we show that IPAT is perhaps equally or more useful to 

understand how diverse environmental dimensions relate to various part of the identity. 

Further, we point out the usefulness of examining a number of models of environmental impact, 

such as forecasts by the Intergovernmental Panel on Climate Change’s (IPCC), into the IPAT-

framework to better understand how their implications. This illustrates the importance of 

considering the specifics of each environmental challenge. We look at a variety of aspects, such 

as time scales, possibilities for technological solutions, as well as the elasticity of impact with 

respect to population and consumption. This way, we show why population and affluence may 

have different relevance for different types of challenges.  

We created IPAT-type models for climate impact and land use change using mainstream 

population and income projections with a set of different assumptions for how to calculate the 

T factor in IPAT. We then modelled alternative population, affluence and technology 

trajectories and discussed their implications for finding sustainable solutions ahead. These 

environmental dimensions represent two of the most critical challenges facing humanity in the 

twenty-first century. They both constitute issues in which human transgressions risk 

destabilizing the Earth System, according to the planetary boundaries framework (Rockström 

et al., 2009; Steffen et al., 2015). Land use is also closely linked to another urgent planetary 

boundary, biosphere integrity, because biodiversity loss is to a large extent attributable to 

habitat destruction by means of forest conversion to farmland (Dasgupta, 2021).  

However, while both climate and land systems change are urgent issues, they have 

different underlying causes and implications. This suggests that IPAT-based projections of 
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these two challenges will look very distinct. In terms of drivers, a notable difference is that 

land use impact is dominated by agriculture and forestry, whereas the climate change has 

additionally been attributed to four other sectors (energy systems, industry, buildings, and 

transport) (IPCC, 2022). Moreover, climate and land use contrast in how researchers judge the 

feasibility to decouple impact from consumption. For climate impact, many countries have 

given zero-emission pledges, and mainstream models typically include global near zero-

emissions at some point in this century (IPCC, 2022). Even though historical trends are often 

not compatible with decoupling environmental impacts from population and affluence growth 

(Haberl et al., 2020), many researchers see the IPCC scenarios as feasible, though challenging 

to reach. In contrast, land use challenges are much less explored, and in the available literature 

researchers have highlighted substantial challenges in reversing the increasing human land use 

impact (Bimonte & Stabile, 2017; Pontarollo & Serpieri, 2020). Thus, our cases serve as 

illustrations for different scenarios in which the possibility to decouple consumption from 

environmental impact differ.  

Through this article, we aim to provide a better theoretical understanding of how the 

effects of population, affluence, and technological mitigation could be substantively different 

across different forms of environmental stress. Using an IPAT-based approach, we hope to give 

a better theoretical and conceptual illustration of how and why population and affluence will 

vary in significance depending on the context. We believe that this can help clarify, for 

example, why population policy has often been shown to be of limited relevance when it comes 

to climate change (e.g., Budolfson & Spears (2021)), while it could still be of importance for 

other environmental issues. In the rest of this article we present background and theory in 

relation to the IPAT-equation (Section 2), the methodology that we used, with underlying 

models and empirical inputs (Section 3), the results of the modelling (Section 4), and a 

discussion and concluding commentary around their implications (Section 5).  
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Theoretical and empirical background 

A large body of literature has in different ways connected economic growth and population 

growth to environmental impacts. In this section, we highlight important concepts and 

theoretical perspectives in this research. 

 

Economic growth and environmental impact 

A universal finding in studies of human environmental impacts is that they are tightly linked 

to economic consumption, and that richer countries, because they consume more, have larger 

impact than poorer ones (York et al., 2004). Contemporary societies also have a vastly larger 

impact than historical societies with lower incomes, both in total and per capita. Most research 

also suggests that, while environmental consequences tend to increase with income, the rise is 

less than linear with economic growth (Haberl et al., 2020; Vadén et al., 2020; York et al., 

2003b). A society that doubles its income will increase its environmentally harmful 

consumption less than twice as much. 

Several theoretical concepts have been introduced to relate economic growth to impact. 

First presented by Grossman & Krueger (1991), the environmental Kuznets curve (EKC) 

describes a societal evolution where the relationship between environmental impact and 

affluence has an inverse U-shape, with less environmental degradation in more affluent 

societies. It parallels the Kuznets (1955) curve which linked income inequality to economic 

growth. Related, green growth, or green economy, is a concept introduced by Pearce et al. 

(1989) to describe scenarios where increased affluence is not related to increased 

environmental consumption. Different explanations for the EKC and green growth include a 

growth in scale of the economy, a change in its composition in terms of structural shifts from 

agrarian to industrial to information-intensive service-based, as well as the adoption of novel 
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environmentally-friendly production techniques, policies, or investments (Antweiler et al., 

2001; Coxhead, 2003; Panayotou, 1993; Shafik & Bandyopadhyay, 1992; Stern, 2004). In their 

background study for the World Development Report 1992, Shafik and Bandyopadhyay (1992) 

reported strong support for the EKC (also discussed in Shafik (1994)). In later work, a range 

of studies have found empirical support for EKC in different contexts (Cole, 2003; Grossman 

& Krueger, 1995; Lean & Smyth, 2010), as reviewed in Tan et al. (2014). For example, Lean 

and Smyth (2010) found that long-run estimates supported EKC in a study of five Association 

of Southeast Asian Nations (ASEAN) countries from 1980 to 2006. However, as highlighted 

by Stern (2004), the EKC may not apply to all types of environmental impacts. 

One can further distinguish between a weak and a strong version of green growth and 

decoupling. In the weak format, this notion simply means that as societies get richer, the 

relative impact of increased affluence gets lower. Hence, impact increases less than 

proportional to affluence. The stronger version implies that richer societies also have a lower 

absolute impact. This can be conceptualized as a situation in which the elasticity between 

affluence and impact transforms fundamentally, not only from a value between zero and one, 

but to a negative value at some (high) level of affluence. The weak case can be described as 

relative decoupling, and the strong case as absolute decoupling. While the evidence for relative 

decoupling is strong across many environmental impacts, it is weak for absolute, sector-wide 

decoupling at the global level. Likewise, the EKC is supported for specific forms of 

environmental stress in certain regional contexts (Haberl et al., 2020).  

Specifically, few or no studies have found evidence of absolute decoupling at the global 

level for either climate change or land use, although there are examples at the national level, 

especially in the former case (Vadén et al., 2020). For example, a recent study based on data 

from the 1960s to 2015 in the Nordic countries reported that EKC was observed for per capita 

carbon dioxide (CO2) emissions in Denmark, Finland, Iceland, and Sweden, but not in Norway 
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(Urban & Nordensvärd, 2018). A literature review of research in 27 advanced economies found 

that the majority (41 of 55) of the examined studies had found support for the EKC hypothesis 

and absolute decoupling for CO2
 emissions and gross domestic product (GDP) at national levels 

(Al-Mulali & Ozturk, 2016). 

Studies of the relationship between land use and affluence are rarer and have a narrower 

scope. In this literature, the evidence presented often does not support the EKC. For example, 

Pontarollo and Serpieri (2020) studied residential built-up land for 42 Romanian counties from 

2000–2014 and found an inverted EKC. These results agreed with earlier work relating land 

consumption and per capita GDP in 20 Italian regions over the period 1980–2010 (Bimonte & 

Stabile, 2017). The latter study instead reported an N-shaped curve with increasing impacts for 

very high levels of affluence.  

As we will illustrate later in our IPAT models, some climate forecasting approaches 

imply absolute decoupling, while many other scenarios for climate change and land use imply 

relative, but not absolute, decoupling.   

Population influences on the environment 

Links between population growth, population size, land use, productivity and wages go back 

to classical economic writing on the links between population and economy by economists and 

demographers such as Malthus (1798). During the 1960s and 1970s, when human population 

growth reached its historical maximum (Lam, 2011), there was growing concern that this aspect 

was a major cause of environmental problems. The theoretical perspectives we apply in this 

article, most predominantly the IPAT equation, originate from this period. Many of the worst 

predictions from this time did not come true (Lam, 2011), although subsequent research has 

confirmed a link between population size and environmental impact (York, Rosa, & Dietz 

2003). 
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More recently, many studies have empirically assessed the association between 

population growth and environmental impact at the regional, national, and global levels. 

Broadly, while estimates of the elasticity between affluence and environmental impact vary 

widely, both empirical and theoretical discussions of the link between population size and 

environmental impact have often found that the relationships are close to one (York, Rosa, & 

Dietz 2003). That is, everything else being equal, most environmental impacts are directly 

proportional to population size. Note that these calculations account for the effect of population 

net of the level of affluence, so an individual in a high-income society still contributes more to 

environmental problems than someone in a low-income society. The evidence for relationships 

that diverge distinctly from one is rather limited (Rosa et al., 2004), even though one can 

theoretically expect elasticates to vary. Elasticities above one could apply if new, low-quality 

land is needed for a given unit of consumption after a certain amount of high-quality land has 

been used. Lower elasticities might be valid if higher population densities lead to more efficient 

societal organization.  

Social theories on population, affluence, and impact 

York et al. (2003a) related IPAT to three different social theories that concern the role of 

consumption and population in confronting environmental challenges. First, the human 

ecology, or neo-Malthusian view, highlights that population growth is a key driver of 

anthropogenic environmental impact. According to this viewpoint, environmental conditions 

determine human development, and in an IPAT model, there is a positive, linear relationship 

between population and total impact. This is close to how the IPAT was originally introduced 

by Ehrlich and Holdren (1971). 

Second, modernization, or environmental economics from a neo-classical perspective, 

asserts that environmental challenges can largely be solved through current social, political, 

and economic institutions (York et al., 2003a). Accordingly, this view argues that current levels 
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of economic growth, capitalism, and globalization can be maintained without fundamentally 

harming the Earth System. This theory hence implies a relationship between environmental 

quality and economic development that reflects green growth or EKC. Modernization implies 

that IPAT models generate values of I that is curvilinear with income, that is, above a certain 

level of income, I decreases, despite that A increases. Such relationships have been shown to 

hold for some pollutants, for instance air pollution in the form of sulphur dioxide (Grossman 

& Krueger, 1991), while there is less evidence for sector-wide decoupling, as discussed above.  

Third, the political economy perspective holds that economic production is the most 

important factor (York et al., 2003a). This position maintains that neither technological 

development nor political reforms will suffice to adequately reduce environmental impact. As 

producers develop technology and other methods to reduce labour costs, they will increase the 

use of shared, ecological resources, which implies that environmental externalities are 

inevitable. Economic elites will not internalize costs voluntarily, and their political power will 

challenges any reform to fundamentally change this structure (York et al., 2003a). This 

perspective maintains that even technology that reduces environmental impacts will in the end 

increase damage because the increases in profits will be used to escalate growth and thus 

increase environmental impacts. The only solution is an end to economic growth. The 

perspective is thus consistent with the degrowth perspective and a fundamental restructuring 

of society. Hence, in IPAT models, this suggests that for total environmental impact (I) to 

decrease, affluence (A) inevitably has to decrease as well. 

IPAT and STIRPAT frameworks 

In the early 1970s, Ehrlich and Holdren  (1971) and Commoner (1971) introduced the IPAT 

equation to elucidate the relationship between population, affluence, and impacts (Chertow, 

2000):  
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𝐼𝐼 =  𝑃𝑃𝑃𝑃𝑃𝑃    (1) 

 

where I represents the total environmental impact, P is population, A is affluence, and T is 

impact per unit of economic activity. This equation has been challenged as a simplification 

because interactions and dependencies may occur between A, P, and T; nevertheless, while any 

interpretations of results deriving from IPAT will have to relate to such aspects, this equation 

formalizes essential components of the relationship between environmental impact and 

population, consumption, and technological development. Chertow (2000) provided a 

discussion around strengths and weaknesses relating to various versions of IPAT in the 

literature.  

IPAT implies, by design, that the different factors contribute equally to environmental 

impacts, and so it does not allow for hypothesis testing of their respective contributions. To 

address this limitation, Dietz and Rosa (1997) developed a stochastic form of IPAT, Stochastic 

Impacts by Regression on Population, Affluence, and Technology (STIRPAT). This model 

does not presume a priori functional relationships between P, A, and T, and instead it considers 

that these associations can be estimated from data: 

𝐼𝐼 =  𝑎𝑎𝑎𝑎𝑏𝑏𝐴𝐴𝑐𝑐𝑇𝑇𝑑𝑑𝑒𝑒      (2) 

where a scales the model, 𝑏𝑏, 𝑐𝑐, and d denote coefficients of P, A, and T, respectively, and e is 

a random error term. The coefficients are similar to elasticities in economics, as they reflect 

the degree to which a percentage change in the explanatory variable generates a percentage 

change in impact. York et al. (2003b) introduced the notion of ecological elasticity as the 

responsiveness of an environmental effect to a change in any of the driving forces, specifically 

population elasticity of impact, b, and affluence elasticity of impact, c, in eq. 2.  
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STIRPAT implies that if the elasticity is null, impacts are not affected by changes in 

population or affluence. If it is one, then there is a proportional relationship between factors, 

that is, a 1% change in population (𝑏𝑏 = 1) or income (𝑐𝑐 = 1) results in a 1% change in impact, 

while higher values imply that impacts grow faster than the driving factor (York et al., 2003a). 

For climate, this could apply if higher incomes increase the demand for products with higher 

carbon impact, such as airfare. For land use, it may be valid if higher incomes lead to more 

demand for products and services that increase deforestation. Values above zero and below one 

indicate inelastic relationships with impacts that are less reactive. This may happen if higher 

incomes increase the demand for products with lower environmental impacts, such as services. 

Values of b and c below zero mean that environmental impacts decrease when population and 

affluence increase. This would imply that increasing populations and income levels enable 

disruptive innovations that fundamentally alter the way humans impact the environment. In 

IPAT, the coefficients and the error term equal unity. 

 STIRPAT has been applied to quantify the relationship between environmental impact, 

population, and affluence in different contexts (Dietz & Rosa, 1997; Rosa et al., 2004; Shi, 

2003; York et al., 2003a). In addition to such historical assessments, STIRPAT-type models 

have been used for projections. For example, Liddle (2011) projected carbon emissions from 

transport and residential electricity in different OECD countries from 2010 to 2050. Several 

related studies have addressed China’s carbon emissions in the coming century (Fan & Lu, 

2022; Li et al., 2016). Li et al. (2016) predicted China’s GHG emissions from 2015 to 2035, 

with parameters deriving from a STIRPAT-based analysis of data from 1998 to 2014. They 

made projections based on three emission scenarios, and they considered variations in 

population, affluence, carbon emission intensity, urbanization, energy consumption structure, 

and economic structure (Li et al., 2016). The current study builds on this work, although it 

evaluates two environmental dimensions and three forecasting approaches. 
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Methods and empirical inputs  

We developed broad, quantitative projections of climate impact and land use impact between 

2020 and 2100 using IPAT as the theoretical foundation. Specifically, we evaluated normalized 

trajectories of impact, 𝐼𝐼 
𝐼𝐼0

, population, 𝑃𝑃 
𝑃𝑃0

, affluence, 𝐴𝐴 
𝐴𝐴0

, and technological development, 𝑇𝑇 
𝑇𝑇0

, where 

subscripts with 0 represent the values of I, P, A and T in 2020, our base year. For population 

and affluence we relied on generic, commonly cited middle-of-the-road forecasts in the 

literature. Regarding P, we used the United Nations (UN) World Population Prospects (WPP) 

Medium variant (2022). This is the main forecast of the UN’s Population division, and it is 

based on qualitative expert-based assessments of likely future population trajectories on a 

country-by-country basis. For projections of A, we used global GDP in IPCC’s middle-of-the-

road scenario Shared Socioeconomic Pathway 2 (SSP2) (Dellink et al., 2017; Fricko et al., 

2017; Riahi et al., 2017). These data were obtained from the © SSP Public Database, hosted by 

the International Institute for Applied Systems Analysis (IIASA) (2023).  

 The last part of IPAT, T, is inherently difficult to measure and predict, because it relates 

to a multitude of processes, such as the demand and consumption of various products and 

services, the adoption of environmental policies (public and organizational), and the 

development of technologies that allow actors to produce a given amount of outcome with less 

impact. In this article, we have therefore used a set of model families that can be seen as 

different methods for estimating T. Grounded in the literature, they represent three distinct 

conceptual approaches. The first is centred around the continuation of current trends for T at a 

constant rate, which is invariable with P and A. The second accounts for elasticities between 

environmental impact and population as well as affluence, and it implies that the T trajectory 

varies with P and A. The third is based on more elaborate forecasts developed in SSP2. The 

three approaches are summarized in Table 1 and will be described in the following subsections. 
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Table 1. Assumptions in our three different approaches to develop trajectories for T. 

Approach Explanation 

1) Historical 

trends 

Historical trends in annual impact per level of GDP, in which changes in T are 

estimated from observed changes in I and GDP. The T derived from the historical 

data is then assumed in the future, given our assumed trajectories for A and P. 

2) STIRPAT-

derived  

STIRPAT with estimated elasticities in the literature, 𝑏𝑏 and 𝑐𝑐 in eq. 3 and 4, in 

combination with assumed projections for P and A. Here, T depends explicitly on 

P and A. 

3) Literature 

forecasts 

Trajectories of I are taken from existing scenarios that directly model impact. They 

are then used with our trajectories for P and A to calculate projections for T. 

 

Approach 1: Historical trends 

In our first approach to calculate T-trajectories, we used estimates on climate and land use 

impact in the literature and we fitted a value of T based on these historical data. This approach 

was based on the assumption that technological advancements in the form of reduced 

environmental impact per unit of production will be fixed. Further, T will be independent of 

how A and P changes in the future, although its value is derived from how I, P and A have 

changed historically. Thus, this approach assumes that T will reduce at a constant rate that 

reflects average annual improvements in recent history.  

For climate impact, we used data accounting for global GDP (International Monetary 

Fund (IMF), 2022) and emissions from all greenhouse gases (GHG) in units of gigatons (Gton) 

of CO2-equivalents (CO2e) (Climate Watch, 2022) (Table 2). These data implied an average 

decline in emissions of 3.00% per year between 1990 and 2019. In our models (Approach 1), 

we set the annual T reduction to this value. This was consistent with literature estimates, for 
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example the International Energy Agency (2022) reported that the emissions intensity of GDP 

declined by approximately 3% per year in the U.S and the E.U (2010-2021), and by 40% in 

China between 2000-2021 (i.e., around 3% per year).  

 

Table 2. Global historical GDP and GHG calculated as CO2e measured in 1990 and 2019. These data 

were used to generate models based on historical trends (Approach 1). 

Dimension 

IPAT-

entry 1990 2019 

Comment 

Climate impact [Gton 

CO2e] 

I 

32.52 49.76 

Historical GHG calculated as CO2-

equivalents (Climate Watch, 2022). 

GDP [billion (bn) US$ 

2022 prices] 

P×A 

23,663 87,654 

World Economic Outlook Database October 

2022, global GDP (International Monetary 

Fund (IMF), 2022). 

Carbon intensity [Gton 

CO2e per bn US$] 

T 

1.37 0.57 

An average decrease by 3.00% per year. 

 

Regarding land use impact, we accounted for estimates by the Food and Agriculture 

Organization (FAO) regarding the amount of arable land used for crop production in 1961/1963 

(1,372 million hectares (mn ha)) as compared with 2005/2007 (1,592 mn ha). This resulted in 

an average decrease of 3.2% per year (Alexandratos & Bruinsma, 2012) (Table 3). We used 

this value in our land use models (Approach 1). It was relatively consistent with literature 

findings, for example Lamb et al. (2021) reported that the land needed per unit of agricultural 

and forestry production declined by in average 2.7% annually between 2010 and 2017.  
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Notably, the calculation of total land use impact in this approach responds to population 

growth and affluence. An important assumption when fitting this value to an IPAT framework 

and setting T = I/(A×P) is that total environmental impact has been a function of economic 

consumption historically. This assumes that changes in GDP per capita drive land use change, 

which is appropriate if human land use is proportional to economic activity. However, if 

humanity is instead seen in a more ecological sense, in which each human has similar caloric 

needs, land use needs are probably very similar across all levels of affluence. Most likely, the 

reality is somewhere in between and varies for different types of land use. Another association 

between land use and affluence is reflected in our STIRPAT estimates, as shown below. 

 

Table 3. Global area of arable land used for crop production and GDP in the 1960s and 2000s, which 

were used to calculate models based on historical trends (Approach 1). 

Dimension  IPAT-

entry 

1961/ 

1963 

2005/ 

2007 

Comment 

Crop land use 

[million (mn) ha] 

I 1,372 1,592 Arable land for crop production in hectares 

(Alexandratos & Bruinsma, 2012). 

GDP [constant 2015 

bn US$] 

P×A 11,918 

(1962) 

59,025 

(2006) 

National Accounts data on GDP obtained from 

the World Bank Database (2023). 

Crop land use per 

unit of total 

production 

T 0.115 0.027 This results in an average annualized T decrease 

of 3.2% per year. 
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Approach 2: STIRPATs in previous research 

In the second approach we used projections of technological development grounded in the 

STIRPAT framework (eq. 2), which implied that T ahead was explicitly dependent on 

population and affluence. We used elasticities in STIRPAT that had been estimated under the 

assumption that the error term, e, included T and its coefficient, d in eq. 2. This approach is 

consistent with the early STIRPAT literature which assumed that it is not possible to 

operationalize T (Dietz et al., 2007; Dietz & Rosa, 1994, 1997; Rosa et al., 2004). However, 

more recent studies have argued that there are means to measure T, and a variety of factors 

have been proposed to reflect it. For example, McGee et al. (2015) found that impervious 

surface area, denoted terrestrial technology, was correlated with carbon outputs, arguing that it 

should be a measure of T in STIRPAT. Other factors accounted for in STIRPAT include 

urbanization, financial development, trade openness, as well as renewable and non-renewable 

energy consumption (Jia et al., 2009; Usman et al., 2022). Nevertheless, there is still a lack of 

consensus regarding how T should be operationalized in the literature, and therefore we opted 

for the standard approach of keeping T in the error term. Specifically, we made projections of 

the total environmental impact, I, based on our projections for P and A (detailed above), using 

literature estimates of elasticities 𝑏𝑏 and 𝑐𝑐. Then, we calculated T by the IPAT identity, 

according to:  

 

𝑇𝑇 =  𝐼𝐼 
𝐴𝐴𝐴𝐴

 = {𝑒𝑒𝑒𝑒. 2 with 𝑒𝑒 comprising 𝑇𝑇 and 𝑑𝑑} = 𝑎𝑎𝑎𝑎𝑏𝑏𝐴𝐴𝑐𝑐𝑒𝑒
𝐴𝐴𝐴𝐴

 =  𝑎𝑎𝑎𝑎𝑏𝑏−1𝐴𝐴𝑐𝑐−1𝑒𝑒          (3)   

 

From this, when we examined changes over time, we got: 
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𝑇𝑇
𝑇𝑇0

= {𝑒𝑒𝑒𝑒. 3} = 𝑎𝑎𝑎𝑎𝑏𝑏−1𝐴𝐴𝑐𝑐−1𝑒𝑒     
𝑎𝑎𝑎𝑎0

𝑏𝑏−1𝐴𝐴0
𝑐𝑐−1𝑒𝑒   

= ( 𝑃𝑃
𝑃𝑃0

)𝑏𝑏−1( 𝐴𝐴
𝐴𝐴0

)𝑐𝑐−1           (4)  

 

In this equation, 𝑇𝑇
𝑇𝑇0

 slopes downward for elasticities below one (𝑏𝑏 < 1 and 𝑐𝑐 < 1) if population 

and affluence increase monotonically. For higher elasticities (𝑏𝑏 > 1 and 𝑐𝑐 > 1), 𝑇𝑇
𝑇𝑇0

 instead 

increases over time. However, if 𝑏𝑏 and 𝑐𝑐 diverge, with one but not the other above unity, then 

T depends on the relative difference between P and A.  

 

 

The elasticities for P and A in our projections were grounded in a review of previously 

estimated STIRPAT models. For climate impact, we used elasticities obtained from two 

literature reviews of CO2 and GHG emissions (Liddle, 2015; Pottier, 2022). This definition of 

climate impact varies slightly from the one that we used in Approach 1, which was based on 

CO2e. This approach thus assumed that general trends were consistent across these different 

definitions. Regarding elasticities with respect to population, we used the median of the cross-

national, inter-temporal STIRPAT studies listed in Liddle (2015); in this data set, we excluded 

short-run data when long-run data were available, and we used disaggregate estimates (per 

income level), rather than overall estimates when both of these data were published (N = 29 

data points). Concerning elasticities with respect to affluence, we additionally considered the 

review by Pottier (2022), who presented income elasticities of GHG or CO2 emissions from 

various countries and time periods. From that study, we used the upper bound in cases in which 

no other data were listed (N = 36 data points). We used the median of the entries in Liddle 

(2015) and Pottier (2022) in our climate models in Approach 2 (Table 4). 
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Table 4. Elasticities of population and affluence with respect to climate impact in the two literature 

reviews that we considered. We used the median values in our models in Approach 2.  

Climate impact 

elasticity 

Median Range N data 

points 

Reference 

Population, 𝑏𝑏 in eq. 2 1.12 0.26-2.75 29 studies Liddle (2015) 

Affluence, 𝑐𝑐 in eq. 2 0.58  
0.31-1.04 in (Pottier, 2022) and 

0.15-2.5 in (Liddle, 2015) 

36 + 27 

studies 

Pottier (2022)  

Liddle (2015)  

 

For land use impact, we used elasticities of population and affluence published by Rosa 

et al. (2004), in which STIRPATs were estimated using data from 142 countries (Table 5). As 

we depended only on this one study to model land use impact, the elasticities that we used were 

less reliable than those that we used for climate impact, which reflected two literature reviews. 

This imbalance was unavoidable considering that the literature on STIRPAT has mainly 

focused on climate impact (e.g., Wang et al. (2011) and Xiong et al. (2019)). While there are 

alternative approaches, for instance focusing on ecological footprint, which is a general 

measure that aggregates over many types of environmental stress (Dietz et al., 2007; Jia et al., 

2009; Usman et al., 2022), the STIRPAT literature using land use as the dependent variable is 

still scarce. Therefore, we used the estimates in Rosa et al. (2004), and we assumed that arable 

land and grazing were proxies for land use. 

Thus, the literature suggests that impact elasticities of population are near unity for both 

climate impact and land use impact. Elasticities of income are generally below one, which 

signals relatively inelastic relationships where environmental effects increase at a slower rate 

than GDP. Consistently, the median elasticity of income for climate impact was 0.58 (Table 

4), which was only slightly larger than the elasticity for land use impact, 0.50 (Table 5). Note 
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further that for climate impact b was above unity (1.12) while c was not (0.58), implying that 

T depended on the relative difference between changes in P and A. For land use, however, 

elasticities of both population and income were less than unity, which means that increasing P 

and A  implied declining T, impact per unit of production, over time. 

 

Table 5. Elasticities of population and affluence with respect to land use. In our models, we used the 

mean of two analyses in Rosa et al. (2004), one for grazing and one for arable land (Approach 2). 

Land use impact 

elasticity 

Mean Range N data points Reference 

Population, 𝑏𝑏 in 

eq. 2 

0.99  

0.94 (grazing)-1.04 (arable land) 

142 countries Rosa et al. 

(2004) 

Affluence, 𝑐𝑐 in eq. 2 0.50 

0.36 (arable land)-0.64 (grazing) 

142 countries Rosa et al. 

(2004) 

 

Approach 3: Literature forecasts of environmental impacts 

Lastly, we considered literature forecasts of impact I and we examined how they related to T 

in the IPAT framework (Approach 3). For climate, we applied IPCC’s most recent models 

(IPCC, 2022), which use a scenario matrix architecture in which socioeconomic patterns are 

reflected in five key SSPs, and climate mitigation strategies are represented by five distinct 

levels of radiative forcing (Fujimori et al., 2018), which reflect concentrations of GHG and 

other factors of climate warming in 2100 in units of watts per square meter (Appendix A, Figure 

A.1). These levels reflect different Representative Concentration Pathways (RCPs), which 

represent various mitigation schemes, accounting for behavioural trends and efforts to curb 

emissions relating to energy generation, novel technologies, and transportation, for example.  
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Specifically, our IPAT model for climate change was based on IPCC’s (2022) middle-

of-the-road projection SSP2 with RCP 4.5, developed by IIASA (Fricko et al., 2017; Riahi et 

al., 2017). It assumes the continuation of current social and economic trends and moderate 

mitigation efforts. We operationalized climate impact as GHG emissions in terms of 

(unharmonized) emissions of Kyoto gases in units of megatons of CO2e per year, with data sets 

obtained from the © SSP Public Database, hosted by IIASA (2023). Note that this 

conceptualization of climate impact varied slightly from the one we used in Approach 1, which 

was based on all GHGs in units of CO2e, and Approach 2, which reflected CO2 and GHG 

emissions. Thus, it was an assumption in our models that patterns over time were consistent 

across these three specifications. To obtain a trajectory for T, we divided the projection of 

climate emissions with trajectories for population and per capita GDP in SSP2.  

For land use, we accounted for forecasts in IPPC’s middle-of-the-road scenario SSP2. 

This assumes that current trajectories in the land sector will continue, with medium levels of 

regulation and technological change, material-intensive consumption, an increase in animal 

calorie share, as well as ongoing tropical deforestation (Popp et al., 2017). It considers that the 

total cropland in 2005 was 1.5 bn ha and that the use of cropland will increase by 231 mn ha in 

the period from 2005 to 2100 due to increased demand for food and feed (Popp et al., 2017). 

We accounted for this development in relation to the projection of GDP in SSP2 (Dellink et 

al., 2017) to calculate the annual decrease in T (Table 6). The approach thus considers that T 

responds to the inverse of A×P.  

Calculated this way, the annual reduction of T is very dramatic, because land use has 

been relatively unchanged over the last decades while affluence and population have increased 

enormously. This approach thus assumes that the levels of agricultural intensification, 

mechanisation, capital investments, and nutritional inputs to the land that have taken place 

since the 1960s (i.e., the Green Revolution) will continue over the twenty-first century 



22 
 

(Evenson & Gollin, 2003). For low-income countries, this reflects the adoption of agricultural 

intensification practices that have mainly taken place in more affluent countries. For high-

income countries, it implies the continuation of agricultural intensification at the same 

spectacular rate as in the last half-century (Evenson & Gollin, 2003). 

 

Table 6. Global historical data (2005) and projections (2100) in terms of the area of arable land 

forecasted to be used, and the value of T implied by these numbers (Approach 3).  

Dimension  IPAT-

entry 

2005 2100 Comment 

Cropland use [bn 

ha] 

I 1.5 1.731 SSP2 land use forecast for cropland in hectares, as 

detailed in Popp et al. (2017). 

GDP [bn US$2005] P×A 56,380 537,272 The 2005 GDP record was obtained from the SSP 

Public Database (a World Bank WDI), hosted by 

IIASA (2023), and the 2100 forecast was from SSP2 

(Dellink et al., 2017). 

Cropland use per 

unit of total 

production 

T 0.027 0.0032 

 

This generates an average T decrease of 2.2% per 

year. 

 

 Note that a major simplification in our models is that we largely do not consider that A, 

P and T are endogenously related to each other. This diverges from historical trends and 

forecasts in which endogenous relationships can be either explicit, as in IPCC’s models, or 

indirect, through various known and unknown causal links reflected in historical records. Thus, 

our IPAT-type extensions are based on strong assumptions that likely do not hold about 
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independence and temporal invariance in the relationships we have studied. Our approach 

therefore contrasts with researchers who have theorized that P and T are dependent on each 

other (Boserup, 1965). However, it is still conceptually helpful as it allows us to use IPAT as 

a theoretical tool to explore how different forecasting methods relate to one another. 

Effects of changing P, A and T 

In the last section of our results, we examined to what extent changing different parameters 

would affect I in the different models. Examining changes in P speaks directly to theories 

linking environmental effects to population such as the human ecology view. We modelled 

population using four diverging trajectories, where our standard middle-of-the-road trajectory 

was the medium scenario in WPP (2022). We first changed the medium scenario with 10% in 

2100 and assumed a linear change up to that point. We also used the projections for low and 

constant fertility in WPP (2022). The low scenario represents rapid fertility decline in Asia and 

Sub-Saharan Africa, while the (arguably quite unlikely) scenario of constant fertility 

characterises population trajectories with the fertility levels of 2022 extrapolated into the 

future. In practice, population policy reducing fertility could imply non-coercive support for 

family planning or less government support for childrearing, and scenarios promoting it could 

instead involve increased socialization of childrearing (Kolk, 2021).  

For variations in affluence, which are directly related to degrowth from a theoretical 

perspective, we similarly modelled per capita GDP based on a 10% increase and decrease as 

compared to the 2100 levels in our standard scenario. Examining the effect on I of such a 

reduction in income can be seen as an assessment of degrowth as a strategy to mitigate 

environmental challenges. It is therefore associated with the political economy viewpoint. 

We also explored the impact of a range of expectations about technological 

development. First, we considered variations in T by 10% in the models based on historical 
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data (Approach 1). Second, we considered the first and third quartile of impact elasticities of 

population and affluence in the reviewed STIRPAT literature (Approach 2). Third, we 

considered different radiative forcings in 2100 in SSP2 (IPCC, 2022) (Approach 3) (Appendix 

A, Figure A.1, left panel). These levels imply varying T, since they assume that socioeconomic 

patterns (P and A) are similar, while climate behaviours, policies, and technologies differ. We 

could therefore obtain projections for T by dividing climate forecasts with population and GDP 

trajectories in SSP2 (Appendix A, Figure A.1, right panel). This assessment relates to the 

modernization perspective as it focuses on T. The corresponding method could not be used for 

land use, because we only found one relevant forecasting scenario in the literature (Approach 

3). 

IPAT projections and interpretations 

Climate and land use impacts  

IPAT models for climate and land use impacts are shown in Figure 1. The historical 

extrapolations resulted in climate impact at the end of the century that is about half of current 

levels (Approach 1; Figure 1, left panel). This was relatively similar to IPCC’s forecasts 

(Approach 3; Figure 1, right panel) which imply that the likelihood of peak global warming 

staying below 2°C is only 8% (5% to 95% percentile: [2%–18%]) and that the global mean 

temperature in 2100 will likely increase by around 2.7°C (IPCC, 2022). This model also 

illustrated that even scenarios such as SSP2 RCP4.5, which is likely to be insufficient to 

mitigate climate impact, still imply a T that is very close to zero in 2100 (T = 0.06) (Table 7). 

This echoes the substantial increases in population and affluence that are expected by then, 

since standard trajectories imply levels of P and A that are 1.32 and 4.54 of current readings, 

respectively. 
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Even more alarming, the model reflecting STIRPAT elasticities (Approach 2) 

generated effects that were closer to the more catastrophic climate impacts (e.g., SSP5 RCP 

8.5), and much larger T = 0.55 of current levels (Table 7). Also in sharp contrast with 

environmental targets, our STIRPAT-based projections of land use (Approach 2) and literature 

forecasts (Approach 3) suggested that impacts will increase rather than decrease in 2100. The 

latter indicated that land use impact will increase to 1.13 of current levels in 2100 despite 

estimates that T will decrease to about one-fifth of current levels (Table 7). This is thus an 

example of weak decoupling, since A is expected to rise considerably by then. The lack of 

strong decoupling here is disconcerting considering environmental studies that argue that levels 

of human impact on land systems and biodiversity are already unsustainable (Steffen et al., 

2015; Dasgupta, 2021).  

The left panel in Figure 1 depicts land use impact assuming that historical trends 

continue and that T declines by 3.2% per year (Approach 1). We complemented this with a 

model that accounted for historical trends based on cereal yield, generating an annual T 

decrease by 2.1% per year (Popp et al., 2017) (Appendix B, Figure B.1). The difference 

between these two models was that the first one represented total production, while the latter 

related only to production in the form of crop yield, reflecting intensification technologies such 

as industrial fertilizers for a given land area (although crop yield will be higher at lower levels 

of land use as more productive land is used). These models are relatively consistent in that they 

both result in significant decreases in land use impact. Approach 1 implies that land use impact 

at the end of the century will be only 0.07 of current levels (Table 7).  
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Figure 1. IPAT-projections of impact, I, for climate impact (red) and land use impact (light red). In all three panels, the same assumptions apply for population 

(P; blue) and affluence (A; black), while T varies. The left panel shows projections in which T for climate impact (green) and land use impact (light green) are 

based on historical trends (Approach 1). The central panel is based on STIRPAT estimates of impact elasticities of P and A (Approach 2). The right panel shows 

forecasts in the literature in which T for climate impact is inferred from IPCC’s SSP2 (RCP 4.5) (Fricko et al., 2017; Riahi et al., 2017) and land use impact 

derives from SSP2 (Popp et al., 2017) (Approach 3).
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Table 7. Technology, T, in 2100 as related to levels in 2020 for climate and land use impact. These 

data are depicted in the T graphs in Figure 1. 

Dimension Technology T 

Approach 1)  

T: Historical trends 

Approach 2)  

T: STIRPAT-derived 

Approach 3)  

T: Literature forecasts 

Climate 0.09  0.55  0.06  

Land use 0.07  0.47  0.19  

 

Scenario analyses   

We further explored how changing trajectories of population, affluence, and technology would 

change environmental impacts as seen through an IPAT lens. Here, we wanted to illustrate the 

importance of the time horizon and the difference in T across the two environmental 

dimensions (climate and land use) and the three modelling approaches (Table 1). These aspects 

influence the extent to which changes in P and A will actually influence I. Our models can thus 

be used to highlight the relevance of addressing environmental concerns through policies 

reducing population or affluence.   

Population 
Given the very nature of an IPAT model, reductions in population by 10% in 2100 as compared 

with the middle-of-the-road scenario would decrease climate impact with a similar share in the 

models that are based on historical data (Approach 1). For example, carbon emissions would 

be 0.47 of current levels instead of 0.52 (Table 8), a reduction which is rather modest. In this 

approach, the small T of 0.09 of current levels (Table 7) compensates for the relatively large 

anticipated values for P and A of 1.32 and 4.54, respectively, of today’s readings (Figure 1). 

However, in the scenarios that are based on STIRPAT (Approach 2), the impact of a 10% 

decrease in population is much larger, as it implies that carbon impact (I = 2.91) is considerably 

lower than the middle-of-the-road scenario (I = 3.28) (Table 8). Put differently, a 10% decrease 
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in population would reduce impact in 2100 by 37% as compared to current levels. Regarding 

literature forecasts  (Approach 3), our models further suggest that the effect of a decrease in 

population by 10% would be less important for climate than land use; in the latter case, I would 

be reduced from 1.13 to 1.02 of current levels, as compared with a reduction from 0.35 to 0.32 

for climate (Table 8). In absolute terms, this suggests that population policy would have a larger 

effect on land use impact than climate impact, though the relative impact would be similar in a 

strict IPAT-type framework.  

 

Table 8. Impact I in 2100 as compared to 2020. It shows the range (and middle-of-the-road value) for 

±10% changes in population and affluence as compared to the middle-of-the-road outcomes depicted 

in Figure 1. 

  

Dimension 

Impact I 

Policy  

Approach 1)  

T: Historical 

trends 

Approach 2)  

T: STIRPAT-

derived 

Approach 3)  

T: Literature forecasts 

P ± 10% 
Climate [0.47-0.58] (0.52) [2.91-3.65] (3.28)  [0.32-0.39] (0.35) 

Land use [0.40-0.49] (0.44) [2.53-3.08] (2.80)   [1.02-1.24] (1.13) 

A ± 10% 
Climate [0.47-0.58] (0.52) [3.09-3.47] (3.28) [0.32-0.39] (0.35) 

Land use [0.40-0.49] (0.44) [2.66-2.94] (2.80) [1.02-1.24] (1.13) 

 

Further, IPAT models of impact as related to UN WPP’s (2022) three population 

prospects illustrate that the high rates of growth implied by the constant fertility scenario have 

very large impacts in all cases, whereas low fertility rates are associated with effects that are 

consistently substantially smaller (Appendix C, Figure C.1 and C.2). Note that the STIRPAT-
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derived models (Approach 2) show similar sensitivity to population as the other two approaches 

in relative terms (Table 9). This is because elasticities for population are relatively close to one 

for both climate (1.12) (Table 4) and land use (0.99) (Table 5). However, in absolute terms, 

variations in population have the largest consequences in these models (Approach 2), because 

they imply that T as compared to current levels is quite high in 2100: 0.55 and 0.47 for climate 

and land use, respectively (Table 7). Note further that the constant fertility scenario has a larger 

absolute impact on land use (I = 2.09 vs. 1.13 in the middle-of-the-road scenario) than climate 

(I = 0.66 vs. 0.35) in the models that are based on literature forecasts (Approach 3). This suggest 

that population policy is of greater importance for land use. 

 

Table 9. Impact I in 2100 as compared to 2020, assuming UN WPP’s (2022) three population 

projections: low, medium and constant fertility. All other models in this paper are based on the WPP 

(2022) medium scenario. 

Dimension 

Impact I in 2100 relative 2020 for different population prospects 

Approach 1)  

T: Historical trends 

Approach 2)  

T: STIRPAT-derived 

Approach 3)  

T: Literature forecasts 

Climate 

0.35 (low) 

0.52 (medium) 

0.97 (constant fertility) 

2.12 (low) 

3.28 (medium) 

6.56 (constant fertility) 

0.24 (low) 

0.35 (medium) 

0.66 (constant fertility) 

Land use 

0.30 (low) 

0.44 (medium) 

0.82 (constant fertility) 

1.91 (low) 

2.80 (medium) 

5.17 (constant fertility) 

0.76 (low) 

1.13 (medium) 

2.09 (constant fertility) 
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Affluence 
Variations in per capita affluence by ± 10% in 2100 as compared to the middle-of-the-road 

scenario are listed in Table 8 and graphs are shown in Appendix D, Figure D.1 and D.2. They 

imply proportional impacts in the models that are based on historical trends (Approach 1) and 

literature forecasts (Approach 3) (Appendix D, Figure D.1 and D.2). These two approaches 

both imply that variations in A by ±10% perfectly reflect the corresponding variations in P, 

which is an inherent effect of this type of IPAT modelling. The effects of ± 10% changes in 

affluence are the highest in the models in which T is the highest, the STIRPAT-based models 

(Approach 2); notably, these models result in impacts that vary quite a lot, from 3.09 to 3.47 

for climate and from 2.66 to 2.94 for land use (Table 8). However, note that this approach also 

means that the relative changes in impact are smaller, because in these models assume that the 

elasticity of income is less than one for both climate impact (0.58) (Table 4) and land use 

impact (0.50) (Table 5).  

Technology 
Environmental impacts assuming different scenarios for T are shown in Figure 2 and Figure 3, 

and Appendix E lists values of I in 2100. The left panels in Figures 2 and 3 show that neither 

climate nor land use impact is particularly sensitive to ±10% changes in T, assuming that 

historical trends continue (Approach 1). For example, these models imply that a 10% decrease 

in T results in climate impact that is 0.47 of current levels, as compared to 0.52 in the middle-

of-the-road scenario (Appendix E, Table E.1). This is because reductions in T are very large in 

these scenarios, with T = 0.09 and T = 0.07 of current levels for climate impact and land use 

impact, respectively (Table 7).  

The central panel in Figure 2 shows variations in climate impact as an effect of a range 

of STIRPAT elasticities in eq. 2 (first and third quartile based on the literature review). It is 

noteworthy that none of these models result in climate impacts that are small enough to meet 

global goals, as they range from 2.22 to 5.45 of current levels (Appendix E, Table E.2). 
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Likewise, calculations of land use impact in 2100 as related to different STIRPAT elasticities 

suggest that effects will be severely worsened as compared to current levels (Appendix E, Table 

E.2). 

The right panel in Figure 2 shows IPCC’s SSP2 projections given different levels of 

radiative forcing in 2100 (see Appendix A). It includes the only climate scenario in this study 

in which emissions are below net zero in the 2050s (SSP2 and RCP 1.9), in alignment with 

global climate targets to keep global warming below 1.5°C. However, as illustrated in our IPAT 

models, this scenario is associated with exceptional improvements in climate impact per unit 

of production. For example, it implies that T will be reduced to less than one-quarter of current 

levels already in 2040 (Figure 2). 
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Figure 2. IPAT-projections of climate impact (I; red) as related to variations in scenarios for technology (T; green). The left panel shows projections in which 

technology is based on historical trends ±10% (Approach 1), the central panel is based on STIRPAT estimates of climate impact elasticities, with first and third 

quartiles in addition to the median (Approach 2), and the right panel shows trajectories based on IPCC’s projection SSP2 for different RCPs (Approach 3).  



  

Figure 3. IPAT-based projections of land use impact (I; red) as related to variations in technology (T; 

green). The left panel shows projections in which T is based on historical trends ±10% (Approach 1), 

and the right panel is based on STIRPAT-based estimates of population and income elasticities, 

accounting for the first and third quartiles in addition to the median in the literature (Approach 2). We 

did not find any variations in the literature regarding forecasts, so Approach 3 is not shown.  

Environmental ecology theories 

Our projections relate differently to theories within environmental ecology. The results are 

broadly consistent with the green growth theory, or modernization in the framing of York et al. 

(2003a), at least in the limited sense that they imply relative (weak) decoupling between 

environmental impact and economic growth. In a comparison of levels in 2100 and 2020, T 
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decreases while A increases, in all our models. However, only a few of them imply absolute, 

(strong) decoupling between growth of affluence A and impact I; in many of our models, I in 

2100 is projected to increase from current levels. 

Nevertheless, the projections that are grounded in historical trends (Approach 1) do 

support modernization, as they imply that both climate and land use impacts will be lower at 

the end of the century than they are now (Figure 1, left panel); however, be aware that these 

models both assume exceptionally small values of T in 2100 (Table 7), implying a massive 

adoption of environmentally friendly policies and technology. In the case of land use, they 

involve enormous increases in land productivity for a given amount of land.  

On the other hand, our projections based on forecasts (Approach 3) imply that impacts 

in 2100 will be much higher than what many argue to be sustainable levels, as climate impact 

is projected to be far above zero and land use impact is above current levels. These predictions 

support the human ecology and political economy perspectives. Even more disconcerting, the 

models based on STIRPAT (Approach 2) imply that both of these environmental impacts 

increase as an effect of the anticipated growths in P and A, because the impact elasticities for 

both of these factors are above zero (Tables 4 and 5). Thus, theories that argue for degrowth, 

such as the political economy perspective, and those that promote the need for population 

policy, such as the human ecology view, find the most support from these models.  

In all models, population size contributes to environmental impact, but in some 

scenarios, this effect is small relative to the impact of projected growth in affluence. The 

importance of changing A and P can be considered in relation to the size of T in the different 

projections. For example, this way it becomes clear that the higher T in forecasts of land use 

(Approach 3) implies that the relative importance of anticipated growths in P and A is greater 

for this environmental dimension than for climate (Table 7). This suggests that land use is 
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harder than climate to mitigate except through reduced consumption or fewer people. An 

emphasis on the importance of population policy to mitigate environmental issues is consistent 

with the human ecology perspective. Thus, this perspective may be more relevant for land use 

than climate. 

  

Discussion and conclusion 

The IPAT framework connects to a number of earlier studies about how societies can manage 

environmental challenges. It was developed to highlight the role of population, but it can be 

used to argue for nearly any relationship of the constituting elements (Chertow, 2000). We 

have shown that it is a helpful tool when comparing across future environmental impacts when 

the relative role of T as compared to A and P differs. Articulating variations across domains is 

important because it enables understanding of how the trade-offs involved differs. Distinct 

ethical and political reasoning may apply across various environmental dimensions. We have 

intuitively illustrated that larger reductions in T imply smaller effects of changing P and A in 

absolute terms. We have modelled this as either low elasticities between impact and affluence 

or population, or through exogenously defined trajectories.  

 The overall interlinkages with P, A, and T have been discussed extensively in the 

environmental literature from a number of different theoretical perspectives. It is our hope that 

our IPAT-type modelling can clarify how these different theories implicitly (and occasionally 

explicitly) put different weights on the various parts of this identity. Original proponents of 

IPAT highlighted the negative consequences of anticipated growths in P and A (Ehrlich & 

Holdren 1971), and they were thus sceptical of improvements in T. Contemporary 

environmentalists focusing on degrowth are similarly sceptical, but they concentrate nearly 

entirely on A. In contrast, researchers proposing green growth put a large emphasis on 
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mitigation through T. Our models have highlighted how substantive such improvements must 

be, particularly in light of mainstream forecasts of global GDP, and even more so if one 

considers contemporary consumption to be (already) above sustainable levels. This view is 

common in the environmental literature. Broadly, our models are consistent with previous 

research that has reasoned that the IPAT framework highlights T as the most dynamic and 

important part of the equation (Chertow, 2000). They are especially helpful to pinpoint the 

situations in which large reductions in T are considered to be feasible, and therefore when P 

and A are of less relative importance. Our models also illustrate the extent to which 

technological improvements underlay different actors’ forecasts. 

 In line with earlier research using this approach, our STIRPAT-type modelling has 

highlighted the difficulties in disconnecting affluence and population from environmental 

impacts. These models, which are derived from observed trends over time and across regions, 

consistently give the highest environmental impact. They suggest that our economic, 

technological, and political systems may need to work in fundamentally different ways than in 

the last decades to reach global goals. Business-as-usual scenarios likely imply limited 

decoupling between I on the one hand and P or A on the other. In our STIRPAT-based models, 

differences between projections across environmental dimensions are driven by variations in 

impact elasticities of P and A, which imply alternative paths for T. Our models thus highlight 

the dramatic weight given to future technological improvements and assumptions of near-total 

decoupling for affluence and population assumed in standard climate models, such as the SSP2 

RCP 4.5. As such, IPCC’s middle-of-the-road prediction clearly reflects a green growth 

perspective.  

 Another conclusion based on our models is that population policy (“fewer people”) and 

degrowth (“less consumption”) may be less relevant strategies for climate than land use if one 

assumes the mainstream SSP2 trajectories to be realistic. The reason is promising technology, 
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especially within the energy supply sector (see Davis et al. (2018)). For land system change, 

population policy or reduced consumption may be more relevant. This is underlined in our 

STIRPAT-based approach, which implies substantially increasing land use impacts, from 

levels that many argue are already unsustainable. We are not aware of much empirical and 

analytical studies in the scientific literature that would radically contradict such a perspective 

with respect to land use.  

 Our models suggest that environmental impacts may be decoupled from affluence (and, 

relatedly, population) for climate impact. These findings are supported by extant technologies 

and policies that would substantially reduce climate impact, as shown in the right panel in 

Figure 1. Still, note that green growth in the context of climate change means that impact per 

dollar spent needs to decrease steeply for I to go down sufficiently. The reduction in T must be 

larger than the anticipated increase in A×P; for example if A = 5 and P = 1.2, then T must be 

1/6 for a constant I, or 1/12 for reductions in I by half in a green growth scenario. Assuming 

access to clean energy, it is imaginable that carbon elasticities of population can be reduced to 

near zero, which implies that there will be no additional climate impact of an extra person in 

the world. We have one IPAT trajectory that reflects this positive trend (Figure 2, right panel).  

 However, we have found little evidence of the corresponding pattern for land use 

change. Our models have thus illustrated that anticipated technological and behavioural 

developments in carbon intensity do not necessarily translate to improvements within land 

systems change. They have indicated that green growth may be a realistic perspective for 

climate change, but that it is less applicable to land use. Consequently, the political economy 

view, implying a stagnant economy (degrowth), is likely to be more relevant for land use than 

climate impact. In parallel, our results suggested that population policy, related to the human 

ecology perspective, may have a larger effect on the possibility to reach global goals within 

land use change than climate change. Policymakers need to be aware of these differences. 
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The results in this study should be interpreted with regards to its limitations. First, our 

modelling approaches are based on a number of theoretical simplifications. The most important 

is that we largely avoid endogeneities between P, A, and T. By harmonising the different types 

of models into one framework we have thus excluded some of the causal ways that these aspects 

may be linked. Hence, our models should primarily be seen as a way of putting different 

approaches into a similar scale and theoretical perspective, which allows for comparisons. The 

models should be considered in this light, rather than seen as precise projections of 

environmental impacts. Consequently, we see this article as mainly a theoretical contribution. 

Any single IPAT-type model we present can be discussed, and different operationalizations or 

competing models in the secondary literature could have been chosen and may have been 

equally plausible. Nevertheless, we have found that this exercise has been helpful in 

interpreting the radically diverse environmental literature.  

Second, it is important to keep in mind that we have relied solely on experts in this 

study, as our modelling inputs are grounded in a literature review. Thus, the study assumes that 

this literature is sufficiently rich to capture key dynamics in the future. While the STIRPAT 

literature on climate impact is relatively vivid, it has been more challenging to find the 

corresponding studies for land use impact. Furthermore, in our STIRPAT-based models, we 

have assumed elasticities to be temporally constant. There have been only limited studies 

examining how elasticities may change over different levels of affluence, and the few studies 

doing this have suggested that they are relatively robust (see, e.g., Liddle (2015)).  The 

modelling is based on our own assessments of what constitutes relevant empirical inputs; for 

example, we have assumed that the slightly different definitions of climate impact that we adopt 

in the three modelling approaches (Table 1) do not have a large influence on the findings. Our 

modelling thus assumes that variations in climate impact over time are not fundamentally 

different across these different specifications.  
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Third, another concern is that we used a single set of trajectories for P and A in our 

IPAT modelling, while the different forecasting scenarios that we base our models on use 

different, but related, trajectories. The most important difference is that we used UN WPP 

(2022) while many SSP-based scenarios have used population forecasts from the Wittgenstein 

Centre for Demography and Global Human Capital and IIASA (KC & Lutz, 2017). 

Harmonising a diverse set of scenarios was a consequence of our approach, which aimed to 

synthesize a sprawling literature and a wide set of models with different assumptions on P and 

A. This highlights the importance of interpreting our results primarily as theoretical tools for 

understanding conceptual differences rather than as competing forecasts of environmental 

problems. 

In conclusion, our models are generally consistent with mainstream views in the 

environmental sciences. They show the following: i) Consumption and wealth are the largest 

drivers of many environmental challenges. ii) The impact of population on environmental 

impacts is often close to one-to-one, so population reductions will likely affect many 

environmental problems proportionally, neither substantially less nor more. iii) Green growth 

is possible and likely in the sense of relative decoupling, declining T combined with increasing 

A, although it seems more challenging for absolute decoupling involving decreasing I over 

time, which implies nearly infinitesimal T in the long-term scenarios, seeing that P×A is 

expected to increase considerably. In scenarios with relative decoupling, increasing affluence 

and population will aggravate environmental impacts. iv) For some environmental challenges, 

such as zero-emission energy, radical decreases in climate impact per unit of consumption seem 

more feasible than for others, such as land use impact. v) Even though large-scale technological 

transformation is judged possible by the scientific community such as the IPCC, they inevitably 

imply dramatic reductions in environmental impact per unit of consumption (T). We believe 
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that the IPAT-type harmonisation of models that we have presented here helps to understand 

and motivate these conclusions.  
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Appendix A. Climate impact for different RCPs given projections of P and A in SSP2. 

Figure A.1 shows climate impact projections as inferred from six RCPs, given SSP2 (IPCC, 

2022), using 2020 as the base year. All these projections assume the same development for P 

and A, while I varies according to the RCPs (Figure A.1).  

 

Figure A.1 The left panel shows emissions of Kyoto gases for each of the RCPs given SSP2, that is, 

total impact I. The right panel displays the corresponding T curves, calculated assuming T = I/(P×A). It 

considers that all RCPs given SSP2 imply the same assumptions for P and A. For both panels, data were 

downloaded from the © SSP Public Database, hosted by IIASA (2023). 
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Appendix B. Land use impact assuming the continuation of historical trends.  

Land use impact assuming the persistence of historical developments with different 

assumptions for T are shown in Figure B.1 (Approach 1).  

 

Figure B.1 Land use impact in the middle-of-the-road scenario (Approach 1) with different assumptions 

for T. The lower T-curve (green) and the corresponding I (light red) assume T reductions of 3.2% per 

year, that is, the same as in Figure 1 (Table 3) (Alexandratos & Bruinsma, 2012). The upper T-curve 

(cyan) and the corresponding I (light purple) are based on global average cereal yield in 1960 

(1.3 tonnes/ha) versus 2005 (3.3 tonnes/ha), that is, a T reduction by 2.1% per year (Popp et al., 2017). 
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Appendix C. Environmental impact as related to variations in population. 

Figure C.1 (climate impact) and Figure C.2 (land use impact) depict environmental impact as related 

to the three population prospects in UN WPP (2022).  

 

Figure C.1 Climate impact for the three population prospects in UN WPP (2022) in the three modelling 

approaches described in Table 1. 
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Figure C.2 Land use impact for the three population prospects in UN WPP (2022) in the three 

modelling approaches described in Table 1. 
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Appendix D. Environmental impact as an effect of variations in per capita affluence. 

Climate and land use impacts I as related to variations in per capita affluence A (±10%) are shown in 

Figure D.1 and Figure D.2. 

 

Figure D.1 Climate impact assuming variations in A by ±10% in the three modelling approaches 

explained in Table 1. 
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Figure D.2 Land use impact in relation to variations in A by ±10%. 
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Appendix E. Environmental impact as related to variations in technology. 

Impacts I in 2100 as related to 2020 as an effect of different scenarios for T are listed in Table 

E.1-E.3. Graphs of these data are shown in Figure 2 and Figure 3. 

Table E.1: Impact I in 2100 as related to 2020 assuming historical trends with varying T (±10%) 

(Approach 1). 

Dimension Impact I (Approach 1) 

T-10% T middle-of-the-road T+10% 

Climate 0.47 0.52 0.58 

Land use 0.40 0.44 0.49 

 

Table E.2: Impact I in 2100 as related to 2020 for climate impact and land use impact assuming 

STIRPAT-derived T, varying from the first to the third quartile in the literature (Approach 2). 

Dimension Impact I (Approach 2) 

First quartile Median Third quartile 

Climate 2.22 3.28  5.45        

Land use 2.50  2.80 3.14  

 

Table E.3: Impact I in 2100 as related to 2020 for climate impact with T derived from IPCC’s 

forecasts in SSP2, varying with the different RCP forcings (Approach 3). 

RCPs in SSP2 Impact I (Approach 3) 

RCP 1.9 -0.15   

RCP 2.6 -0.03   
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RCP 3.4 0.14   

RCP 4.5 0.35   

RCP 6.0 1.22 

RCP Baseline 1.93 
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